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We study the features of a nonlocal SU(3) Polyakov-Nambu-Jona-Lasinio model that includes

wave function renormalization. Model parameters are determined from vacuum phenomenology

considering lattice QCD-inspired nonlocal form factors. Within this framework we analyze the

properties of light scalar and pseudoscalar mesons at finite temperature and chemical potential

determining characteristics of deconfinement and chiral restoration transitions.
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I. INTRODUCTION

The strong interaction among quarks depends on their

color charge. When quarks are placed in a medium, this

charge is screened due to density and temperature ef-

fects [1]. If either of these increase beyond a certain crit-

ical value, the interactions between quarks no longer con-

fine them inside hadrons. This is usually referred to as

the deconfinement phase transition. In addition, another

transition takes place when the realization of chiral sym-

metry shifts from a Nambu-Goldstone to a Wigner-Weyl

phase. Based on lattice QCD (lQCD) evidence at zero

chemical potential [2] one expects these two phase tran-

sitions to occur at approximately the same temperature.

At finite density, in principle, they could arise at different

critical temperatures, leading to a quarkyonic phase, in

which the chiral symmetry is restored while quarks and

gluons remain confined.

Although QCD is a first principle theory of hadron in-

teractions, it has the drawback of being a theory where

the low energy regime is not available using standard per-

turbative methods. This problem can be addressed from

first principles through lattice calculations [3–7]. How-

ever, this approach has difficulties when dealing with

small current quark masses and/or finite chemical po-

tential. Thus, some of the present knowledge about the
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behavior of strongly interacting matter arises from the

study of effective models, which offer the possibility to

get predictions of the transition features at regions that

are not accessible through lattice techniques.

Here we will concentrate on one particular

class of effective theories, viz. the nonlocal

Polyakov−Nambu−Jona-Lasinio (nlPNJL) models

(see [8] and references therein), in which quarks interact

through covariant nonlocal chirally symmetric four and

six point couplings in a background color field and gluon

self-interactions are effectively introduced by a Polyakov

loop effective potential. These approaches, which can

be considered as an improvement over the (local) PNJL

model, offer a common framework to study both the

chiral restoration and deconfinement transitions. In

fact, the nonlocal character of the interactions leads to

a momentum dependence in the quark propagator that

can be made consistent [9] with lattice results.

Some previous works have addressed the study of me-

son properties and/or phase transitions using nlPNJL

models with Gaussian nonlocal form factors, for specific

Polyakov potentials [10]. These functional forms can be

improved, since it is possible to choose model parame-

ters and momentum dependences for the form factors so

as to fit the quark propagators obtained in lattice QCD.

The aim of this work is to extend the above references

to finite chemical potential with lQCD-inspired form fac-

tors, and determine several properties of light mesons
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(masses, mixing angles, decay constants) at zero and fi-

nite temperature, analyzing the compatibility with the

corresponding phenomenological values. In addition, we

will study the deconfinement and chiral restoration phase

transitions at finite temperature and density, obtaining

the critical temperatures and chemical potentials, and

sketching the corresponding phase diagram.

This article is organized as follows. In Sect. II we

present the general formalism for a finite temperature

and density system. The numerical and phenomenolog-

ical analyses at zero and finite temperature for several

meson properties are included in Sect. III. In Sect. IV we

present the phase diagrams for different Polyakov loop

potentials and discuss the phase transition features. Fi-

nally, in Sect. V we summarize our results and present

the conclusions.

II. THERMODYNAMICS

Let us consider an Euclidean action for a three fla-

vor quark model with nonlocal four and six point cou-

plings [8],

SE =

∫
d4x

{
ψ(x)(−ı /D + m̂)ψ(x)

−G
2

[
jSa (x)jSa (x) + jPa (x)jPa (x) + jr(x)jr(x)

]
−H

4
Aabc

[
jSa (x)jSb (x)jSc (x)− 3jSa (x)jPb (x)jPc (x)

]
+ U [A(x)]} . (1)

Here, ψ(x) is the Nf = 3 fermion triplet ψ = (u d s)T ,

and m̂ = diag(mu,md,ms) is the current quark mass

matrix. We will work in the isospin symmetry limit, as-

suming mu = md. The fermion currents are given by

jsa(x) =

∫
d4z g(z)ψ

(
x+

z

2

)
λaψ

(
x− z

2

)
,

jpa(x) =

∫
d4z g(z)ψ

(
x+

z

2

)
ıλaγ5ψ

(
x− z

2

)
,

jr(x) =

∫
d4z f(z)ψ

(
x+

z

2

) ı←→/∂
2κ

ψ
(
x− z

2

)
, (2)

where f(z) and g(z) are covariant form factors responsi-

ble for the nonlocal character of the interactions, and λa,

a = 0, ..., 8, are the standard Gell-Mann matrices, plus

λ0 =
√

2/313×3. The relative weight of the interaction

driven by jr(x), responsible for the quark wave function

renormalization (WFR), is controlled by the parameter

κ.

The interaction between fermions and color gauge

fields Gaµ takes place through the covariant derivative

in the fermion kinetic term, Dµ ≡ ∂µ − ıAµ, where

Aµ = g Gaµλ
a/2. In this effective model we will assume

that fermions move on a static and constant background

gauge field φ. The traced Polyakov loop (PL) Φ, which

in the infinite quark mass limit can be taken as the order

parameter for confinement [12, 13], is given by

Φ =
1

Nc
Tr P exp

(
i

∫ 1/T

0

dx4 φ

)
. (3)

The effective gauge field self-interactions in Eq. (1) are

given by the Polyakov-loop potential U [A(x)]. At finite

temperature T , it is usual to take for this potential a

functional form based on properties of pure gauge QCD.

The potential is constrained by the condition of reaching

the Stefan-Boltzmann limit at T → ∞ and by requiring

the presence of a first-order phase transition at a given

temperature T0 [14]. In the presence of dynamical flavors

this parameter has to be rescaled from the pure gauge

transition temperature (of about 270 MeV) toward values

around 200 MeV [8]. In addition, it has been argued that

T0 should change with the chemical potential µ as [14, 15]

T0 = Tτ e
−1/α0b(µ) , (4)

where Tτ = 1.77 GeV, α0 = 0.304 and b(µ) = 1.508 −
32/π (µ/Tτ )2. This dependence is motivated by the cal-

culation of hard dense loop and hard thermal loop con-

tributions to the effective charge [16].

A possible Ansatz for the PL potential is given by a

logarithmic form based on the Haar measure of the SU(3)

color group, namely [17]

Ulog(Φ, T )

T 4
= − 1

2
a(T ) Φ2 +

b(T ) log
(
1− 6 Φ2 + 8 Φ3 − 3 Φ4

)
, (5)

where

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

,

b(T ) = b3

(
T0

T

)3

.
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Another widely used potential is that given by a poly-

nomial function based on a Ginzburg-Landau ansatz [18,

19]:

Upoly(Φ, T )

T 4
= − b2(T )

2
Φ2 − b3

3
Φ3 +

b4
4

Φ4 , (6)

where

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

.

Numerical values for parameters ai and bi in these po-

tentials can be found in Refs. [17–19].

Mean Field Approximation

To determine the QCD phase diagram in the T − µ

plane we consider the thermodynamic potential per unit

volume at mean field level (MF). We proceed by using

the standard Matsubara formalism. Following the same

procedure as in Refs. [8, 20, 21], we perform a standard

bosonization of the fermionic theory, Eq. (1), introducing

scalar fields σa(x), ζ(x) and pseudoscalar fields πa(x),

with a = 0, ..., 8. We obtain

ΩMF(T, µ) = Ωreg + Ωfree + U(Φ, T ) + Ω0 ,

where

Ωreg = −2
∑
c,f

T

∞∑
n=−∞

∫
d3p

(2π)3
log

[
p2
nc +M2

f (pnc)

Z2(pnc) (p2
nc +m2

f )

]
−
(
ζ̄ R̄+

G

2
R̄2 +

H

4
S̄u S̄d S̄s

)
− 1

2

∑
f

(
σ̄f S̄f +

G

2
S̄2
f

)
,

Ωfree = −2T
∑
c,f

∑
s=±1

∫
d3p

(2π)3
Re log

[
1 + exp

(
−εfp + s (µ + ı φc)

T

)]
. (7)

Here we have defined p2
nc = [(2n+1)πT +φc− ı µ]2 +~p 2,

εfp =
√
~p 2 +m2

f . The sums over color and flavor indices

run over c = r, g, b and f = u, d, s, respectively, and the

color background fields are φr = −φg = φ, φb = 0. The

term Ωfree is the regularized expression for the thermo-

dynamical potential of a free fermion gas, while Ω0 is just

a constant that fixes the value of the thermodynamical

potential at T = µ = 0.

The functions Mf (p) and Z(p) correspond to

momentum-dependent effective masses and WFR of the

quark propagators. In terms of the model parameters

and form factors, these are given by

Mf (p) = Z(p) [mf + σ̄f g(p)] ,

Z(p) =

[
1 − ζ̄

κ
f(p)

]−1

, (8)

where σ̄f and ζ̄, are the vacuum expectation values of the

scalar fields introduced to bosonize the fermionic theory.

We use the stationary phase approximation, where the

path integrals over the corresponding auxiliary fields Sf

and R are replaced by the arguments evaluated at the

minimizing values S̄f and R̄. The procedure is similar to

that carried out in Ref. [20], where more details can be

found. From the minimization of this regularized ther-

modynamic potential it is possible to obtain a set of cou-

pled gap equations that determine σ̄f , ζ̄ and φ at a given

temperature T and chemical potential µ

∂ΩMF(T, µ)

∂σ̄f
=
∂ΩMF(T, µ)

∂ζ̄
=
∂ΩMF(T, µ)

∂φ
= 0 .

To characterize the chiral and deconfinement phase

transitions it is necessary to define the corresponding or-

der parameters. It is well known that the chiral quark

condensates 〈q̄q〉 are appropriate order parameters for

the restoration of the chiral symmetry. Their expression

can be obtained by varying the MF partition function

with respect to the current quark masses. In general,

these quantities are divergent, and can be regularized by

subtracting the free quark contributions. Therefore, it is

usual to define a subtracted chiral condensate, normal-

ized to its value at T = 0, as

〈q̄q〉sub =
〈ūu〉 − mu

ms
〈s̄s〉

〈ūu〉0 − mu

ms
〈s̄s〉0

. (9)

Regarding the description of the deconfinement tran-
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sition, a crucial role is played by the center symmetry

Z(N) of the pure Yang-Mills theory. As stated, we will

take as the corresponding order parameter the trace of

the Polyakov line, given by [11]

Φ =
1

3
[1 + 2 cos(φ/T )] . (10)

If Φ = 0, Z(N) symmetry is manifest, and this situation

indicates confinement. Above the critical temperature

one has Φ 6= 0, therefore, the symmetry is broken, which

corresponds to the deconfined phase. For the light quark

sector, Φ turns out to be an approximate order parame-

ter for the deconfinement transition in the same way that

the chiral quark condensate is an approximate order pa-

rameter for the chiral symmetry restoration outside the

chiral limit.

Observables beyond mean field

The study of meson properties at finite temperature

has to be carried out beyond mean field. The quadratic

contribution (in powers of mesonic fluctuations) to the

thermodynamical potential is given by

Ωquad =
1

2
T
∑
k

∫
d3q

(2π)3
GM (q2

k) φM (qk)φM (−qk) ,

where φM correspond to the meson fields in the SU(3)

charge basis. Here M labels the scalar and pseudoscalar

mesons in the lowest mass realization, plus the ζ field,

and qk = (~q, νk), where νk = 2kπT , are bosonic Matsub-

ara frequencies.

Meson masses are then given by the equations [8, 10]

GM (−m2
M ) = 0 . (11)

The mass values determined by these equations at ~q =

(0, 0, ı mM ) with k = 0 correspond to the spatial masses

of the mesons zeroth Matsubara modes, their inverses de-

scribing the persistence lengths of these modes at equi-

librium with the heat bath.

The one-loop functions GM can be written in terms of

the coupling constants G and H, the mean field values

S̄u,s and quark loop integrals that prove to be ultravio-

let convergent owing to the asymptotic behavior of the

nonlocal form factors.

For the pseudoscalar meson sector one can also evalu-

ate mixing angles and weak decay constants. The latter

are given by the matrix elements of the axial currents be-

tween the vacuum and the physical meson states. Since

the I = 0 states get mixed, it is necessary to introduce

mixing angles θη and θη′ to diagonalize this coupled sec-

tor.

Calculation details, together with the definitions of

above quantities at zero temperature, can be found in

Ref. [8]. Our aim is to extend here those results to a

finite temperature system.

III. MESON PHENOMENOLOGY

Model parameters and form factors

The model includes five free parameters, namely the

current quark masses mu,s and the coupling constants

G, H and κ. In addition, one has to specify the form

factors f(z) and g(z) in the nonlocal fermion currents

of Eq. (2). Here, we will consider for the form factors

a momentum dependence based on lQCD results for the

quark propagators. Therefore, following the analysis of

Ref. [22], we parametrize the effective mass Mf (p) as

Mf (p) = mf + αm fm(p) , (12)

where

fm(p) =
1

1 + (p2/Λ2
0)α

, (13)

with α = 3/2. On the other hand, for the WFR we use

the parametrization [9, 23]

Z(p) = 1 − αz fz(p) , (14)

where

fz(p) =
1

(1 + p2/Λ2
1)
β
. (15)

It is found that lQCD results favor a relatively low value

for the exponent, hence we take here β = 5/2, which

is the smallest exponent compatible with the ultraviolet

convergence of the loop integrals. The coefficients αm

and αz can be expressed in terms of the mean field values
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σ̄u and ζ̄ (see Eq. (8)). From Eqs. (8), Eq. (12) and

Eq (14) one can relate the functions f(p) and g(p) to

fm(p) and fz(p).

Given the form factor functions, it is possible to set

the model parameters to reproduce the observed meson

phenomenology. To the above mentioned free parameters

(mu, ms, G, H and κ) one has to add the cutoffs Λ0 and

Λ1, introduced in the form factors. Through a fit to

lQCD results quoted in Ref. [24] for the functions fm(p)

and Z(p), we obtain

Λ0 = 861 MeV , Λ1 = 1728 MeV , αz = −0.2492 .

The curves corresponding to the functions fm(p) and

Z(p), together with Nf = 2 + 1 lattice data are shown in

Fig. 1. The fit has been carried out considering results

up to 3 GeV.

The remaining five parameters can be determined by

requiring that the model reproduces the empirical values

of four physical quantities and the value of αz obtained

from the fit. We have taken as inputs the masses of the

pseudoscalar mesons π, K and η′, and the pion weak

decay constant fπ. The obtained values of the model

parameters are quoted in Table I.

Parameter Value

mu [MeV] 2.38

ms [MeV] 61.45

GΛ2
0 14.03

HΛ5
0 -158.70

κ [GeV] 12.45

Table I: Model parameter values.

Vacuum properties

Once we have fixed the model parametrization, we can

calculate the values of several meson properties for the

scalar and pseudoscalar sector. Our numerical results are

summarized in Table II, together with the corresponding

phenomenological estimates. The quantities marked with

an asterisk are those that have been chosen as inputs.

In general, it is seen that meson masses, mixing angles

and weak decay constants predicted by the model are in

a reasonable agreement with phenomenological expecta-

tions.

Model Empirical

σ̄u [MeV] 400 ...

σ̄s [MeV] 630 ...

ζ̄/κ −0.332 ...

−〈uu〉1/3 [MeV] 325 ...

−〈ss〉1/3 [MeV] 358 ...

mπ [MeV] 139 ∗ 139

mσ [MeV] 518 400− 550

mK [MeV] 495 ∗ 495

mK∗0
[MeV] 1159 1425

mη [MeV] 511 547

ma0 [MeV] 968 980

mη′ [MeV] 958 ∗ 958

mf0 [MeV] 1280 990

fπ [MeV] 92.4 ∗ 92.4

fK/fπ 1.18 1.22

f0
η/fπ 0.27 (0.11 - 0.51)

f8
η/fπ 1.05 (1.17 - 1.22)

f0
η′/fπ 2.12 (0.98 - 1.16)

f8
η′/fπ −0.63 −(0.42 - 0.46)

θ0 −7◦ −(10◦ - 12◦)

θ8 −31◦ −(25◦ - 29◦)

Table II: Numerical results for various phenomenological

quantities. Input values are marked with an asterisk.

As in precedent analyses [8, 9, 25], we obtain relatively

low values for mu and ms, and a somewhat large value

for the light quark condensate. On the other hand, we

find that the quark mass ratio is ms/mu ' 26, which is

phenomenologically adequate. Something similar hap-

pens with the product −〈ūu〉mu, which gives 8.17 ×
10−5 GeV4, in agreement with the scale-independent

result obtained from the Gell-Mann-Oakes-Renner rela-

tion at the leading order in the chiral expansion, namely

−〈ūu〉mu = f2
πm

2
π/2 ' 8.25× 10−5 GeV4.

Notice that the set of parameters quoted in Table I dif-

fers from the one used in Ref. [8]. As it was explained by

the authors in Ref. [26], the numerical evaluation of loop
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Figure 1: Fit to lattice data from Ref. [24] for the functions fm(p) and Z(p), Eqs. (13) and (14).

integrals has to be treated with some care given the func-

tional form of the lattice inspired form factors, since for

instance the function fm(s) in Eq. (13) presents branch

cuts in the complex plane for Re(s) < 0, Im(s) = 0. The

presence of these cuts generates new contributions to the

loop integrals, and therefore the values of the presented

free parameters are different from those in Ref. [8].

Finite temperature phenomenology

In previous works [8, 27] we have analyzed the thermal

behavior of thermodynamic quantities such as entropy,

energy density and interaction measure in this kind of

models. Here, we will describe the temperature depen-

dence of meson masses, mixing angles and decay con-

stants, which has not been previously addressed in SU(3)

nonlocal models with WFR and/or lQCD-inspired form

factors.

In addition, in Ref. [8] we have studied the mentioned

thermal properties for Gaussian form factors, which guar-

antee a fast ultraviolet convergence of the loop inte-

grals. However, this kind of exponential momentum de-

pendence provides unfavorable predictions in compari-

son with lQCD estimations and results coming from the

previously introduced lQCD-inspired form factors. This

same improvement is also appreciable in the temperature

dependence of meson masses, mixing angles and decay

constants presented in this section (see [10] for an anal-

ysis with Gaussian form factors).

In Fig. 2 we show the behavior of spatial masses of

mesons σ (thin line) and π (thick line) as functions of the

temperature, for the logarithmic (upper panel) and poly-

nomial (lower panel) effective potentials given by Eqs. (6)

and (7), respectively. Around the critical temperature,

it is possible to distinguish a stronger steepness in the

curves for the logarithmic potential. In addition, the

higher the temperature, the larger is the splitting be-

tween the predictions for both PL potentials. At high

temperature the masses are dominated by the thermal

energy (dashed lines), hence the behavior should ap-

proach that of an uncorrelated pair of massless quarks,

muq
M = 2πT [28]. However, for T ∼ 300 MeV the trace

of the Polyakov loop has not yet reached its asymptotic

value Φ = 1, and there is still a non negligible contribu-

tion to the quark effective mass provided by the back-

ground color field φ. Indeed, the thermal energy behaves

as muq
M = 2(πT − φ).

It is known that the polynomial potential has a

smoother behavior and reaches faster the deconfinement

asymptotic value, in agreement with our results. Nev-

ertheless, the qualitative thermal evolution for meson

masses, decay constants and mixing angles is similar for

both potentials. Here we show the results for the polyno-

mial potential, since it provides the best agreement with
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Figure 2: Pion (thick line) and sigma (thin line) mass as

functions of T for the logarithmic and polynomial potential

in upper and lower panel, respectively. Dashed lines

represent the thermal energy.

lQCD results for the chiral restoration transition [8]. In

Figs. 3 and 4 we plot meson and constituent quark masses

as functions of the temperature, whereas in Fig. 5 we

show the behavior of π and K weak decay constants.

Effective theories that do not include an explicit mech-

anism of confinement, like PNJL models, usually present

a threshold above which constituent quarks can be simul-

taneously on shell. This leads to an imaginary part of the

effective mass that can be interpreted as the width of a

decay of the meson into two massive quarks. That thresh-

old, which depends on the model parametrization, is typ-

ically of the order of 1 GeV. Therefore, the description of

bound states lying above this value requires some regu-

larization. In the cases where the functions GM (−p2, 0)

have no zeros for real values of p, we have defined the

meson mass through the minimum of |GM (−p2, 0)|.
It can be seen from Fig. 3 and 4 that pseudoscalar me-

son masses (solid lines) remain approximately constant

up to the critical temperature Tc, while scalar meson

masses (dashed lines) start dropping somewhat below Tc.

Right above Tc, masses of chiral partners become degen-

erate. Then, at higher temperatures, they are dominated
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Figure 3: Scalar (dashed line) and pseudoscalar (solid line)

meson masses as function of T for the polynomial potential.

Effective quark masses are plotted in dashed-dotted lines.

The Mott temperature is indicated by the large dot.

by the thermal energy. In the case of the η′ meson and

its chiral partner f0, and similarly for K and K∗0 , the de-

generacy is achieved at larger temperatures than in the

case of the other mesons (see Fig. 4). This a consequence

of the strange quark content, which becomes larger com-

pared to the content of other flavors as the temperature

increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250 300

m
M

 [
G

e
V

]

T [Mev]

K, K0*

η‘, f0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250 300

Figure 4: Scalar (dashed line) and pseudoscalar (solid line)

meson masses as function of the temperature for the

polynomial PL potential.

In Fig. 3, besides the meson masses we plot in dashed-

dotted lines our results for 2Mu and Mu+Ms. Up to cer-

tain temperature Tm (denoted in the figure with a large
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dot) the mesons have a lower mass than the masses of

their constituents. When T > Tm, meson masses are no

longer a discrete solution of Eq. (11), which implies a pas-

sage from the discrete to the continuum, known as Mott

transition [29, 30]. From Fig. 3 one can see that both

Mott temperatures are Tm ∼ 170 MeV. Above this tem-

perature the meson should not be described by a bound

state, but as a correlated state formed by a quark and

an antiquark, which will deconfine when the temperature

increases sufficiently.

It can be analytically proved and numerically checked

that the branch cuts in the complex plane, coming from

the momentum dependence of the nonlocal form factors,

vanish when T > Tm. In this region, meson masses

are lower than muq
M and therefore the necessary condi-

tions (Re(s) < 0 and Im(s) = 0) do not hold. In other

words, contributions from the cuts to the loop integrals

are nonzero only when meson masses are discrete solu-

tions of Eq. (11) and larger than muq
M .

This section concludes with the analysis of the thermal

behavior of pseudoscalar meson decay constants, quoted

in Fig. 5, and mixing angles θ0 and θ8. For the former

we see that pseudoscalar mesons with larger content of

strangeness present a decay constant with a more mod-

erate decrease after the transition. For the mixing angles
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Figure 5: Pion (thin line) and kaon (thick line) decay

constants as function of the temperature for the polynomial

PL potential.

it is seen (as in Ref. [10]) that above Tc, θ0 and θ8 tend

to a common value, the so-called “ideal” mixing angle

θideal = tan−1
√

2 ' 54.7◦. This means that the η meson

becomes approximately non-strange, while η′ approaches

to an s̄s pair. The fact that the mixing angles go to

the “ideal” value for large temperatures is related to the

restoration of the U(1)A symmetry.

IV. T − µ PHASE DIAGRAM

In this section we discuss the features of phase tran-

sitions in the T − µ plane for the nonlocal chiral quark

model introduced in Sect. II. The phase diagram can be

sketched by analyzing the numerical results obtained for

the relevant order parameters. In general, one can find

regions in which the chiral symmetry is either broken or

approximately restored through first order or crossover

phase transitions, and phases in which the system re-

mains either in confined or deconfined states.

To study the QCD phase diagram, we improve the

analysis carried out in Refs. [8, 31] for the dependence

of critical temperatures and chemical potentials with the

parameter T0, by comparing two complementary scenar-

ios. In the first one (say, situation A), we consider a

constant value, T0 = 200 MeV; in the second (situation

B), we assume that T0 depends on the chemical poten-

tial accoding to Eq. (4). The comparison between these

two cases is illustrated in Fig. 6, where we plot the sub-

tracted chiral condensate (solid line) and the trace of the

Polyakov loop (dashed line) as functions of the reduced

chemical potential µ/µχ, for a representative value of the

temperature, namely T = 80 MeV. The results corre-

spond to the polynomial PL potential.

For relatively high temperatures, chiral restoration

takes place as a smooth crossover, whereas at low temper-

atures the order parameter has a discontinuity at a given

critical chemical potential µχ signaling a first order phase

transition. This gap in the quark condensate induces also

a jump in the trace of the PL. The value of Φ at both

sides of the discontinuity indicate if the system remains

confined or not. As it was explained in Sect. II, values

close to zero or to one correspond to confinement or de-
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Figure 6: Trace of the Polyakov loop (dashed lines) and

subtracted chiral condensate (solid lines) as a function of

µ/µχ, for T = 80 MeV. Thick and thin lines correspond to

constant and µ-dependent T0, respectively.

confinement, respectively. From Fig. 6 we can see that,

for the chosen temperature T = 80 MeV, at the critical

chemical potential µχ (µ/µχ = 1) the value of Φ for situ-

ation B (thin dashed line) is at least twice larger than for

situation A (thick dashed line). Moreover, in situation B

the value can be assumed to be high enough to consider

that quarks are no longer confined into hadrons, while in

situation A, the system remains in a confined phase in

which chiral symmetry is approximately restored. This

difference between both situations holds for all relevant

values of the temperature. Therefore, for a PL potential

with T0 given by Eq. (4), the chiral restoration and the

confinement-deconfinement transitions take place always

simultaneously, in agreement with the analysis made in

Ref. [14] within a Polyakov-quark-meson model.

In heavy ion collisions it is believed that before the oc-

currence of the kinetic freeze out a mixed phase of quarks

and hadrons could exist [32]. As discussed above, a µ-

dependent T0 leads to a QCD phase diagram without

such a mixed phase. Therefore, we concentrate mainly

on the case of a constant T0, where for large densities

and for a certain temperature range, where the chiral

symmetry is restored, the trace of the Polyakov loop still

indicates confinement.

As stated, for the deconfinement and chiral symmetry

restoration transitions we take as order parameters the

traced Polyakov loop Φ and the subtracted chiral conden-

sate 〈q̄q〉sub, respectively. The associated susceptibilities

χΦ and χq are given by the derivatives

χΦ =
dΦ

dT
and χq =

∂2ΩMF

∂m2
q

.

The associated critical temperatures Tχ and TΦ are

defined by the position of the peaks in the chiral suscep-

tibilities in the region where the transition occurs as a

smooth crossover.

When the chiral restoration occurs as a first order

phase transition, the PL susceptibility present a diver-

gent behavior at the chiral critical temperature even

when the order parameter Φ remains close to zero.

Therefore we need another definition for the deconfine-

ment critical temperatures in this region of the phase

diagram. Here, we employ the same prescription as in

Ref [33], namely, we define the critical temperature re-

quiring that Φ takes a given value. We choose a range be-

tween 0.3 and 0.5, which could be taken as large enough

to denote deconfinement.

At zero temperature, the chiral restoration occurs

through a first order phase transition at a critical chem-

ical potential µχ ∼ 290 MeV. If we move, in the T − µ
plane, along the first order phase transition curve, the

critical temperature rises from zero up to a critical end-

point (CEP) temperature TCEP , while the critical chem-

ical potential decreases from µχ to µCEP . Beyond this

point, the chiral restoration phase transition proceeds as

a smooth crossover. The numerical results for the CEP

coordinates, critical temperatures and densities are sum-

marized in Table III. The positions in the T, µ plane

of these critical points are similar to those obtained in

Refs. [27, 34] for nlPNJL models with two dynamical

quark flavors. In addition, to the best of our knowledge,

this work is the first investigation within SU(3) nonlocal

effective theories on the study of the QCD phase diagram.

On the other hand, at zero chemical potential, when

the temperature increases, the system undergoes both

chiral restoration and deconfinement transitions at a crit-

ical temperature of Tc ∼ 165 MeV, which proceed as
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Logarithmic Polynomial

TCEP 130 112

µCEP 214 234

Tc (µ = 0) 163 169

Tχ (µ = 100) 158 161

Tχ (µ = 250) 108 98

Tχ (µ = 280) 71 64

µχ (T = 0) 293

Table III: Critical temperatures and densities and CEP

coordinates for both PL effective potentials.

smooth crossovers, in agreement with lQCD. Moreover,

in Ref [2] it is shown that the deconfinement tempera-

ture, defined by the peak of the entropy of a static quark

(which is related to the Polyakov loop) coincides, within

errors, with the chiral restoration temperature.

However, for chemical potentials larger than µCEP

these transitions begin to separate. This can be seen in

Fig. 7, where we quote for some given values of µ the or-

der parameters for the deconfinement transition and the

chiral symmetry restoration as functions of the temper-

ature, plotted in dashed and solid lines respectively, for

the logarithmic (thin line) and polynomial (thick line) ef-

fective potentials. In the upper panel, which corresponds

to µ = 100 MeV, it is seen that the chiral and decon-

finement transitions proceed as smooth crossovers occur-

ring at the same critical temperature. When the chem-

ical potential becomes larger than µCEP (see Table III),

the order parameter for the chiral symmetry restoration

has a discontinuity signaling a first order phase transi-

tion. These gap in the quark condensate induces also a

jump in the trace of the PL (see central and lower pan-

els in Fig. 7, where µ = 250 MeV and µ = 280 MeV,

respectively). The relatively low values of Φ at the dis-

continuity indicate that after the transition the system

remains confined but in a chiral symmetry restored state.

The deconfinement occurs at larger temperatures when

the order parameter becomes closer to one. The phase

in which quarks remain confined (signaled by Φ . 0.3)

even though chiral symmetry has been restored is usually
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Figure 7: Subtracted chiral condensate (solid line) and

traced Polyakov loop (dashed line) as functions of the

temperature for the logarithmic (polynomial) PL potential

in thin (thick) lines.

referred to as a quarkyonic phase [35–37].

We quote in Fig. 8 the phase diagrams for the SU(3)

nonlocal PNJL model described in Sect. II considering

both logarithmic and polynomial PL potentials, on left

and right panels respectively. In solid (dashed) lines we

plot first order (crossover) phase transitions for the chi-

ral symmetry restoration, while the deconfinement tran-
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Figure 8: Phase diagrams for logarithmic (left panel) and polynomial (right panel) PL potentials. The CEP is denoted by

the dot. Dashed and solid lines indicate crossover and first order chiral transitions, respectively. Dotted lines correspond to

deconfinement transitions.

sition lines defined by Φ = 0.3 and Φ = 0.5 are plotted in

dotted lines. The dot denotes the position of the critical

endpoint.

At a given chemical potential lower than µχ, when

the temperature increases one finds a transition from a

hadronic phase with broken chiral symmetry (BP), to

a quarkyonic phase (QP) where the chiral symmetry is

restored but the quarks are still confined into hadrons.

If the temperature continues raising, the deconfinement

transition takes place and one reaches a partonic phase in

which the quarks are deconfined and the chiral symmetry

is restored (RP).

V. SUMMARY AND CONCLUSIONS

Along this work we have studied light scalar and pseu-

doscalar meson properties and the characteristics of de-

confinement and chiral restoration transitions in the con-

text of a three-flavor nonlocal chiral model. Gauge in-

teractions have been effectively introduced through a

coupling between quarks and a constant background

color gauge field, the Polyakov field, whereas gluons self-

interactions have been implemented through logarithmic

and polynomial effective Polyakov loop potentials. The

analysis done in this article should be endorsed as exten-

sions of previous works, Refs. [8, 10].

Within this framework we have obtained a

parametrization that reproduces lattice QCD results for

the momentum dependence of the effective quark mass

and WFR, and at the same time leads to an acceptable

phenomenological pattern for particle masses and decay

constants in both scalar and pseudoscalar meson sectors.

In our calculations we have included the contributions

from branch cuts in the momentum complex plane that

arise from the lattice inspired nonlocal form factors.

As a second step, we have analyzed the tempera-

ture dependence of several meson properties, like meson

masses, decay constants and mixing angles. As expected,

it is found that meson masses get increased beyond the

chiral critical temperature, becoming degenerated with

their chiral partners. The temperatures at which this

happens depend on the strange quark content of the cor-
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responding mesons.

Meson masses and weak decay constants remain ap-

proximately constant up to the critical chiral tempera-

ture. In addition, light hadrons with strange degrees of

freedom present a decay constant with a less steep de-

crease. Regarding the properties of the mixing angles,

they tend to converge to the so-called “ideal” mixing,

which indicates that the U(1)A anomaly tends to vanish

as the temperature increases.

Finally, we study the characteristics of deconfinement

and chiral restoration transitions at finite temperature

and chemical potential. As expected, at zero µ, the model

shows a crossover phase transition, corresponding to the

restoration of the SU(2) chiral symmetry. The transition

temperature is found to be Tc ∼ 165 MeV, in very good

agreement with lattice results. In addition, one finds a

deconfinement phase transition, which occurs at the same

critical temperature. On the other hand, at zero temper-

ature chiral restoration takes place via a first order tran-

sition at a critical density µχ ∼ 290 MeV, in agreement

with estimations coming from compact objects.

For chemical potentials larger than µCEP, the critical

temperatures for the restoration of the chiral symmetry

and deconfinement transition begin to separate. The re-

gion between them denotes a phase where the chiral sym-

metry is restored but quarks remains confined, known as

quarkyonic phase. This splitting is strongly dependent

of the parameter T0 entering in the PL potential. If we

consider for this parameter an explicit dependence with

µ, both transitions are always simultaneous, and there-

fore there is no such mixed phase, in contradiction with

some results from heavy-ion collisions.
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