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Abstract

Let W and M be two finite dimensional subspaces of a Hilbert space H such that
H = W ⊕M⊥, and let P

W||M⊥
denote the oblique projection with range W and

nullspace M⊥. In this article we get the following formula for the singular values of
P
W||M⊥

2(sk(PW||M⊥)− 1) = min
(F,H)∈X(W,M)

sk(F −H)2 ,

where the minimum is taken over the set of all operator pairs (F,H) on H such
that R(F ) = W, R(H) = M and FH∗ = PW||M⊥ , and k ∈ {1, . . . ,dimW}. We also
characterize all the pairs where the minimum is attained.
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1 Introduction

Given a Hilbert space H, consider a decomposition of H as a direct sum of two
subspaces H = W ⊕M⊥, and consider the oblique projection associated to
this decomposition denoted by PW||M⊥ . If L(H) denote the algebra of bounded
operators on H, let X(W ,M) be the subset of L(H)× L(H) defined by
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X(W ,M) := {(F, H) : R(F ) = W , R(H) = M and FH∗ = PW||M⊥} .

In [2], it is proved that min ‖F −H‖2 exists and it is equal to 2(‖PW||M⊥‖−1),
where the minimum is taken over all pairs (F, H) ∈ X(W ,M) (the notation
used there for this set was XQ, where Q = PW||M⊥). There are many minimizing
pairs, and some of them have been determined. The present paper is devoted
to a similar problem, this time for singular values instead of the operator
norm. More precisely, if W (and therefore M) has a finite dimension, say n,
then we prove that

min s2
k(F −H) = 2(sk(PW||M⊥)− 1) (1)

for k ∈ {1, 2, . . . , n}, and we find all minimizing pairs (F, H). These results,
which are obvious if W = M because in this case PW||M⊥ is the orthogonal
projection onto W , (PW||M⊥ , PW||M⊥) ∈ X(W ,M) and therefore both members
of (1) vanish, are not evident in the oblique case.

The paper is organized as follows: Section 2 contains preliminaries and a
description of the tools needed for the proofs: an operator version of the
arithmetic-geometric inequality, some 2× 2 matrix computations and elemen-
tary facts about singular values. In section 3 we state the main results of this
paper. Section 4 is devoted to the proof of the results stated in the previous
section.

Motivation of the problem

The results of this paper have a direct translation to frame theory and sam-
pling formulae, and they have been motivated by practical problems that ap-
pear in those areas. Let PW be the subspace of all f ∈ L2(R)) whose Fourier
transform has support contained in the interval [−π, π]. Then, the classical
Shannon (or Whittaker-Kotelnikov-Shannon, WKS) formula

f(x) =
∑

f(n)sinc(x− n), f ∈ PW

is one of the first examples of sampling formulae, frequently used in sampling
theory and signal processing. The facts that sn(x) = sinc(x − n) form an
orthonormal basis of PW and that f(n) = 〈 f, sn 〉, first noticed by G. H.
Hardy [14], show that

Pf =
∑

〈 f, sn 〉 sn f ∈ H

is the orthogonal projection onto PW , and is one of the obvious factorizations
we mentioned above. In the survey by Unser [25] the reader can find historical
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notices and applications of the WKS formula, as well as a projection-based
view of some sampling problems. Indeed, in modern sampling theory, fac-
torizations of projections appear frequently. In fact, if S is a subspace of a
space H of functions defined on a set X, a sampling formula is a collection of
expansions like

f(x) =
∑

f(tn)fn(x), f ∈ S,

where {tn}n∈N is a sequence in X and {fn}n∈N is a sequence in H such that
the expansions converge in a certain topology on H. If H is a Reproducing
kernel Hilbert space, each evaluation functional, a fortiori the evaluations at
tn, is bounded and by Riesz representation theorem there exists a sequence
{hn}n∈N in H such that the sampling formula above becomes

f =
∑

〈 f, hn 〉 fn, f ∈ H.

It turns out that, under reasonable hypothesis on {fn}n∈N and {hn}n∈N, the
expansion converges, not only for elements of S but also for every f ∈ H, to
an element of S. Thus,

Qf =
∑

〈 f, hn 〉 fn, f ∈ H

defines a bounded linear projection on H with image S. Moreover, if {en}n∈N
is the canonical basis of `2, then Fen = fn and Hen = hn define bounded
operators F, H : `2 → H and Q = FH∗; {fn}n∈N is called the sequence of
reconstruction vectors and {hn}n∈N that of sampling vectors.

The study of these type of factorizations as well as estimation for the norm
of oblique projections are very useful to study different problems in modern
harmonic analysis. For instance it has been used to study the biorthogonality
of two multiresolution analyses , problems on perturbation of frames , and
problems concerning sampling theory (see for example [16], [17], [18], [8], [19],
[20], [21], [26], [7], [3] and the references cited therein).

2 Preliminaries

Given a separable Hilbert spaceH, L(H) denotes the algebra of bounded linear
operators on H, and Lf (H) the ideal of operators with finite dimensional
range. Given A ∈ L(H), R(A) denotes the range or image of A, N(A) the
nullspace of A, σ(A) the spectrum of A, A∗ the adjoint of A, |A| = (A∗A)1/2

the absolute value of A, ‖A‖ the spectral norm of A.

If H = W⊕M⊥ then the projection onto W defined by this decomposition is
denoted by PW||M⊥ . Observe that P ∗

W||M⊥ = PM||W⊥ . In the case of orthogonal
projections, i.e., W = M, we write PW instead of PW||W⊥ .
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Given A ∈ Lf (H), s1 (A) , s2 (A) , . . . denote the singular values of A arranged
in non-increasing order, tr(A) the trace of A and ‖A‖

F
the Frobenius norm of

A. Recall that ‖A‖2
F

= tr(A∗A) =
∑

k sk(A)2.

Remark 2.1 Throughout this paper we consider infinite and finite dimen-
sional Hilbert spaces. In the first case, the sub-indexes of the singular values
run over all the positive integers, while in the second case they belong to the
set {1, . . . , dimH}.

The following well known operator version of the arithmetic-geometric inequal-
ity (see [5], [1], and [10]) is a key result in what follows:

Proposition 2.2 Given C, D ∈ L(H), then

‖CD∗‖ ≤
∥∥∥∥∥ |C|2 + |D|2

2

∥∥∥∥∥ .

If C, D ∈ Lf (H), then

sk(CD∗) ≤ sk

(
|C|2 + |D|2

2

)
∀ k .

and the equality for every k holds if and only if |C|2 = |D|2.

We end this preliminary section by recalling some basic facts on generalized
inverses. The reader is referred to the books by Nashed [23], and Ben-Israel
and Greville [6] for more information.

Definition 2.3 Let A ∈ L(H). A generalized inverse of A is an operator
B ∈ L(H) such that ABA = A and BAB = B.

It is a well know fact that A has a (bounded) generalized inverse if and only if
R(A) is closed. In that case, the next proposition relates generalized inverses
with oblique projections.

Proposition 2.4 Let A ∈ L(H) be a closed range operator

(1) If B ∈ L(H) is a generalized inverse of A, then:
• AB is an oblique projection onto R(A).
• BA is an oblique projection whose nullspace is N(A).

(2) Given a pair of projections Q, Q̃ ∈ L(H) such that R(Q) = R(A) and
N(Q̃) = N(A), there is a unique generalized inverse B of A such that
AB = Q and BA = Q̃. In particular the unique one associated to the or-
thogonal projections PR(A) and PN(A)⊥ is called Moore Penrose generalized
inverse and it is denoted by A† . In terms of A†, the unique generalized
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inverse associated to the pair (Q, Q̃) can be written in the following way:

B = Q̃A†Q.

3 Statements

In this section we state the main result of this paper, postponing its proof
until the next section. Given two closed subspaces W and M of a Hilbert
space H such that H = W ⊕M⊥, recall that X(W ,M) denotes the subset of
L(H)× L(H) defined by

X(W ,M) := {(F, H) : R(F ) = W , R(H) = M and FH∗ = PW||M⊥} .

Note that the pair (PW||M⊥ , P ∗
W||M⊥) = (PW||M⊥ , PM||W⊥) always belongs to this

set, hence it is non-empty.

Theorem 3.1 Let W and M be finite dimensional subspaces of a Hilbert
space H such that H = W ⊕M⊥. Then for (F, H) ∈ X(W ,M)

sk(F −H)2 ≥

2(sk(PW||M⊥)− 1) if k ∈ {1, . . . , n}
0 if k > n

, (2)

where n = dimW(= dimM) and k ≤ dimH or k ∈ N if dimH = ∞.
Moreover, given F0 with R(F0) = W, if H0 = (F †

0PW||M⊥)∗ then (F0, H0) ∈
X(W ,M), and the equality for every k ∈ N is attained precisely at those pairs
(F0, H0) that also satisfy F0F

∗
0 = |P ∗

W||M⊥ | = |PM||W⊥ |.

Remark 3.2 Note that, one of the consequences of Theorem 3.1 is the fol-
lowing identity:

2(‖PW||M⊥‖ − 1) = min
(F,H)∈X(W,M)

‖F −H‖2 (3)

As we mentioned in the introduction, this identity has been proved in [2],
not only for finite dimensional spaces but also for for infinite dimensional
closed subspaces. However, a complete characterization of the pairs (F, H) ∈
X(W ,M) where the minimum is attained in (3) is still unknown. If we only
look for minimizers for the spectral norm, besides the pairs (F0, H0) such that
F0F

∗
0 = |P ∗

W||M⊥ | = |PM||W⊥ | and H0 = (F †
0PW||M⊥)∗ there may be more.

Remark 3.3 Theorem 3.1 can be restated in terms of the so-called principal
angles between subspaces. Recall that, given two (non trivial) finite dimensional
subspaces W and M of a Hilbert space the principal angles between W and M
are defined as the values θk in [0, π/2] whose cosines are the nonzero singular
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values of PMPW (see [22], [11], [12], and [27]). If in addition H = W ⊕M⊥,
as in Theorem 3.1, then PW||M⊥ = (PMPW)†. Indeed, as H = W⊕M⊥, we get

R(PMPW) = M and R(PWPM) = W .

On the other hand,

(PMPW)PW||M⊥ = PMPW||M⊥ = PM
PW||M⊥(PMPW) = PW||M⊥PW = PW ,

and therefore PW||M⊥ = (PMPW)† as we claimed (see also [13]). This implies
that the non zero singular values of PW||M⊥ are the secant of the principal
angles between W and M. Therefore, formulae (2) can be rewritten in terms
of principal angles as follows: for every (F, H) ∈ X(M,N ) and every k ∈
{1, . . . , dimW}:

cos(θk) ≥
2

2 + sn−k+1(F −H)2
.

The following estimate of the trace norm of an oblique projection can be also
obtained as a consequence of Theorem 3.1:

Corollary 3.4 Let W and M be finite dimensional subspaces of a Hilbert
space H such that H = W ⊕M⊥. Then, for every pair (F, H) ∈ X(W ,M)

‖PW||M⊥‖1 ≤
2n + ‖F −H‖2

2

where n = dimW = dimM.

4 Proof of the main result

Let f : [0, +∞) → [0, +∞) be the function defined by f(x) = x + b
x
, where

b > 0. A simple analysis of this function shows that it attains a global minimum
at x =

√
b and f(

√
b) = 2

√
b. The first step towards a proof of Theorem 3.1

is an extension of this result to operators on Hilbert spaces. The proof of this
generalization is a simple consequence of the arithmetic-geometric inequality
stated in Proposition 2.2:

Proposition 4.1 Let B ∈ L(H) be a positive and invertible operator. Then,
for every positive invertible operator A ∈ L(H) it holds that

2‖B1/2‖ ≤ ‖A + A−1/2BA−1/2‖ . (4)
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If dimH = n < ∞, then

2 sk(B
1/2) ≤ sk(A + A−1/2BA−1/2) ∀k ∈ {1, . . . , n}. (5)

Moreover, the equality for all k ∈ {1, . . . , n} holds if and only if A = B1/2.

Proof Use the arithmetic-geometric inequality (Proposition 2.2) with C =
A1/2 and D = B1/2A−1/2.

In order to prove Theorem 3.1, we also need the following lemmas:

Lemma 4.2 Let W and M be two closed subspaces of a Hilbert space H such
that H = W ⊕M⊥, and let (F, H) ∈ X(W ,M). Then FH∗ and H∗F are
projections with R(FH∗) = R(F ) and N(H∗F ) = N(F ) such that

H∗ = H∗F F † FH∗ . (6)

Proof Since by assumption FH∗ = PW||M⊥ and R(F ) = W , FH∗ is a projec-
tion and R(FH∗) = R(F ).

As R(H) = M = N(PW||M⊥)⊥, then N(H∗) = M⊥. On the other hand,

R(I − FH∗) = N(PW||M⊥) = M⊥ .

So, we can conclude that H∗(I −FH∗) = 0, that is, H∗ = H∗FH∗. In partic-
ular this proves that H∗F is a projection because

(H∗F )2 = H∗FH∗F = H∗F.

Moreover, since R(F ) = W and N(H∗) = M⊥, by assumption R(F )∩N(H) =
{0}. This implies that N(H∗F ) = N(F ).

Finally, as FF †F = F (Proposition 2.4) we obtain

H∗F F † FH∗ = H∗FH∗ = H∗ .

which concludes the proof.

Lemma 4.3 Let W and M be two closed subspaces of a Hilbert space H such
that H = W ⊕M⊥, and let (F, H) ∈ X(W ,M). Then

|(F − (F †PW||M⊥)∗)∗|2 ≤ |(F −H)∗|2 ∀ k ∈ N . (7)
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Proof By Lemma 4.2, H∗ = QF †PW||M⊥ where Q = H∗F is an oblique pro-
jection such that N(Q) = N(F ). So, we obtain that

|(F −H)∗|2 = FF ∗ + HH∗ − (PW||M⊥ + P ∗
W||M⊥)

= FF ∗ + P ∗
W||M⊥(F †)∗Q∗QF †PW||M⊥ − (PW||M⊥ + P ∗

W||M⊥).

Consider the matrix representation of Q with respect to the decomposition
H = N(F )⊥ ⊕N(F )

Q =

1 0

x 0

 .

In this representation, the (1, 2)− and (2, 2)−entries are zero because N(Q) =
N(F ). On the other side, since FH∗ = PW||M⊥ and R(F ) = W , it holds that
FH∗FF ∗ = FF ∗, or equivalently

〈H∗F F ∗x, F ∗y 〉 = 〈F ∗x, F ∗y 〉

for every x, y ∈ H. This shows that the (1, 1)−entry is I. Using the above
matrix representation of Q we obtain that

Q∗Q =

1 x∗

0 0


1 0

x 0

 =

1 + x∗x 0

0 0

 ≥
1 0

0 0

 = PN(F )⊥ . (8)

Thus, as R(F †) = N(F )⊥, we have

|(F −H)∗|2 ≥ FF ∗ + P ∗
W||M⊥(F †)∗ F †PW||M⊥ − (PW||M⊥ + P ∗

W||M⊥)

= |(F − (F †PW||M⊥)∗)∗|2 ,

which proves the lemma.

Corollary 4.4 Let F , H and PW||M⊥ as in Theorem 3.1. Then

sk(F − (F †PW||M⊥)∗) ≤ sk(F −H) ∀ k , (9)

and the equality for every k holds if and only if H = (F †PW||M⊥)∗.

Proof Using the so-called minimax principle for singular values (see [24] and
[4, p. 75]) and Lemma 4.3, we get for every k ∈ N

sk((F − (F †PW||M⊥)∗)∗)2 = max
S⊆H, dimS=k

min
x∈S, ‖x‖=1

〈
|(F − (F †PW||M⊥)∗)∗|2x, x

〉
≤ max
S⊆H, dimS=k

min
x∈S, ‖x‖=1

〈
|(F −H)∗|2x, x

〉
= sk((F −H)∗)2,
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and inequality (9) follows by taking square roots and using that sk((F−H)∗) =
sk(F−H) and sk((F−(F †PW||M⊥)∗)∗) = sk(F−(F †PW||M⊥)∗) for every k ∈ N.
In order to prove the uniqueness part, suppose that the equality in (9) holds
for every k. Then

tr(|(F −H)∗|2) =
∞∑

k=1

sk(F −H)2

=
∞∑

k=1

sk( F − (F †PW||M⊥)∗ )2

= tr( |(F − (F †PW||M⊥)∗)∗|2 ).

Expanding the absolute values inside both traces and using the linearity of
the trace we obtain

tr(P ∗
W||M⊥(F †)∗Q∗QF †PW||M⊥) = tr(P ∗

W||M⊥(F †)∗ F †PW||M⊥) .

Since R(F †PW||M⊥) = N(F )⊥ and Q∗Q ≥ PN(F )⊥ , this equality implies that
Q∗Q = PN(F )⊥ , which holds if and only if Q = PN(F )⊥ .

Proof [Proof of Theorem 3.1] Let F ∈ L(H) such that R(F ) = W and let
H := (F †PW||M⊥)∗. To show that (F, H) ∈ X(W ,M), we have to prove the
relations

R(H) = M and FH∗ = PW||M⊥ .

Since by definition

R(H) = N(H∗)⊥ = N(F †PW||M⊥)⊥

and F † is injective on R(F ) = R(PW||M⊥), we can conclude

R(H) = N(PW||M⊥)⊥ = (M⊥)⊥ = M.

Next, as FF † = PR(F ) and R(PW||M⊥) = R(F ) = W , one has

FH∗ = FF †PW||M⊥ = PW||M⊥ ,

proving the relations. Therefore (F, H) ∈ X(W ,M). Moreover, by Corollary
4.4 it is enough to prove the theorem for the pairs (F, H) so that R(F ) = W
and H = (F †PW||M⊥)∗. Thus, let (F, H) be one of such pairs. The decomposi-
tion H = W⊕W⊥ induces the following 2×2 matrix representation of PW||M⊥

and FF ∗:

PW||M⊥ =

1 x

0 0

 , FF ∗ =

a 0

0 0

 ,
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where a : W →W is invertible because R(F ) = W . Note that, as the projec-
tion PW||M⊥ is fixed, the operator x is also fixed.

Since FF †PW||M⊥ = PW||M⊥

FF †PW||M⊥ = PW||M⊥ =

1 x

0 0

 and (F †)∗F † = (FF ∗)† =

a−1 0

0 0

 .

Therefore

(F − (F †PW||M⊥)∗)(F ∗ − F †PW||M⊥)

= FF ∗ − (FF †PW||M⊥)∗ − FF †PW||M⊥ + P ∗
W||M⊥(F †)∗F †PW||M⊥

= FF ∗ − P ∗
W||M⊥ − PW||M⊥ + P ∗

W||M⊥(FF ∗)†PW||M⊥

=

a 0

0 0

−
 2 x

x∗ 0

+

 1 0

x∗ 0


a−1 0

0 0


1 x

0 0


=

a + a−1 − 2 (a−1 − 1)x

x∗(a−1 − 1) x∗a−1x



=

a−1/2 − a1/2 0

x∗a−1/2 0

 ·
a−1/2 − a1/2 0

x∗a−1/2 0


∗

.

This implies

sk(F − (F †PW||M⊥)∗)2 = sk


a−1/2 − a1/2 0

x∗a−1/2 0




2

= sk


a−1/2 − a1/2 a−1/2x

0 0


a−1/2 − a1/2 0

x∗a−1/2 0




= sk


a−1 + a− 2 + a−1/2xx∗a−1/2 0

0 0




= sk


a + a−1/2(1 + xx∗)a−1/2 − 2 0

0 0


 .
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Therefore, it holds that

sk(F − (F †PW||M⊥)∗)2 =

sk(a + a−1/2(1 + xx∗)a−1/2)− 2 if 1 ≤ k ≤ n

0 if k > n
.

(10)
Since dimW = n < ∞, we can use Proposition 4.1 and get for every k ∈
{1, . . . , n}

sk(F − (F †PW||M⊥)∗)2 = sk(a + a−1/2(1 + xx∗)a−1/2)− 2

≥ 2sk((1 + xx∗)1/2)− 2 = 2sk((PW||M⊥P ∗
W||M⊥)1/2)− 2

= 2(sk(PW||M⊥)− 1) ,

which concludes the proof of (2). On the other side, the equality holds for every
k ∈ {1, . . . , n} if and only if sk(a+a−1/2(1+xx∗)a−1/2) = 2sk((1+xx∗)1/2). So,
by Proposition 4.1, it holds if and only if a = (1+xx∗)1/2, which is equivalent
to FF ∗ = |P ∗

W||M⊥ | = |PM||W⊥ |. The equality for k > n follows from (10). This
completes the proof.
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