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Abstract. We study the features of nonlocal chiral quark models that include wave function
renormalization. Model parameters are determined from meson phenomenology, considering
different nonlocal form factor shapes. In this context we analyze the characteristics of the
deconfinement and chiral restoration transitions at finite temperature and chemical potential,
introducing the couplings of fermions to the Polyakov loop for different Polyakov potentials. The
results for various thermodynamical quantities are compared with data obtained from lattice
QCD calculations.

1. Introduction
The detailed understanding of the behavior of strongly interacting matter under extreme
conditions of temperature and/or density has become an issue of great interest in recent years.
It is widely believed that as the temperature and/or density increase, one finds a transition from
a hadronic phase to a partonic one, in which chiral symmetry is restored. From the theoretical
point of view, one way to address the study of these phase transitions is through lattice QCD
calculations [1, 2, 3]. However, this ab-initio approach shows difficulties when dealing with small
current quark masses and finite real chemical potentials. Thus it is worth to develop effective
models that show consistency with lattice results, and can be extrapolated into regions not
accessible by lattice calculation techniques. Here we will concentrate on one particular class
of effective theories, namely the so-called nonlocal Polyakov−Nambu−Jona-Lasinio (nlPNJL)
models [4, 5, 6, 7, 8], in which quarks move in a background color field and interact through
covariant nonlocal chirally symmetric four-point couplings.

The aim of this work is to study the chiral restoration and deconfinement transitions at
nonzero temperature and both real and imaginary chemical potentials, taking into account the
effect of dynamical quarks on the Polyakov loop (PL) effective potential [9, 10, 11]. We consider
both SU(2) chiral models and the corresponding extension to three flavors, including flavor
mixing through a nonlocal ’t Hooft-like six-fermion interaction [12, 13, 14]. Special attention is
paid to models in which the nonlocal form factors are chosen on the basis of lattice QCD results
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for the effective quark propagators. This requires the inclusion of a nonlocal interaction that
leads to wave function renormalization (WFR) of the quark fields [15].

2. Meson phenomenology
We start by considering a chiral quark model in which the Lagrangian includes the coupling
between quark-antiquark nonlocal currents. The explicit expression for this Lagrangian for
the three-flavor case (including WFR) can be found in Ref. [14]. Now, in order to work with
mesonic degrees of freedom, we proceed to perform a standard bosonization of the fermionic
theory, introducing scalar and pseudoscalar fields. After integrating out the fermionic degrees
of freedom, we expand the bosonic fields around their vacuum expectation values. At this mean
field level the Euclidean effective action reduces to

SMFA
E

V (4)
= −2 Tr

∫
d4p

(2π)4
log

[
M(p)2 + p2

Z(p)2

]
− σ̄aS̄a − ζ̄R̄− G

2
(S̄aS̄a + R̄2)− H

4
AabcS̄aS̄bS̄c , (1)

where G and H are the coupling constants corresponding to the four- and six-fermion nonlocal
interactions, respectively, and the trace acts over color and flavor spaces. The mean field values
of the scalar fields σ̄a and ζ̄, and the auxiliary fields S̄a, P̄a and R̄ are obtained through the
minimization of the partition function and the usage of the random phase approximation, in
the path integral formalism. This leads to a set of coupled gap equations that can be found in
Ref. [14]. The functions Mi(p) and Z(p) correspond to momentum-dependent effective masses
and WFR of the quark propagators. In terms of the model parameters and form factors, these
are given by

Mi(p) = Z(p) [mi + σ̄i g(p)] , Z(p) =
[
1 − κ−1ζ̄ f(p)

]−1
, i = u, d, s , (2)

where κ is a parameter that controls the relative weight of the coupling leading to the WFR,
mi are the current quark masses, and f(p) and g(p) are the fourier transforms of the nonlocal
form factors in the quark-antiquark currents.

In order to analyze the properties of meson fields it is necessary to go beyond the mean field
level, considering quadratic fluctuations in the Euclidean action:

Squad
E =

1

2

∫
d4p

(2π)4

∑
M

rM GM (p2) ϕM (p) ϕ̄M (−p) , (3)

where ϕM stand for the meson fields in the charge basis, M being the scalar and pseudoscalar
mesons in the lowest mass nonets, plus the ζ field. The coefficient rM is 1 for charge eigenstates
M = a00, σ, f0, ζ, π

0, η, η′, and 2 for M = a+0 , κ,K
∗
0 , π

+,K+,K0. Thus meson masses are given
by the equations

GM (−m2
M ) = 0 . (4)

Full expressions for the one-loop functions GM (q) can be found in Refs. [13, 14].
The model includes five parameters, namely the current quark masses mu,s and the coupling

constants G, H and κ. In addition, one has to specify the form factors g(p) and f(p). We
will consider here two parametrizations, corresponding to different functional forms for the form
factors: the first one (PI) involves the often used exponential functions,

g(p) = exp
(
−p2/Λ2

0

)
, f(p) = exp

(
−p2/Λ2

1

)
, (5)

while for the second one (PII) we use the functions [15]

g(p) =
1 + αz

1 + αz fz(p)

αm fm(p)−mu αzfz(p)

αm −mu αz
, f(p) =

1 + αz

1 + αz fz(p)
fz(p) , (6)
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where

fm(p) =

[
1 +

(
p2/Λ2

0

)3/2]−1

, fz(p) =
[
1 +

(
p2/Λ2

1

)]−5/2
, (7)

with σ̄u = (αm −muαz)/(1 + αz), ζ̄ = καz/(1 + αz).
Given the form factor functions, one can fix the model parameters (see Ref. [14]) so as to

reproduce the observed meson phenomenology. To the above mentioned parameters mu,s, G, H
and κ one has to add the cutoff scales Λ0 and Λ1, introduced through the form factors. We have
taken as input some selected observables, such as the pion and kaon masses. As it is shown in
Fig. 1, the functions defined by the parametrization PII allow to fit adequately the momentum
dependence of mass and WFR in the light quark propagators to the results obtained in lattice
QCD calculations [16].
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Figure 1. Momentum dependences for mass and WFR for our parameterizations PI and PII,
in comparison with lattice results from Ref. [16].

Once the parameters have been determined, we can calculate the values of several meson
properties for the scalar and pseudoscalar sector. The parameter values for PI and PII are given
in Table 1 and our numerical results are quoted in Table 2, where input observables are indicated.
In general, it is seen that the meson masses, mixing angles and weak decay constants predicted
by the model are in a reasonable agreement with phenomenological expectations. Moreover, the
results for PI do not differ significantly from those obtained in Ref. [6] for a nlPNJL model with
a Gaussian form factor g(p) and no WFR (we call this parametrization PIII).

PI PII

mu [MeV] 5.7 2.6
ms [MeV] 136 65

Λ0 814 799
Λ1 [MeV] 1033 1570

GΛ2
0 23.6 16.6

H Λ5
0 −526 −202

κ/Λ0 5.36 11.1

Table 1. Parameter values for PI and PII.
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σ̄u [MeV] 529 469 -
σ̄s [MeV] 702 707 -

ζ̄/κ −0.429 −0.429 -
−⟨uu⟩1/3 [MeV] 240 316 -
−⟨ss⟩1/3 [MeV] 198 340 -

mπ [MeV] input input 139
mK [MeV] input input 495
mη [MeV] 527 522 547
mη′ [MeV] input input 958

mσ 601 561 400 − 550
mκ [MeV] 810 732 650 − 710
fπ [MeV] input input 92.4
fK/fπ 1.17 1.17 1.22
f0
η/fπ 0.17 0.21 (0.11 - 0.507)
f8
η/fπ 1.12 1.08 (1.17 - 1.22)

f0
η′/fπ 1.09 1.54 (0.98 - 1.16)

f8
η′/fπ −0.48 −0.48 −(0.42 - 0.46)

θ0 −8.63◦ −7.91◦ −(0◦ - 10◦)
θ8 −22.9◦ −23.7◦ −(19◦ - 22◦)

Table 2. Results for various phenomenological quantities within nonlocal models for parametrizations
PI and PII.

3. Nonzero temperature
In order to investigate the phase transitions and the temperature dependence of
thermodynamical quantities within our model, we consider the thermodynamical potential
per unit volume at the mean field level. In order to deal with the interaction between
quarks and color gauge fields we assume that quarks move on a constant background field
ϕ = A4 = iA0 = ig δµ0G

µ
aλ

a/2, where Gµ
a are the SU(3) color gauge fields and λa are the

Gell-Mann matrices. Then the traced Polyakov loop, which in the infinite quark mass limit can
be taken as order parameter of confinement, is given by Φ = 1

3Tr exp(iϕ/T ).
We proceed by using the standard Matsubara formalism. The mean field thermodynamical

potential will be given by
ΩMFA = Ωreg +Ωfree + U(Φ, T ) , (8)

where

Ωreg = −2T
∞∑

n=−∞

∑
c,f

∫
d3p

(2π)3
log

[
p2nc +M2

f (pnc)

Z2(pnc) (p2nc +m2
f )

]

−
(
ζ̄ R̄+

G

2
R̄2 +

H

4
S̄u S̄d S̄s

)
− 1

2

∑
f

(
σ̄f S̄f +

G

2
S̄2
f

)
,

Ωfree = −2T
∑
c,f

∑
s=±1

∫
d3p

(2π)3
Re log

[
1 + exp

(
−ϵfp + ı s ϕc

T

)]
. (9)

Here we have defined p2nc = [(2n + 1)πT + ϕc]
2 + p⃗ 2, ϵfp =

√
p⃗ 2 +m2

f . The sums over color

and flavor indices run over c = r, g, b and f = u, d, s, respectively, and the color background
fields are ϕr = −ϕg = ϕ3, ϕb = 0. The term U(Φ, T ) is known as the Polyakov-loop potential,
which accounts for effective gauge field self-interactions. It is usual to take for this potential a
functional form based on properties of pure gauge QCD. One possible ansatz is that based on the
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logarithmic expression of the Haar measure associated with the SU(3) color group integration.
This yields [17]

Ulog(Φ, T )

T 4
= − 1

2
a(T )Φ2 + b(T ) log

(
1− 6Φ2 + 8Φ3 − 3Φ4

)
, (10)

where

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

, b(T ) = b3

(
T0

T

)3

. (11)

The parameters in the above expression can be fitted to pure gauge lattice QCD data so as
to properly reproduce the corresponding equation of state and Polyakov loop behavior [17].
In absence of dynamical quarks T0 is the deconfinement temperature, which is expected to be
about 270 MeV from lattice calculations. However, it has been argued that in the presence of
light dynamical quarks this temperature scale should be adequately reduced to about 210 and
190 MeV for the case of two and three flavors, respectively, with an uncertainty of about 30
MeV [18]. Besides the logarithmic function in Eq. (10), other possible forms for the Polyakov-
loop potential can be found in Ref. [14].

In order to analyze the phase transitions it is useful to define a subtracted quark condensate

⟨q̄q⟩sub =
⟨ūu⟩ − mu

ms
⟨s̄s⟩

⟨ūu⟩0 − mu
ms

⟨s̄s⟩0
, (12)

where ⟨q̄q⟩0 are the values of the chiral condensates at zero temperature. In Fig. 2 we quote
our results for the subtracted quark condensate and the Polyakov loop, together with the
corresponding susceptibilities, as functions of the temperature. The values correspond to PII and
the PL potential given by Eq. (10), taking T0 = 270 and 200 MeV. For comparison we include
lattice QCD results from Refs. [19, 20]. As expected, it is found that when the temperature
is increased the system undergoes both a chiral restoration and deconfinement transitions,
which proceed as smooth crossovers. It is seen that both transitions occur essentially at the
same critical temperatures, in agreement with lattice QCD results. The numerical values are
Tc ≃ 200 MeV and Tc ≃ 165 MeV for T0 = 270 and 200 MeV, respectively, while lattice QCD
analyses lead to a transition temperature of about 160 MeV [19, 20]. Thus, the agreement with
lattice QCD data favors the suggested rescaling of the reference temperature T0 from the pure
gauge transition temperature (270 MeV) towards values around 200 MeV.
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Figure 2. Subtracted chiral condensate, Polyakov loop, chiral susceptibilities and PL
susceptibility dΦ/dT as functions of the temperature. Solid (dashed) curves correspond to
PII, for a logarithmic PL potential with T0 = 200 (270) MeV. Triangles, circles and squares
stand for lattice QCD results from Refs. [19, 20].

In order to compare the features of parameterizations PI and PII, it is useful to consider
some thermodynamical quantities such as the energy and the entropy densities, which can be
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obtained from the thermodynamical potential:

ε = Ω+ Ts , s = −∂Ω

∂T
. (13)

Our results are shown in Fig. 3, where we plot the normalized interaction energy and entropy.
It can be seen that the curves for PI show a pronounced dip at about T ∼ 300 MeV, which
is not found for PII. The comparison with lattice data turn out to favor the lattice-inspired
parametrization PII, as one would have expected for consistency. We have taken here the
logarithmic PL potential given by Eq. (10), with T0 = 200 MeV.
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Figure 3. Normalized interaction energy (left) and entropy density (right) as functions
of the temperature, for parameterizations PI and PII and a logarithmic PL potential with
T0 = 200 MeV. Squares, circles and triangles stand for lattice data from Refs. [20], [21] and [22],
respectively.

Finally, in Fig. 4 we show the behavior of the (normalized) interaction energy, entropy
density and energy density as functions of the temperature. We compare the results obtained
for different PL potentials, considering the previously defined logarithmic potential as well as
a widely used polynomic form (see e.g. Refs. [23, 24]) and the so-called improved polynomic
potential proposed in Ref. [25]. The curves correspond to parametrization PII. It is seen that
the improved polynomic potential shows a better agreement with lattice results up to the critical
temperature, while for higher temperatures the agreement is better for the usual logarithmic
and polynomic potentials.
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Figure 4. Normalized interaction energy, entropy density and energy density as functions of
the temperature, for parameterization PII and three different PL potentials. Squares, circles
and triangles stand for lattice data from Refs. [20, 21, 22].
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4. Nonzero chemical potential
We have studied the phase transitions at finite chemical potential in the framework of the
SU(2) version of nonlocal PNJL models. The corresponding Euclidean mean field action can
be obtained from that in Eq. (1) in the limit of two flavors. Once again we consider a system
at finite temperature and use the Matsubara formalism, working in the Polyakov gauge. In
order to compare with lattice calculations we consider in general the case of a complex chemical
potential µ. The mean field thermodynamical potential is then given by

ΩMFA
SU(2) = − 4T

∞∑
n=−∞

∑
c

∫
d3p⃗

(2π)3
log

[
(ρcn,p⃗)

2 +M(ρcn,p⃗)
2

Z(ρcn,p⃗)
2

]
+

σ̄2 + ζ̄2

2G
+ U(Φ,Φ∗, T ) , (14)

where we have defined (
ρcn,p⃗

)2
=

[
(2n+ 1)πT − iµ+ ϕc

]2
+ p⃗ 2 . (15)

The sum over color indices runs over c = r, g, b, with ϕr = ϕ3 + ϕ8/
√
3, ϕg = −ϕ3 + ϕ8/

√
3,

ϕb = −2 + ϕ8/
√
3. Here ϕ3 and ϕ8 parametrize the traced PL according to

Φ =
1

3

[
exp

(
− 2i√

3

ϕ8

T

)
+ 2 exp

(
i√
3

ϕ8

T

)
cos(ϕ3/T )

]
. (16)

Figure 5. Critical temperature as a function of θ/(π/3) for parametrizations PI (left), PII
(center) and PIII (right). Solid and dashed lines stand for first order and crossover-like
transitions, respectively, while dots correspond to lattice QCD results [28]. Vertical solid lines
correspond to the first order RW transition.

Let us first consider a purely imaginary chemical potential parametrized as µ = iθT . In
this case the QCD thermodynamical potential is invariant under the so-called extended Z3

symmetry [26], which is a combination of a Z3 transformation of the quark and gauge fields
and a shift θ → θ + 2kπ/3, with integer k. It turns out that this symmetry is also present
in our nlPNJL model. In QCD with dynamical quarks, if the temperature is larger than a
certain value TRW it can be seen that three Z3 vacua appear. Roberge and Weiss showed that
there is a first order phase transition at θ = π/3 mod 2π/3, in which the vacuum jumps to one
of its Z3 images. This is known as the “Roberge-Weiss transition”, and the point at the end
of the RW transition line in the (T, θ) plane, i.e. (T, θ) = (TRW , π/3), is known as the “RW
endpoint”. The order of the RW transition at the RW endpoint has been subject of considerable
interest recently in the framework of lattice QCD [27] due to the implications it might have
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on the QCD phase diagram at finite real µ. According to lattice calculations, it appears that
for two light flavors the RW endpoint is first order for realistically small values of the current
quark mass. In Fig. 5 we show the dependence of the chiral restoration and deconfinement
transition temperatures with θ, together with lattice data. We consider gaussian and lattice
inspired parameterizations PI and PII, and also a gaussian parametrization PIII with no WFR,
whereas for the PL potential we take the logarithmic form with T0 = 200 MeV. We observe that,
while for PIII both transitions are always first order, in the case of PI and PII there is a value
θCEP ∼ 0.7× π/3 below which the transitions become crossover-like. Thus, we find that for all
three parametrizations the RW endpoint is a triple point, being the RW transition first order
there. If we choose T0 = 270 MeV instead, we observe qualitatively the same behavior, however
the critical temperature turns out to be too high compared to lattice QCD results. Regarding the
effect of different PL potentials, the main difference we find is that for the polynomic potential
there are no first order deconfinement transitions, which implies a second order RW transition
at the RW endpoint, in contradiction with lattice QCD predictions.

We turn now to consider the case of finite real chemical potential. In order to account for
both the case of real and imaginary µ in a single plot, in Fig. 6 we show the results for the
phase transition curves in the T −µ2 plane. The curves correspond to PII and a logarithmic PL
potential with T0 = 200 MeV. Finally, in Fig. 7 we include various T −µ phase diagrams for real
µ in order to present a more detailed comparison between the results obtained for different form
factors (parametrizations PI, PII and PIII in upper, center and lower panel, respectively) and
PL potentials (polynomic and logarithmic, in the left and right panels respectively). Full lines
correspond to first order phase transitions, dashed lines to pure chiral restoration crossover
transitions, dotted lines to pure deconfinement crossover transitions, and dash-dotted lines
to simultaneous chiral restoration and deconfinement crossover transitions. By increasing the
chemical potential, it is seen that for both PI and PII the chiral restoration and deconfinement
transitions occur at approximately the same temperature, until they reach a critical end point.
The position of this point depends on the parametrization, ranging from µ = 150 to 250 MeV,
and from T = 120 to 170 MeV for T0 = 200 MeV. In the case of the model with no WFR, the
assumption of a logarithmic PL potential with T0 = 200 MeV leads to a first order chiral phase
transition at µ = 0 in contradiction with lattice QCD results.

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20
0.00

0.04

0.08

0.12

0.16

0.20

0.24

 
T 

[G
eV

] deconfinement
 transition

chiral transition

CEPr

CEPi

TCPRW

RW line

2 [GeV]
 

 

 

Figure 6. Phase diagram in T − µ2 space. Full lines correspond to first order phase
transitions, dashed lines to pure chiral restoration crossover transitions, dotted lines to pure
deconfinement crossover transitions, and dash-dotted lines to simultaneous chiral restoration
and deconfinement crossover transitions. Curves correspond to PII and logarithmic PL potential
with T0 = 200 MeV.
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Figure 7. Phase diagrams for the three parameterizations considered. PI and PIII correspond
to exponential form factors while PII to lattice motivated form factors. Full (dotted) lines
correspond to first (second) order chiral restoration transitions, while dashed lines correspond
to deconfinement transitions.

5. Summary
We have analyzed the features of three-flavor nlPNJL models that include wave function
renormalization in the effective quark propagators. In this framework, we have obtained a
parametrization (PII) of the model that reproduces lattice QCD results for the momentum
dependence of the effective quark mass and WFR, and at the same time leads to an acceptable
phenomenological pattern for particle masses and several meson properties in both the scalar
and pseudoscalar meson sectors.

As a second step we have analyzed the characteristics of the deconfinement and chiral
restoration transitions at finite temperature. In general it has been found that both transitions
occur at the same critical temperature, in agreement with lattice QCD results. A critical
temperature of about 170 MeV, consistent with that arising from lattice QCD calculations, has
been obtained for T0 ≃ 200 MeV, in agreement with theoretical expectations for a model with
two/three light dynamical quarks. It is seen that the lattice-inspired power-like parameterization
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PII shows indeed the best agreement with lattice QCD results.
Finally, we have considered the case of nonzero chemical potential. For imaginary chemical

potentials we have analyzed the Roberge Weiss transition, which has been found to be first order
at the RW endpoint for the considered parametrizations. In the case of real chemical potentials
we have shown the features of the corresponding phase diagrams. At low µ, for PI and PII it is
seen that chiral restoration and deconfinement transitions proceed approximately at the same
critical temperatures, up to a critical end point whose location is rather dependent on the model
parametrization.
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