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
 Highlights 

 Robust and stable octadecylphosphonic acid self-assembled layers on nanostructured Ni-W coatings 
on steel were obtained by thermal annealing.  

 XPS, Raman, contact angle and electrochemical measurements confirm the functionalization and 
characteristics of the phosphonic layer.  

 The functionalized Ni-W samples exhibit high hydrophobicity and corrosion resistance in chloride 
containing solutions  
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Abstract 

The functionalization of nanocrystalline Ni-W coatings, formed by galvanostatic pulsed 

electrodeposition on steel, by thermal treatment of octadecylphosphonic acid self-assembled on 

the oxidized alloy surface is studied by Raman spectroscopy, contact angle measurements,  X-

ray photoelectron spectroscopy, AFM and electrochemical techniques. Results show that this 

procedure preserves the surface topography and the optimum mechanical properties of the alloy. 

More importantly, it turns the alloy surface highly hydrophobic and markedly improves its 

corrosion resistance, in particular to pitting corrosion in aggressive solutions containing chloride 

anions. The ability of the phosphonate layer to improve surface properties arises from the barrier 

properties introduced by the hydrocarbon chains and the strong bonds between the phosphonate 

head and the underlying surface oxides. 

Keywords: phosphonic acids, Ni W alloys, nanostructured materials, surface functionalization. 



3 

 

 
Introduction 

The electrodeposition of adherent nanocrystalline Ni–W coatings on carbon steel constitutes a 

versatile method to improve its hardness and corrosion resistance. The composition and grain 

size of the Ni-W surface layer can be controlled thorough the composition of the electrolytic 

bath, pH, temperature and the parameters of the electrodeposition method.  [1-12] 

In order to further improve the corrosion protection and/or eventually perform the 

postfunctionalization of the surface for specific applications of the Ni/W coated steel substrates, 

the use of organic coatings appears as a suitable and simple procedure. [13, 14]  The protective 

properties of these coatings are mainly determined by the strength of the bond between the metal 

and the organic molecules and also by the magnitude of their intermolecular interactions, both 

factors controlling their stability in a given environment. Silanes or phosphonates have been used 

for metal surfaces that are covered by their oxides.[15]  Silane chemistry offers many 

alternatives to surface functionalization but in many cases, the poor hydrolytic stability of the 

siloxanes and polymerization reactions limit a precise control of the composition and structure of 

the layer. [16-19]  Phosphonic acids (R-PO3H2) have a reactive head that forms robust and stable 

P-O-metal bonds and an organic tail that confers a high degree of order to these 2D or 3D metal 

organic frameworks.[15, 20] The P-O-metal bond can vary from ionic to covalent as a function 

of the identity and oxidation state of the metal ion. They have been studied on oxidized metallic 

surfaces and alloys such as Al[21-26], Hf[27], Nb[21, 28], Ti[29-34], In[35], In-Zn[36], Zr[37, 

38], Ta[39], Mg[40, 41], Ti-Nb[42], Ni[43], Ni-Ti[44, 45], Cu[46], Ni-Cu[47], Co-Cr alloys[48], 

Zn[49], Fe[49] and stainless steel[50-54]; and also on  Si[55, 56] , iron oxide nanoparticles[57] 

and ITO films[58].  
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When alkanephosphonic acids assembled from solution are gently heated on the native oxide 

surface, they form alkane chain ordered films that strongly bind to the surface and resist solvent 

washing or simple mechanical peel testing.[29, 59] These properties make phosphonate 

platforms very promising candidates for real life applications that require long-term stability of 

the deposited monolayer. Furthermore, interfacial properties can be controlled according to the 

chemical nature of the phosphonate tail by improving certain qualities of the underlying 

substrate, properly designing a supramolecular platform or fulfilling biocompatibility 

requirements.[59]  

In this work we show that nanocrystalline Ni–W alloy coatings on steel can be functionalized by 

thermal treatment of octadecylphosphonic acid self-assembled on the oxidized surface. This 

procedure preserves the surface topography and the optimum mechanical properties of the alloy. 

The characterization of the functionalized surface was performed by X-ray photoelectron 

spectroscopy (XPS), atomic force microscopy (AFM), Raman spectroscopy, contact angle, cyclic 

voltammetry and electrochemical impedance spectroscopy (EIS). The ability of the phosphonate 

layer to improve the protective properties against corrosion in chloride-containing solution 

compared with the bare Ni-W surface evidences the combination of the barrier properties of the 

alkane moiety and the strength of the phosphonate head with the underlying Ni-W substrate. 

Experimental 

Nanocrystalline Ni–W coatings were deposited on carbon steel (SAE 1020) sheets (area = 1 cm2) 

that were previously polished with grit paper in decreasing size from 180 to 2500 followed by 

0.3 µm alumina powder. Finally, they were rinsed with twice-distilled water.  

The electrodeposited coatings were obtained galvanostatically by pulse electroplating using an 

galvanostat-potentiostat TEQ 4, NanoTeq. The pulse scheme consisted of an “on” time (τon), 

during which a cathodic current of 140 mA cm-2 was applied, and an “off” time (τoff), during 
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which a zero current was applied, where τ = τon = τoff = 5 ms. The deposition time (tdep) was 60 

min.[10]  

The plating bath contained 0.06 M NiSO4.6H2O, 0.14 M Na2WO4.2H2O, 0.5 M 

Na3C6H5O7.2H2O, 0.5 M NH4Cl, and 0.15 M NaBr (pH = 9.5). A fresh plating bath was prepared 

for each experiment using pure chemical reagents and deionized H2O (18 MOhm cm) from a 

Milli-Q purification system (Millipore Products, Bedford). This electrodeposition solution 

produces amorphous and nanocrystalline Ni–W with high hardness.[10] The solution was gently 

stirred during the plating at 65 ºC and degassed with purified nitrogen.  

Freshly prepared Ni-W steel electrodes were placed in 10-3 M octadecylphosphonic acid (ODPA) 

solutions in tetrahydrofuran (THF) for 1 h. They were then subjected to heat annealing in an 

oven at 100 ºC for 2 h. Finally, they were rinsed and sonicated in THF to obtain functionalized 

Ni-W coatings, hereafter called Ni-W&ODPA. The surface composition was evaluated by XPS 

using an Al K source (1486.6 eV) XR50, SPECS GmbH, and a hemispherical electron energy 

analyzer PHOIBOS 100, SPECS GmbH operating at 40 eV pass energy.  A two-point calibration 

of the energy scale was performed using sputtered gold and copper samples (Au 4f 7/2 binding 

energy(BE) = 84.00 eV; Cu 2p 3/2 BE = 932.67 eV). C 1s at 285 eV was used as charging 

reference. Spectra fitting were performed with XPSPeak 4.1 software using a Shirley type 

baseline and a product of Gaussian and Lorentzian functions for the peaks. Quantitative analysis 

was performed taking into account the Scoffield cross sections for each element. 

Static contact angle (CA) characterizations were carried out with a ramé-Hart goniometer (model 

500, Netcong, NJ) with water as the probe liquid. Measurements were performed on at least three 

different points to calculate the average static CA. Raman spectra were obtained on a DXR 

Thermo Scientific Raman Microscope. A diode-pumped solid state (DPSS) laser at 532 nm with 

10 mW power was used as the excitation source for the Raman experiment. A long-working-
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length 10X objective was used to focus the laser spot onto the electrode surface. The pinhole was 

set at 50 μm. Each spectrum was measured 200 times to improve the signal to noise ratio and 

thus detecting more precisely the significant peaks. The acquisition time was 4 s. Raman spectra 

were acquired in the 900-1400 cm-1 and 1700-2200 cm-1 regions where information about the 

phosphate group and of methylene and methyl groups respectively can be obtained. 

Surface topography was imaged with tapping AFM under ambient conditions using a MultiMode 

Scanning Probe Microscope (Veeco, Santa Barbara, CA, USA) equipped with a Nanoscope V 

controller. All the measurements were performed using sharpened silicon probes (nominal force 

constant of 40 N/m from Bruker) with nominal tip radius of 8 nm.  

Microhardness measurements were carried out with a FUTURE-TECH microindenter. The 

measurements were performed on samples cross-sections applying a load of 10 g for 10 s. 

To evaluate the corrosion resistance of the  Ni–W coatings with and without the phosphonate 

layer, a single triangular potential sweep (STPS) between preset cathodic and anodic switching 

potentials, at a potential scan rate (v) in the 0.002 V s−1 ≤ v ≤ 0.020 V s−1 range, and polarization 

curves obtained at a low scan rate (0.002 V s-1) were applied in a still phosphate–borate buffer 

(0.1 M KH2PO4 + 0.05 M Na2B4O7) pH 8.00, with the addition of 0.5 M NaCl to the same 

solution. A standard three–electrode cell with a large area Pt sheet counter electrode and a 

saturated calomel reference electrode (SCE) were used. All potentials in the text were referred to 

the SCE (0.241 V vs SHE). Experiments were done under purified N2 gas saturation at 25 ⁰C. 

EIS measurements were carried out at open circuit potential (OCP) by imposing a small 

amplitude sinusoidal perturbation (5 mV peak-to-peak) in the frequency range 30 kHz ≥ f ≥ 10 

mHz, with f = ω/2π using a Zahner IM6e. Data were processed using an algorithm that 

minimizes the error by nonlinear least squares (CNLS, Complex Nonlinear Least Squares). 
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Results and Discussion 

The spectra of ODPA powder, bare Ni-W and Ni-W&ODPA samples are shown in Figure 1. The 

rinsed Ni-W&ODPA sample exhibits almost the same spectral features as the ODPA powder, 

although the bands in the low frequency range are barely visible. ODPA powder sample shows 

bands at 950, 1062, 1103, 1130, and 1296 cm-1. Peaks at 900–950 cm-1 are assigned to P–O–H 

stretches. [47, 53] Peaks in the 1000–1150 cm−1 range can be assigned to P-O stretches [52] and 

the band at 1296 cm-1 should correspond to the CH2 twist mode. [60-62] In the high frequency 

range ODPA powder exhibits bands at 2846, 2880, 2906, and 2933 cm-1 that could be assigned 

to the  vibrational C-H modes of methylene groups.[63-65]. A much less intensity shoulder in the 

2960-2966 cm-1 range could be assigned to antisymmetric methyl stretching vibrations. [63, 66]  

We also recorded Raman spectra for the rinsed samples, but after the sonication procedure. In 

this case the band intensities are too low to identify the different ODPA contributions present in 

the surface layer. This fact strongly suggests that ODPA multilayers have been removed by 

sonication, leaving a thinner layer whose composition will be explored by XPS. In fact, surface 

analysis by XPS allows for the qualitative and quantitative determination of the uppermost layers 

elements of material surfaces and their oxidation states helping, in our case, to establish the 

nature the phosphonate adsorption on the Ni-W coatings.  
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Figure 1. Raman spectra of ODPA powder (black), Ni-W&ODPA rinsed with THF (red) and Ni-

W without functionalization (blue).  
 

In Figure 2 low resolution spectra of bare Ni-W (Figure 2a) and the Ni-W&ODPA after 

sonication (Figure 2b) are displayed. In both samples, the survey scans exhibit the photoelectric 

and Auger lines for O, W, C, Ni, and also the P signal in the ODPA functionalized samples. The 

C signal is also evident not only in the Ni-W&ODPA due to the presence of the hydrocarbon 

chains [26] but also in Ni-W sample due to the adsorption of citrate anions, a component of the 

plating bath, on the oxide layer.[67] It should be pointed out that Fe is not present in these 
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spectra, indicating that the bare and functionalized Ni–W coating entirely covers the underlying 

steel substrate. 
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Figure 2. Survey XPS spectra for Ni-W coatings (a) without functionalization and (b) with 

ODPA.  
 

The high resolution spectra (Figure 3b) in the P 2p region of sonicated Ni-W&ODPA samples 

exhibit a doublet at 133.5 eV, as reported in previous work for ODPA and phosphate monolayers 

on oxidized surfaces. [30, 32, 68] This result confirms the success of the functionalization 

procedure since bare Ni-W samples do not show any signal in the P 2p region (Figure 3a).  
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Figure 3. XPS spectra for bare Ni-W coatings without functionalization (left side) and with 

ODPA (right side). (a-b) P 2p, (c-d) Ni 2p, (e-f) W 4f, (g-h) O 1s. 
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On the other hand, in the Ni 2p and W 4f regions the high resolution spectra for bare Ni-W 

coatings exhibit the presence of both elements in their metallic state and their corresponding 

oxides: NiO, and NiOOH for Ni (Figure 3c); and WO3 for W (Figure 3e). It has also been  shown 

that after Ar+ etching WO3 was found deeper than the Ni oxides, but at ≈5 nm from the surface 

the WO3 signal disappears.[6]  More importantly, as revealed  by Figure 3d and there is a marked 

decrease in the amount of oxides in Ni-W&ODPA with respect to the nonfunctionalized samples 

(Figure 3c and e). The decrease in the metal oxide/metal signal ratio suggests that the complex 

Ni and W oxide layer is thinner and partially replaced by the phosphonate layer. The O 1s 

(Figure 3g and h) analysis shed more light on the functionalization process. The component at 

529.8 eV includes NiO and WO3 , while that at 531 eV can be assigned to Ni hydroxide. After 

functionalization, the H2O component at 532 eV clearly decreases while the component at 533.4 

eV increases. This component is assigned to organic C=O (citrate) in the bare Ni/W surface, and 

in the functionalized sample it increases due  to the oxygen incorporated by the ODPA 

molecules.[43] Thus, the decrease in the oxide signals with respect to the metal substrate in the 

ODPA functionalized sample (Figure 3 d and f) can be related to a thinner oxide layer resulting 

from both a reduction in the amount of water in the film due to the heat treatment at 100 C▫ and 

certain oxide dissolution during the condensation reaction of the Ni-W surface oxides with the 

phosphonic group leading to metal-O-P bonds. In fact, the thermal treatment transforms the 

weakly bonded phosphonic acid (hydrogen bonding [52]  or ionic interactions [65]) layer into a 

phosphonate one driving away water molecules. Thus, the ODPA layer is strongly chemically 

bonded to the substrate by monodentate or mixed mono/bi/tri-dentate phosphonic heads.[43, 69] 

As can be seen in Figure 3h, the oxygen signal from Ni and W oxides (529.8 eV)  is still present 

after functionalization, i.e. the oxide layer is not completely removed. Morover, the total O/P 
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atomic ratio is about 10, much higher than that expected for stoichometric Ni or W 

phosphonates.The covalent attachment to form P-O-Me bonds is demostrated by comparing  the 

P spectra with that obtained for pure ODPA (Figure 4). The energy shift towards lower binding 

energies (from 134.3 eV to 133.5 eV) is indicative of the formation of a P-O-Metal bond in the 

Ni-W&ODPA samples.  It will further be demonstrated that the compound improves the surface 

properties of the nanostructured alloy such as hydrophobicity and corrosion resistance.  
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Figure 4. XPS P 2p spectra of pure solid ODPA (upper) and ODPA layer (lower) on Ni-W 

coating. Both spectra were charge corrected with C 1s peak at 285 eV.  The energy shift towards 

lower binding energies (from 134.3 eV to 133.5 eV) is indicative of the formation of a P-O-Metal 

bond in the Ni-W&ODPA samples. 

 

The static water contact angle for  bare Ni–W increases from γ =73  4 to γ = 114 3 after the 

ODPA treatment and sonication procedure. This result suggests that the organic layer turns the 

Ni-W surface highly hydrophobic. (Figure 5). After mechanical peel tests, the typical contact 

angles of the Ni-W&ODPA surfaces remained unaltered.  
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Figure 5. Static water contact angle measurements of  bare  Ni–W surfaces before and after 

functionalization with ODPA. 
 

However, nano- and microscale roughness has been shown to affect the wettability but, in our 

samples, the morphology of the surfaces does not change after functionalization, as can be 

observed by AFM imaging. In fact, representative 10 m in size images (Figure 6) taken at 

different regions of Ni-W surfaces before and after functionalization exhibit the same 

nanocrystalline structure with surface oxide grain sizes in the range 60-100 nm  and, on average, 

the same root mean square roughness with typical rms values in the 40-45 nm range. Thus, the 

increase in contact angle should be assigned to the hydrophobic ODPA layer that conformally 

covers the underlying Ni-W surface without changing the nanoscale roughness of the 

functionalized sample. It should be noted that the phosphonate layer becomes more efficient than 

that obtained by Ni-W functionalization with tetraethoxysilane (TEOS) which exhibits γ = 90. 

[18] In this case the TEOS layer needs to be improved by an additional step adding 

octadecyltrichlorosilane to obtain a contact angle (γ = 119)[18] similar to that found on the Ni-
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W&ODPA surface. The value γ = 114○ is similar to those measured for phosphonate coatings on 

stainless steel (γ = 108○), Nitiol (γ = 107), nickel (γ = 109○) and titanium (γ = 96○).[53]  

500 nm

0

1 m 1 m

 
Figure 6. Topographic 10mx10m  AFM images for bare Ni-W (a) and Ni-W&ODPA 

samples(b) with no morphological changes after the functionalization. The color bar represents 

the z-scale. 

 

Finally, microhardness measurements on the cross-sections of the Ni-W&ODPA samples result 

in  650-750 HV values, i.e. the ODPA treatment does not change the typical value reported for 

this alloy. [6, 10] Microhardness measurements made on the surface of the samples exhibit the 

same values for Ni-W and Ni-W&ODPA. These results confirm that the functionalization 

procedure does not alter the mechanical properties of the coatings. 

The electrochemical behavior of Ni-W&ODPA samples gives crucial information about the 

effectiveness of the functionalization procedure to protect the surfaces against corrosion aqueous 

media containing chloride ions.  
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Figure 7. Cyclic voltammograms at v  0.020 V s-1of steel (black), Ni-W electrodeposited on 

steel (blue) and Ni-W&ODPA (red) samples in  a still deaerated phosphate–borate buffer (0.1 M 

KH2PO4 + 0.05 M Na2B4O7) pH 8.00, with the addition of 0.5 M NaCl to the same solution. The 

inset is a magnification of the current scale to show the differences in corrosion behavior. 
 

First, we will explore the anodic behavior of the different samples by cyclic voltammetry in the -

0.7 V < E < 0.0 V potential range (Figure 7). Thus, in the anodic excursion (Figure 7, black line 

inset) the steel samples exhibit the oxide formation at -0.6 V followed by a current plateau 

corresponding to the passive region (Figure 7 inset), and finally at E > -0.10 V, a sudden increase 

in current associated with passivity breakdown induced by the aggressive Cl- anions and 

subsequent pitting corrosion. The repassivation potential for the pits is located at about -0.42 V. 

For Ni-W and Ni-W&ODPA coated steel samples the behavior is totally different in the same 

potential range discussed previously for the bare steel. No pitting processes are visible, and the 

typical behavior of the formation of passive oxides is observed in the -0.30- 0 V potential region 

(blue and red curves in Figure 7 and inset). For Ni-W surfaces the amount of charge involved in 

the anodic peak (blue line in Figure 7 and inset) is higher than in the cathodic scan indicating 

that, in addition to oxide formation, some corrosion  of the alloy through the oxide layer takes 
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place during the anodic process. A similar behavior is observed for ODPA functionalized 

samples (red line in Figure 7 and inset), although the current density in the overall potential 

range is smaller than that recorded for the bare alloy. The morphology of Ni-W and Ni-

W&ODPA surfaces after an anodic excursion up to 0 V run at  at 0.020 V s-1 in still deaerated 

phosphate–borate buffer (0.1 M KH2PO4 + 0.05 M Na2B4O7)  pH 8.00, with the addition of 0.5 

M NaCl to the same solution show the absence of pits as it is observed in the steel sample 

(Figure S1.a and b). Although some regions of Ni-W seems to indicate the initial stages of 

localized corrosion (Figure S1.c) the exploration of many regions of that surface with AFM 

microscopy (images not shown) does not reveal that they have the typical morphology of the pits 

observed for steel (Figure S1.b). Ni-W&ODPA surfaces do not exhibit localized corrosion 

(Figure S1.d). These result confirm the hydrophobic nature of the organic layer that hinders the 

transport of water from the solution to the alloy surface needed for oxide formation, as well as 

the transport of metal ions resulting from the dissolution process from the metal surface to the 

solution side. Chloride anions of the solution are also impeded to reach the alloy surface through 

the hydrophobic ODPA layer.  

However, in order to predict the corrosion behavior of steel with the different coatings, slow 

potentiodynamic curves are needed in both the cathodic and anodic potential regions. This is 

particularly important for pitting corrosion as the potential associated with pitting initiation could 

involve significant induction times. In Figure 8 we present cathodic (Figure 8a) and anodic 

(Figure 8b) current vs potential curves for the steel samples recorded at 0.002 V s-1 in deaerated 

NaCl containing solutions. The cathodic curves recorded for the Ni-W&ODPA samples exhibit a 

marked decrease in the current associated with the hydrogen evolution reaction in relation to the 

steel and Ni-W samples, thus reflecting the hindered water transport across the organic layer 

(Figure 8a). Also, the anodic behavior is markedly different. Steel samples exhibit a plateau with 
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very small currents in the -0.66 V/-0.20 V region, which at this scan rate is mainly associated 

with alloy dissolution through the passive oxide layer, followed by an abrupt increase in current 

at E > -0.20 V due to passivity breakdown and pitting corrosion of the steel. The anodic curve for 

the Ni-W coated steel at this slow scan rate also reveals signs of pit initiation at E > -0.1 V. In 

contrast, no pitting is observed for Ni-W&ODPA coated steel samples in this potential range, 

i.e., the transport of the Cl- ions needed for passivity breakdown is largely impeded for the 

ODPA layer. 
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Figure 8. Potentiodynamic polarization curves at low scan rate (v 0.002 V s-1) for steel (black), 

Ni-W (blue) and Ni-W&ODPA (red) samples in a still deaerated phosphate–borate buffer (0.1 M 

KH2PO4 + 0.05 M Na2B4O7) pH 8.00, with the addition of 0.5 M NaCl into the same solution. (a) 

-1.1/-0.5 V range (b) -0.5/0 V range. 
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Impedance spectroscopy was used to compare the behavior for the three surfaces in chloride- 

containing solutions at open circuit potential (OCP). Figure 9 shows the EIS data for the three 

surfaces. The Nyquist plot of steel shows a capacitive loop at high and intermediate frequencies 

and a not well-defined contribution al lower frequencies. The Nyquist plots of Ni-W and Ni-

W&ODPA samples exhibit a single well-defined semicircle covering the whole range of 

frequencies. These results can be interpreted in terms of the following general total transfer 

function: 

ZT (j) = R + Z(j) 

where ZT (j) is the total impedance, R is the electrolyte resistance contribution,  = 2f, f is 

the frequency, and Z(j) is the impedance of the interface that is specific to the electrochemical 

system.  

The impedance of the interface Z(j) is: 

[Z(j)]-1 = [ZCPE]-1 + [Rct]-1 

where ZCPE = [Cdl(j)]-1 is the constant phase element; Cdl is the double-layer capacitance, the 

exponent  accounts for the distribution of the time constants due to the surface 

inhomogeneities, and Rct is the charge transfer resistance. The good agreement between the 

experimental and fitted data was checked thorough Bode plots (data not shown) The high Rct (~ 

35000 ohm cm-2)  and  values (0.92) of Ni-W&ODPA samples with respect to Ni-W (Rct ~ 

7900 ohm cm-2),  (0.88) and steel (Rct ~ 690 ohm cm-2),  (0.79)  confirm that ODPA provides 

a protective uniform layer to Ni-W coatings. 
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Figure 9. Nyquist plots for steel (black), Ni-W (blue) and Ni-W&ODPA (red). The inset is a 

magnification in the high frequency range. EIS data were taken at OCP in still deaerated 

phosphate–borate buffer (0.1 M KH2PO4 + 0.05 M Na2B4O7) pH 8.00, with the addition of 0.5 M 

NaCl to the same solution.  
 

The present results demonstrate that ODPA can be used as an efficient protective coating for Ni-

W alloys. Taking into account the complex chemical nature of the surface oxides composed of a 

mixture of W and Ni oxides and hydroxides, one could wonder about the role of these species in 

the formation and stability of the ODPA layer. According to the theory, the pKa of the organic 

acid has to be lower than the isoelectric point of the metal oxide (IEP) to be capable of forming 

ordered films on the metal oxide surfaces. [53] In this context, higher IEP give rise to more 

reactive surfaces towards the acid favoring stronger coordination bonds. In our system the pKa 

of the phosphonic acid (4.5) [70] is lower than the IEP of nickel oxides/hydroxides (11), but it 

is larger than the  IEP of W oxides/hydroxides (2.8). [71] Therefore, the nickel oxide/hydroxide 

seems to have a key role in the formation of the stable ODPA layer. 

Conclusions 

We have shown that phosphonates are able to self-assemble on Ni-W coated steel improving its 

surface properties in terms of hydrophobicity and corrosion resistance. The organic layer 

survives washing and sonication procedures, and electrochemical measurements in a wide 
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potential range, indicating that it is strongly bonded to the surface oxides. The analysis of the 

phosphonate stability in terms of the pKa of the phosphonic acid and the isoelectric points of the 

metallic oxides suggests that the nickel oxides have a key role in ODPA formation and 

stabilization. 
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