Accepted Manuscript

Immobilization of enological pectinase in calcium alginate hydrogels: A potential biocatalyst for winemaking

María C. Martín, Olivia V. López, Andrés E. Ciolino, Vilma I. Morata, Marcelo A. Villar, Mario D. Ninago

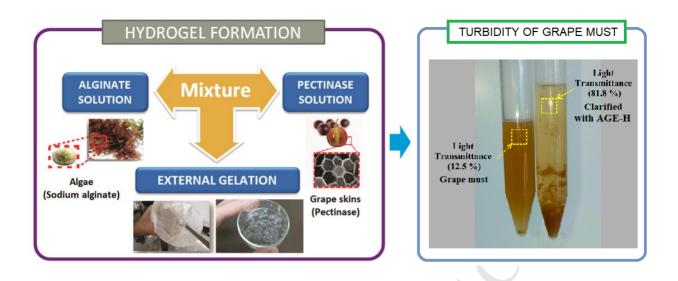
PII: S1878-8181(18)31020-X

DOI: https://doi.org/10.1016/j.bcab.2019.101091

Article Number: 101091

Reference: BCAB 101091

To appear in: Biocatalysis and Agricultural Biotechnology


Received Date: 26 December 2018

Revised Date: 8 March 2019 Accepted Date: 9 March 2019

Please cite this article as: Martín, Marí.C., López, O.V., Ciolino, André.E., Morata, V.I., Villar, M.A., Ninago, M.D., Immobilization of enological pectinase in calcium alginate hydrogels: A potential biocatalyst for winemaking, *Biocatalysis and Agricultural Biotechnology* (2019), doi: https://doi.org/10.1016/j.bcab.2019.101091.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Immobilization of enological pectinase in calcium alginate hydrogels: a
2	potential biocatalyst for winemaking
3	
4	María C. Martín ^{1,2} , Olivia V. López ³ , Andrés E. Ciolino ^{3,4} , Vilma I. Morata ^{1,2} , Marcelo A
5	Villar ^{3,4} , Mario D. Ninago ^{2,5}
6	
7	¹ Laboratorio de Biotecnología y Alimentos, Facultad de Ciencias Aplicadas a la Industria
8	Universidad Nacional de Cuyo. Bernardo de Irigoyen 375, San Rafael, (5600), Mendoza,
9	Argentina.
10	² Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz
11	2290, Ciudad Autónoma de Buenos Aires, (C1425FQB), Buenos Aires, Argentina.
12	³ Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino "La
13	Carrindanga'' Km 7, Bahía Blanca (8000), Buenos Aires, Argentina.
14	⁴ Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem
15	1253, Bahía Blanca, (8000), Buenos Aires, Argentina.
16	⁵ Facultad de Ciencias Aplicadas a la Industria (FCAI), Universidad Nacional de Cuyo
17	(UNCuyo), Bernardo de Irigoyen 375, San Rafael, (5600) Mendoza, Argentina.
18	
19	*Corresponding Author: Mario Daniel Ninago. Email: mninago@fcai.uncu.edu.ar
20	
21	

Abstract

A biocatalyst was obtained by immobilizing an enological commercial pectinase within
calcium alginate hydrogels using an entrapment technique, and its catalytic activity was
evaluated during different storage conditions. Hydrogel beads were stored at 4°C in three
different ways: (i) wet, in citrate buffer solution (pH 3.8); (ii) dehydrated by using a
vacuum stove; and (iii) freeze-dried. Biocatalyst surface and their internal morphology
were characterized by Scanning Electron Microscopy and a good enzyme distribution
throughout alginate matrix was observed. Fourier Transform Infrared Spectroscopy results
confirmed the presence of absorption bands associated with amino groups present in
enzymes. Immobilization procedure did not modify the optimal pH and temperature
(pH = 4.0 and 20 °C) for pectinase activity, comparing to free enzyme. Entrapped pectinase
showed activity until six reaction cycles with 40 % residual activity. Storage stability
studies demonstrated that wet entrapped pectinase retained its initial enzymatic activity up
to 11 weeks, whereas that lyophilized hydrogels retained its original activity after 8 months
of storage. These results suggest that immobilized pectinase may be successfully exploited
in various industrial applications, with special concern in grape juice clarification process.
Thus, the turbidity of grape must decreased significantly using the immobilized pectinase
during 150 min at 20 °C. This biocatalyst could be easily removed after clarification
process and it can be reused, minimizing production economic costs in wine industry.

Keywords: Calcium alginate hydrogels, pectinase immobilization, biocatalyst, winemaking.

1. Introduction

44

61

Biotechnology, together with the development of new materials, has become an economic 45 factor that generates significant annual incomes. Enzymes are eco-friendly catalysts widely 46 employed in many food industrial processes, such as winemaking. From the pre-47 fermentation stage, through fermentation, post-fermentation and aging, enzymes catalyze 48 various biotransformation reactions (Claus, 2017). Many of these enzymes originate from 49 the grapes itself, the grape's indigenous microflora and the microorganisms present during 50 winemaking. Since the endogenous enzymes of grapes, yeasts, and other microorganisms 51 52 present in musts and wines are often neither efficient nor sufficient to effectively catalyze the corresponding reactions, commercial enzymes are widely used as supplements (Mojsoc, 53 54 2013). Among commercial enzymes, pectinases have a considerable influence on both the sensory and technological properties of wines (Merín et al., 2015). Particularly, cold-active 55 acidic pectinases are potentially relevant to achieve wines with better aromatic profiles due 56 to low temperature fermentation can increase the production and retention of volatile 57 compounds (Martín and Morata de Ambrosini, 2014). In addition, pectinases can help to 58 59 improve the clarification and filtration process, releasing more color and flavor compounds contained in grape skin, and making more effective the liberation of phenolic compounds 60 (Belda et al., 2016). Pectinases (E.C.3.2.1.15) are a heterogeneous group of enzymes that catalyze pectin hydrolysis by breaking glycosidic linkage of galacturonic acid, decreasing 62 beverages viscosity, which is responsible to cause their turbidity and undesirable cloudiness 63 64 (Ridley et al., 2001). Even though pectinases are frequently used in soluble form, enzymes 65 in this state are often unable to meet the industrial requirement due to their short-term 66 operational stability and the difficulty for their recovery and reuse (Bibi et al., 2015;

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Sheldon and van Pelt, 2013). In accordance with Lira de Oliveira et al. (2018), enzymes immobilization is a good alternative to overcome these limitations. These authors stressed that this procedure presents several advantages, among which are: i) confinement or attachment of the enzyme in a defined space region while retaining its catalytic activity, ii) exploitation of its activity repeatedly or continuously, iii) enhancement of its stability, under either storage or operational conditions, iv) easy separation from the product, and v) minimization of product contamination. Immobilization is a process to confine or localize the enzyme within/onto a carrier and retained its activity for continuous uses. Different methods have been used for enzymes immobilization, which can be categorized into three types such as binding of enzyme to a carrier, enzymes crosslinking, and entrapment or encapsulation of enzymes within polymers (Rehman et al., 2016). In this sense, Dal Magro et al., (2016) synthetized a combined cross-linked enzyme aggregates based on pectinases cellulases, using glutaraldehyde (GA) as crosslinking agent. These authors proposed these crosslinked enzymes for application in the clarification of grape juice and reported that they presented around 2.4 times more thermal stability than the free enzyme, being reusable with total conversion of substrate to product for 4 cycles. It is important to highlight that GA used in the synthesis of these enzymes, has potential acute health effects and is corrosive to metals, so its manipulation should be careful. Entrapment technique is one of the immobilization methods that physically restricts enzymes within a confined polymer space or networks made from different synthetic and natural polymers such as poly(acrylamide), nylon, ion-exchange resins, agar, and alginate, among others (Lei and Jiang, 2011; Rehman et al., 2015; Kumar et al., 2017). Each has its own advantages and disadvantages (Li et al., 2008). The synthetic polymers such as poly(acrylonitrile) (Godjevargova and Gabrovska,

90	2003) and nylon (Mohy, 2016), could be used for enzyme immobilization, but on contrary
91	to the natural macromolecules (Krajewska, 2004), they have some disadvantages as the
92	imperfect biocompatibility and hydrophobicity. Another option is polyvinyl alcohol (PVA)
93	since its lattice structure of sponge, characterized by very dense porosity and a high specific
94	pore volume, is recommended to be used for enzymes entrapment (Esawy et al., 2013).
95	Rehman et al., (2014) immobilized a pectinase within 3 % agar-agar matrix using
96	entrapment method, reporting that entrapped pectinase showed activity until 10th cycle and
97	maintain 69 % activity even after third cycle.
98	Among natural polymers, alginate is a natural anionic polysaccharide derived from marine
99	algae, which can form thermally stable and biocompatible hydrogel in the presence of
100	calcium cations (Andriani et al., 2012; Lencina et al., 2015). The main advantage of this
101	technique is the simplicity through which mechanically stable, non-toxic, and cheap
102	spherical particles can be obtained (Flores-Maltos et al., 2011). Entrapment within
103	insoluble calcium alginate beads has been shown to be an effective approach due to their
104	biocompatibility (non-toxic nature), low cost, and effective particle size (Gülay and Şanli-
105	Mohamed, 2012; Rehman et al., 2016; Sandoval-Castilla et al., 2010). Abdel Wahab et al.,
106	(2018) reported that pectinase immobilized on grafted alginate-agar gel beads retained 100 %
107	and 56 % of its activity for three and nine successive cycles, respectively. However, the
108	preparation of these beads involved not only GA but also polyethyleneimine (PEI) which
109	have undesirable effects on health, so un-reacted PEI and GA should be well removed after
110	beads synthesis. Accordingly, it is important to use calcium alginate to immobilize
111	enzymes such as pectinase, avoiding the use of any additional reactive with adverse effects.
112	In the present study, a non-toxic and low cost biocatalyst was obtained by immobilizing a

commercial enological pectinase within insoluble calcium alginate beads, and its catalytic activity was studied. Biocatalyst beads were submitted to dehydration and to freeze-drying in order to maintain their biological activity. Beads were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), in addition, they mechanical behavior was study by Texture Profile Analysis (TPA). It was also evaluated the effect of pH and temperature on catalytic properties of the immobilized enzyme, and their storage stability under refrigeration and reusability in term of recycling efficiency, as well as the effect of the entrapped pectinase on grape must clarification.

2. Materials and methods

2.1. Materials

Sodium alginate (Fluka, Switzerland, N° 71238), with a weight average molar mass of 231,500 g mol⁻¹ and a mannuronic/guluronic ratio (M/G) of 0.79 measured by ¹H-NMR (Gomez et al., 2007) was employed to prepare beads. Extrazyme® pectinase (Institut Oenologique de Champagne, Épernay, France) used to developed the biocatalyst is a highly concentrated maceration and extraction enzyme for enological use. Pectin from citrus peel (degree of esterification 60 %, Fluka, 76280), calcium chloride (Sigma Aldrich), and other chemical reagents used in this research were of analytical grade. Dinitrosalicylic acid (DNS) solution at 1 % (w/v) was prepared as follow: 2-hydroxy-3,5-dinitrobenzoic acid was dissolved in deionized water and subsequently a sodium hydroxide solution (50 °C, under stirring) and a sodium-potassium tartrate salt were added. Final solution was diluted in deionized water, filtered and stored at room temperature (Miller, 1959).

135	2.2. Obtaining and preservation of biocatalyst beads
136	Hydrogel beads were prepared by external gelation from aqueous solutions of sodium
137	alginate and pectinase onto CaCl ₂ solution. Pectinase suspensions (0.3 % w/v) were added
138	to sodium alginate solutions (4.0 % w/v) in a 1:1 (v/v) ratio at 4 °C in a water bath.
139	Pectinase-alginate mixture was added drop-wise with a hypodermic syringe into cold sterile
140	CaCl ₂ solution (2.5 % w/v), under mechanical stirring. Obtained beads (~3.0 mm diameter)
141	were hardened by keeping them in the same CaCl ₂ solution during 4 hours at 4 °C.
142	Finally, the hydrogel so obtained were submitted to exhaustive rinsing with distilled water
143	in order to remove the unentrapped pectinase. After this procedure, samples were stored in
144	three different ways: (i) wet hydrogel beads were maintained in citrate buffer solution (50
145	mM, pH 3.8) at 4 °C; (ii) some beads were dehydrated by using a vacuum stove at 30 °C
146	until constant weight; and (iii) hydrogels were freeze-dried at -36 °C and 0.022 mmHg
147	during 8 hours using a Rificor S.H lyophilizer. Alginate hydrogel and alginate/enzyme
148	hydrogel beads were labeled as AG-# and AGE-#, in which # represents the storing state of
149	beads: hydrated (H), dehydrated (D), and lyophilized (L).
150	2.3. Swelling of hydrogels
151	Swelling behavior of hydrogels (AG, AGE-D, AGE-L) was studied by determining their
152	equilibrium degree of swelling (Lencina et al., 2015). Experiments were performed by
153	immersing hydrogels in a temperature-controlled water bath. At different immersion times
154	weight of swollen hydrogels was measured, after surface water was wiped off carefully
155	with an absorbent paper. All assays were performed by triplicate and average values were
156	reported. Equilibrium swelling ratio (SR) was calculated according to Eq. (1).

$$SR = \frac{W_s \cdot W_d}{W_d} \tag{1}$$

- where W_s is the weight of gels in the swollen state and W_d is the weight of gels in the dry
- 159 state.

160 2.4. Characterization of biocatalyst beads

- 161 Internal morphology of beads was characterized by SEM. Dehydrated and lyophilized
- beads were previously cryo-fractured in liquid nitrogen, then mounted on bronze stubs, and
- coated with a gold layer by using an argon plasma metallizer (sputter coater PELCO 91000).
- 164 This study was performed in an LEO 40XVP Scanning Electron Microscope (Jena,
- Germany), operated at 10 kV. In addition, Energy-Dispersive X-ray (EDX, Model DX-4)
- with UTW window and Standarless Quantification Method was used to analyze element
- 167 compositions of the biocatalyst.
- 168 FTIR spectra of calcium alginate, pectinase and alginate/pectinase beads were obtained
- using a Nicolet® FTIR 520 spectrometer. Dehydrated and lyophilized samples were
- triturated as fine powder, mixed with KBr (Sigma Aldrich) (1.0 % w/w), and compressed
- into transparent discs in a hydraulic press. Spectra were recorded at 4 cm⁻¹ resolution over
- 4000 400 cm⁻¹ range, by using an accumulation of 64 scans and dried air as background.
- Alginate (AG) and alginate/pectinase beads (AGE-H, AGE-D, and AGE-L) were submitted
- to a TPA by using a Texture Analyzer model TA-XT2i (Stable Micro Systems, UK),
- equipped with a 5 kg load cell. In the case of dehydrated and lyophilized samples, they
- were previously swelled in buffer-citrate solution at 4 °C during 30 minutes. Automated
- detection of probe contact with beads was carried out with a force of 0.005 N. Samples

were tested at a constant crosshead speed of 0.5 mm s⁻¹, at room temperature, by applying two compression cycles to 30 % of deformation, and by using a steel cylinder probe (diameter 35 mm). Textural properties such as hardness, cohesiveness, springiness, and resilience (ratio between the areas under the compression and decompression curves) were calculated from textural profile, obtained by using the Texture Expert Software for Windows (Sandoval-Castilla et al., 2010).

2.5. Enzymatic activity and kinetics parameters

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Pectinolytic activity was assayed by measuring the amount of reducing sugars released from a pectin dispersion using 3,5-dinitrosalicylic acid (DNS) reagent (Miller, 1959) and galacturonic acid as standard (Sigma Aldrich, USA). 0.05 mL free enzyme aqueous solution (0.3 % w/v) was mixed with 0.45 mL substrate (0.25 % w/v citric pectin in 50 mM citrate buffer, pH 3.8) and incubated at 50 °C during 15 min. In the case of immobilized enzyme, 0.1 g of alginate/pectinase beads (AGE-H, AGE-D, and AGE-L) were used instead of free enzyme solution. Then, DNS solution (1 % w/v, 0.50 mL) was added, by keeping tubes in a boiling water bath during 10 min and absorbance was measured at 530 nm, against blank reagent. One unit of pectinase activity is defined as "the amount of enzyme required to release 1 µmol of galacturonic acid per minute under standard assay conditions". The effect of temperature and pH on the pectinolytic activity of free (E) and immobilized (AGE-H) enzyme was also studied. In order to evaluate the influence of temperature, different assays were carried out by using incubation temperatures from 20 to 60 °C, while keeping constant substrate concentration and pH. On the other hand, the effect of pH was studied by using different buffer solutions with pH ranging from 3.0 to 8.0, at constant temperature and substrate concentration. Buffer solutions of citric/citrate (50 mM, pH 3.0

201	to 6.0) and phosphate (80 mM, pH 7.0 and 8.0) were employed for this analysis.
202	Kinetic parameters (K_m and V_{max}) for both free and immobilized pectinases were calculated
203	from the Lineweaver-Burk equation using computed linear regression calculations, under
204	conditions given above at different substrate concentrations in the range of $0.1\text{-}1.25~\%$
205	(w/v).
206	2.6. Reusability and storage stability studies
207	Reusability of immobilized pectinase was studied by repeatedly re-using a defined amount
208	of AGE-H hydrogel beads in pectin hydrolysis reaction. Beads (0.1 g) were mixed with
209	0.45 mL pectin substrate, prepared as it was previously described, and incubated at 50 °C.
210	After 15 min reaction time, beads were washed with deionized water to remove any
211	residual substrate and their activity was tested with fresh substrate solution. This process
212	was carried out for 6 consecutive cycles. Activity was determined after each cycle in terms
213	of residual activity, by considering 100 % activity for the first cycle.
214	Finally, in order to evaluate the stability of immobilized pectinase, all samples were stored
215	under refrigeration conditions (4°C) for 8 months. Wet beads (AGE-H) were stored in 50
216	mM citrate buffer solution at pH 3.8 and 4 °C, while dehydrated (AGE-D) and lyophilized
217	(AGE-L) beads were kept in a hermetic container at 4 °C. Periodically, AGE-H, AGE-D
218	and AGE-L samples were taken and their residual enzymatic activity was measured by
219	following the spectrophotometric method previously described.
220	

2.7. Application of immobilized pectinase for raw grape must clarification

221

Raw white grape must, Vitis vinifera L. cv. Torrontés was donated by a local cellar. The
appropriate amount of immobilized enzymes (or equivalent amount of free enzyme) was
mixed with 10 mL raw grape must and treated for 150 min at 20 °C. After enzymatic
treatment, clarity of the must was evaluated. The percent of transmittance was considered a
measure of must clarity and it was determined at 650 nm, with distilled water as a reference.
Additionally, the color of the clarified grape must was measured at 420 nm and a pectin test
was conducted on the supernatant with ethanol acidified (5 % v/v HCl) to evaluate remnant
pectin. All experiments were repeated three times.

230 2.8. Statistical analysis

- 231 The data are the average of three replications and were submitted to analysis of variance
- 232 (one-way ANOVA) and comparison of mean values was performed by Fisher's least
- significant difference test, conducted at a significance level p < 0.05.

3. Results and discussion

3.1. Characterization of biocatalyst beads

Surface and internal morphology of dehydrated and lyophilized beads were studied by SEM (Figure 1). As it can be seen, drying techniques influenced AG beads size and shape, being the air-dried samples smaller than freeze-dried ones (Figure 1a and Figure 1c). Besides, alginate dehydrated beads without pectinase exhibited smooth surfaces and a homogeneous internal structure without pores and cracks (Figure 1a), similarly to morphologies reported by Jain and Datta (2016). On the other hand, freeze-dried beads (Figure 1c) had no time to shrink, so the areas of the former ice crystals were transformed into cavities cell-like structures. These results can be attributed to the fast sublimation of frozen water within the

244	matrix. In this sense, Iliescu et al., (2014) reported a similar behavior and stressed that high
245	porous structures will probably exhibit better swelling capacity. SEM images of beads
246	containing pectinase, revealed a considerable extent of irregularity and the presence of
247	agglomerates (Figures 1b and 1d). Rehman et al., (2013) reported analogous changes in
248	surface topologies of air-dried samples and the presence of particles or agglomerates after
249	enzyme's immobilization. These authors stressed that these changes can be attributed to the
250	entrapment of different molecules of enzyme onto the porous surface of polymers. In
251	addition, similar results were reported for freeze-dried calcium alginate beads, with the
252	appearance of particles or agglomerates within beads cavities (Dai et al., 2018; Fernandez-
253	Arrojo et al., 2013; Ma et al., 2017; Peng et al., 2016).
254	Commercial enzyme and beads were also characterized by EDX. In Figure 2 are shown the
255	spectra corresponding to free pectinase (E) and lyophilized beads (AG-L and AGE-L).
256	Elemental analysis revealed that commercial enzyme is mainly composed by carbon (C)
257	and oxygen (O), while AG-L beads showed signals of C, O, calcium (Ca), and chlorine (Cl).
258	Obtained weight percent of these elements were similar to those reported in the literature
259	(Gülay and Şanli-Mohamed, 2012; Sen et al., 2016). For AGE-L beads, it was observed a
260	reduction of ~ 34 % in the amount of Ca and the appearance of a sodium (Na) signal. This
261	result could be attributed to the enzyme hindering effect of alginate gelation process by
262	lowering ions exchange.
263	As complementary characterization, FTIR test were performed for free pectinase, calcium
264	alginate and alginate entrapped pectinase. The results are shown in Figure 3. Neat pectinase
265	(E) spectrum displayed a stretching vibration peak at 1650 cm ⁻¹ associated to amine group

266	(Dai et al., 2018; Seenuvasan et al., 2014). At 3430 cm ⁻¹ and 627 cm ⁻¹ appeared signals
267	associated to N-H and C-N stretching vibrations, respectively (Mahesh et al., 2016). For
268	calcium alginate (AG-L), a broad band at 3300 cm ⁻¹ corresponding to stretch vibration of
269	hydroxyl groups was detected. Besides, the vibration of C-H bond appeared at 2930 cm ⁻¹ as
270	well as two strong peaks at 1590 cm ⁻¹ and 1410 cm ⁻¹ attributed to the asymmetric and
271	symmetric stretching of carboxyl groups. Furthermore, a signal observed at 1030 cm ⁻¹
272	(corresponding to symmetric and asymmetric vibration bands of C-O-C bonds typical of
273	the polysaccharide rings) was also detected (Nastaj et al., 2016).
274	On the other hand, for immobilized pectinase (AGE-L), despite the absorption bands
275	already assigned, a strong and acute signal at 1720 cm ⁻¹ was observed. Sojitra et al., (2017),
276	stressed that between 1700 - 1600 cm ⁻¹ it was found a spectral region associate to protein's
277	structural components, particularly amide-I bands, that can be associated with the
278	secondary structure of immobilized enzyme.
279	Concerning swelling behavior of dehydrated and lyophilized beads, regardless the presence
280	of the enzyme, they presented swelling ratio values of 1.33 and 3.33 times, respectively.
281	The main difference in beads swelling capacity could be derived from the dehydration
282	process. The highest swelling of lyophilized samples could be associated to the very porous
283	morphology which improves the diffusion of water molecules within alginate structure
284	(Iliescu et al., 2014).
285	Figure 4 shows textural properties of calcium alginate and alginate/pectinase beads.
286	Dehydrated beads showed higher hardness values (AG-D: 8.44 ± 0.82 N) than hydrated
287	(AG-H: 0.32 \pm 0.05 N) and lyophilized beads (AG-L: 0.17 \pm 0.02), after swelling in a
288	buffer citrate solution at 4 °C. Besides, alginate/pectinase beads exhibited significantly

lower hardness, comparing to hydrogels without pectinase. A 55 % hardness reduction was
observed for AGE-D when compared to AG-D samples. On the other hand, for hydrated
and lyophilized samples, entrapped enzyme caused a hardness reduction of around 30 %.
This behavior is in accordance with the results obtained from EDX analysis, where a lower
ions exchange could provide hydrogels with low cross-linking degree. Regarding to
springiness, cohesiveness, and resilience properties, they did not change in comparison to
beads without pectinase.

3.2. Properties of free and immobilized pectinase

3.2.1. Optimal reaction pH and temperature

Effect of media pH on enzymatic activity of alginate entrapped pectinase was studied by using different buffer solutions, with pH values ranged from 3.0 to 8.0, at constant temperature (50 °C) and 0.25 w/w substrate concentration. Figure 5a shows activity-pH profiles of the free enzyme (E) and an immobilized pectinase (AGE-H). As it can be observed, in both cases pectinolytic activity was affected by the reaction medium acidity reaching a maximum activity at pH 4, which was considered as the optimum acidity within the assayed range. In this sense, AGE-H beads exhibited an activity of 71 % at pH = 3. This behavior could be associated with the strong electrostatic interactions between carboxyl groups of alginate chains that occur on higher acid conditions, hindering the pectin substrate diffusion inside the beads. In addition, Shin et al., (2004) and Elnashar et al., (2010) reported similar behavior in calcium-alginate beads stored under acidic conditions (pH < 3) showing a bead size decrease and a less swelling capacity. On the other hand, AGE-H samples presented higher activity at pH 5 and 6 compared to free enzyme.

311	These might be due to microenvironment of calcium alginate matrix that contributes to the
312	structural and conformational stability of pectinase. Dai et al., (2018) reported optimal pH
313	value for free and immobilized enzymes between 4.0 and 5.0, respectively. These authors
314	stressed that immobilized pectinase had a wider active pH range when compared to the free
315	enzyme, retaining over 80% of the original activity up to pH = 5 . This indicates that
316	immobilized enzyme is more resistant towards pH changes compared to the free enzyme.
317	Similar results and behavior for immobilized pectinases were already reported by Abdel
318	Wahab et al., (2018).
319	Temperature effect on the activity of free (E) and immobilized pectinase (AGE-H) was
320	carried out by assaying different incubation temperature, from 20 to 60 °C, at a constant pH
321	value (3.8) and 0.25 w/w substrate concentration. As it can be observed in Figure 5b, both
322	samples followed a similar behavior, reaching a maximum activity at 50 °C, which was
323	considered the optimum temperature within the assayed range. No changes in enzymatic
324	activity at optimum temperature (50 °C) were observed by entrapping pectinase within
325	calcium alginate matrix. On the other hand, a slightly increment on activity of AGE-H was
326	observed at 20 °C. In this sense, several authors stressed that enzymes stability as well as
327	their activity are improved when they are entrapped onto microspheres (Demir et al., 2001;
328	Fernandez-Arrojo et al., 2013; Nawaz et al., 2015).
329	From the obtained results, it can be observed that the alginate entrapped pectinase shows
330	good catalytic efficiency in conditions nearby to those of winemaking (pH: 3.6-4.0 and
331	temperature: 20-30 °C), similar to free pectinase (Figure 5). Particularly, as reported in
332	previous works (Martín and Morata de Ambrosini, 2014), cold-active pectinases are
333	potentially relevant in the fruit juice clarification and wine industry. Pectin causes turbidity

334	and undesired solid suspension in grape musts and clarification process often utilizes
335	pectinases with activity at low temperature to degrade and remove pectin. Thereby, the
336	proposed biocatalysts could be used during grape must clarification process, resulting more
337	efficient than the free enzyme.
338	3.2.2. Kinetic parameters
339	The Michaelis-Menten constant $(K_m \text{ and } V_{max})$ was obtained from Lineweaver-Burk plots
340	(Figure 6). For free enzyme K_{m} and V_{max} were determined as 5.45 mg/mL and 0.628
341	$\mu mol/min,$ while in the case of immobilized enzyme K_m and V_{max} were determined as 5.61
342	mg/mL and 0.584 μ mol/min, respectively. K_m values for both free and immobilized
343	pectinase were similar, which signifies that immobilized enzymes had the same affinity for
344	its substrate than the free forms. This indicate that no negative effect of immobilization
345	there was in terms of increased steric hindrance of the active site, or the loss of enzyme
346	flexibility necessary for substrate binding, as reported other authors (Dai et al., 2018;
347	Sojitra et al., 2017). However, the V_{max} value of the immobilized pectinase was slightly
348	lower than that of the free enzyme, indicating that the rate of hydrolysis of respective
349	substrate was reduced after immobilization. This might be due to higher difficulty in the
350	diffusion of substrate to reach active site of enzyme after immobilization, or also due to
351	higher mass transfer resistance to substrate/enzyme imposed by the support on the
352	macromolecular substrate (Nadar and Rathod, 2016).
353	
354	3.2.3. Reusability and storage stability of biocatalyst beads

Reusability of immobilized enzyme influences the financial feasibility of bioprocess and

355

justifies its analysis (Goradia et al., 2006). Assays were carried out at 50 °C and pH 3.8 in
batch reactions and results of residual activity after each cycle are shown in Figure 7. After
the first cycle, catalytic activity of immobilized pectinase decreased nearby 25 %, and
retained almost 37 % of its initial activity after six cycles. This loss of activity might be due
to pectinase leakage from calcium alginate beads due to washing, or conformational
changes by repeated uses, as it was already reported by Rehman et al. (2013). Obtained
values in this study are in good agreement with those reported for pectinases entrapped into
calcium alginate beads under the same conditions (Rehman et al., 2013). Nevertheless, they
are lower than those obtained by using covalently bonding pectinase through multipoint
attachment on activated supports (Kumar et al., 2017). As an outcome, immobilized
enzyme could be used for wine or fruit juice clarification processes, as well as pre-
treatment even when they presented less activity; whereas the free enzyme can only be used
one time.
Storage stability is one of the key factors for any industrial enzyme. An enzyme with
excellent storage capacity without losses its biocatalytic efficiency is also desirable (Romo-
Sánchez et al., 2014). In order to evaluate the effect of storage conditions on the pectinase,
(E) free enzyme solution and (AGE-H) wet beads were stored in 50 mM citrate buffer (pH
3.8) at refrigerate conditions at 4 °C. Figure 8 shows that immobilized pectinase was found
to be stable and retained its initial activity for at least 11 weeks of storage under mentioned
conditions. On the contrary, free pectinase only retained about 72 % of its original activity
up to 5 weeks of storage. After these periods of time, pectinase preservability was lost due
to the appearance of microbial contamination in the storing buffer solution of both samples.
This improved stability of the immobilized enzyme could be due to the neutralization of

379	charged residues by interaction with the matrix, better physical contacts or structural
380	rigidness or higher stabilization of the enzyme (Bhushan et al., 2015; Demir et al., 2001;
381	Fernandez-Arrojo et al., 2013; Landarani-Isfahani et al., 2015; Nawaz et al., 2015;
382	Seenuvasan et al., 2014).
383	On the other hand, freeze-drying process has been widely employed to maintain biological
384	activities over a long period of time (Nakagawa et al., 2013). Consequently,
385	alginate/pectinase beads were dehydrated and lyophilized. Resulting material was kept in a
386	refrigerator at 4 °C and its enzymatic activity was periodically tested. The results indicated
387	that lyophilized hydrogels (AGE-L) retained their initial activity up to 8 months, whereas
388	dehydrated beads (AGE-D) retained only 30 % of the initial activity for the same time
389	(Figure 9). Hence, freeze-drying procedure could be used to prepare alginate/pectinase
390	biocatalysts for better stability and preservation.
391	
-, -	3.3. Clarification of grape must
392	Pectin substances are responsible for the consistency, turbidity and appearance of fruit juice.
392	Pectin substances are responsible for the consistency, turbidity and appearance of fruit juice.
392 393	Pectin substances are responsible for the consistency, turbidity and appearance of fruit juice. In wine industry, the presence of these substances in grape must causes an increase in their
392393394	Pectin substances are responsible for the consistency, turbidity and appearance of fruit juice. In wine industry, the presence of these substances in grape must causes an increase in their viscosity, prolonging and hindering the processes of filtration and clarification. Therefore,
392393394395	Pectin substances are responsible for the consistency, turbidity and appearance of fruit juice. In wine industry, the presence of these substances in grape must causes an increase in their viscosity, prolonging and hindering the processes of filtration and clarification. Therefore, raw grape must was treated by adding 0.3% (w/v) free enzyme, or the same concentration
392393394395396	Pectin substances are responsible for the consistency, turbidity and appearance of fruit juice. In wine industry, the presence of these substances in grape must causes an increase in their viscosity, prolonging and hindering the processes of filtration and clarification. Therefore, raw grape must was treated by adding 0.3 % (w/v) free enzyme, or the same concentration of immobilized enzyme (0.3 g/mL), and transmittance percent and color at 420 nm was
392393394395396397	Pectin substances are responsible for the consistency, turbidity and appearance of fruit juice. In wine industry, the presence of these substances in grape must causes an increase in their viscosity, prolonging and hindering the processes of filtration and clarification. Therefore, raw grape must was treated by adding 0.3 % (w/v) free enzyme, or the same concentration of immobilized enzyme (0.3 g/mL), and transmittance percent and color at 420 nm was measured after 150 min at 20 °C. Additionally, pectin test was conducted on supernatant

supernatant with the removal of colloidal part of the must (Figure 10).

Table 1 summarizes the properties of grape must before and after pectinase clarification process. Enzyme treated grape musts had higher light transmittance and smaller color value than untreated must. These properties resulted better with the immobilized pectinase than with using free enzyme. As it can be seen, grape musts treated with free and immobilized enzyme exhibited a light transmittance values 5.4 and 6.5 times higher than untreated must, respectively, while the immobilized pectinase showed an increment of 21% in clarification efficiency compared to free enzyme. In addition, a significantly smaller color value was found for the entrapped enzyme than to free enzyme. Remnant pectin was not detected in enzyme treated grape musts.

4. Conclusions

An enological pectinase was successfully immobilized within calcium alginate hydrogels by using entrapment technique. Morphological characterization evidenced the presence of particles and agglomerates of the enzyme throughout alginate matrix, on the surface as well as inside the matrix. FTIR analysis confirmed the presence of absorption bands associated with the amino groups present in pectinase. Regarding to enzymatic activity, the immobilization procedure did not influence the optimal pH and temperature values for pectinase activity when compared to the free enzyme. The lyophilized immobilized pectinase kept their original activity after 8 months of storage. The activity of entrapped pectinase was retained after 6 reaction cycles, with 37 % of residual activity. In addition, grape must turbidity decreased rapidly in the presence of the immobilized pectinase, being more effective than the free enzyme. According to these results, the proposed methodology is a convenient alternative to obtain new biocatalysts for wine industry purposes.

424	
425	Acknowledgement
426	Authors wish to thank to the Consejo Nacional de Investigaciones Científicas y Técnicas
427	(CONICET, Argentina), the Universidad Nacional del Sur (UNS, Argentina), the Fondo
428	para la Investigación Científica y Tecnológica (FONCyT, Argentina) [Grant PICT-2016-
429	0181] and, the Universidad Nacional de Cuyo (UNCuyo, Argentina), [Grant
430	SECTYP/L018] for the financial support given to perform this research.
431	
432	References
433	Abdel Wahab, W.A., Karam, E.A., Hassan, M.E., Kansoh, A.L., Esawya, M.A., Awad,
434	G.E.A., 2018. Optimization of pectinase immobilization on grafted alginate-agar gel
435	beads by 24full factorial CCD and thermodynamic profiling for evaluating of
436	operational covalent immobilization. Int. J. Biol. Macromol. 113, 159-170.
437	https://doi.org/10.1016/j.ijbiomac.2018.02.086
438	Andriani, D., Sunwoo, C., Ryu, H.W., Prasetya, B., Park, D.H., 2012. Immobilization of
439	cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a
440	support material. Bioprocess Biosyst. Eng. 35, 29–33. https://doi.org/10.1007/s00449-
441	011-0630-z
442	Belda, I., Conchillo, L.B., Ruiz, J., Navascués, E., Marquina, D., Santos, A., 2016.
443	Selection and use of pectinolytic yeasts for improving clarification and phenolic
444	extraction in winemaking. Int. J. Food Microbiol. 223, 1–8.
445	https://doi.org/10.1016/j.jifoodmicro.2016.02.003

- Bhushan, B., Pal, A., Jain, V., 2015. Improved Enzyme Catalytic Characteristics upon
- Glutaraldehyde Cross-Linking of Alginate Entrapped Xylanase Isolated from
- 448 Aspergillus flavus MTCC 9390. Enzyme Res. 2015.
- 449 https://doi.org/10.1155/2015/210784
- Bibi, Z., Shahid, F., Ul Qader, S.A., Aman, A., 2015. Agar-agar entrapment increases the
- stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Int. J. Biol.
- 452 Macromol. 75, 121–127. https://doi.org/10.1016/j.ijbiomac.2014.12.051
- 453 Claus, H., 2017. Microbial Enzymes: Relevance for Winemaking Microbial Enzymes:
- Relevance for Winemaking, in: Biology of Microorganisms on Grapes, in Must and
- 455 Winw. https://doi.org/10.1007/978-3-319-60021-5
- Dai, X.Y., Kong, L.M., Wang, X.L., Zhu, Q., Chen, K., Zhou, T., 2018. Preparation,
- characterization and catalytic behavior of pectinase covalently immobilized onto
- sodium alginate/graphene oxide composite beads. Food Chem. 253, 185–193.
- 459 https://doi.org/10.1016/j.foodchem.2018.01.157
- Dal Magro, L., Goetze, D., Ribeiro, C.T., Paludo, N., Rodrigues, E., Hertz, P.F., Klein,
- M.P., Rodrigues, R.C., 2016. Identification of Bioactive Compounds From Vitis
- 462 labrusca L. Variety Concord Grape Juice Treated With Commercial Enzymes:
- Improved Yield and Quality Parameters. Food Bioprocess Technol. 9, 365–377.
- 464 https://doi.org/10.1007/s11947-015-1634-5
- Demir, N., Acar, J., Sarioğlu, K., Mutlu, M., 2001. The use of commercial pectinase in fruit
- 466 juice industry. J. Food Eng. 47, 275–280.
- 467 Elnashar, M.M., Yassin, M.A., Moneim, A.E.-F.A., Bary, E.M.A., 2010. Surprising
- Performance of Alginate Beads for the Release of Low-Molecular-Weight Drugs. J.

469	ofAppliedPolymer Sci. 116, 3021–3026. https://doi.org/10.1002/app			
470	Esawy, M.A., Abdel-Fattah, A.M., Ali, M.M., Helmy, W.A., Salama, B.M., Taie, H.A.A.			
471	Hashem, A.M., Awad, G.E.A., 2013. Levansucrase optimization using solid state			
472	fermentation and levan biological activities studies. Carbohydr. Polym. 96, 332-341.			
473	https://doi.org/10.1016/j.carbpol.2013.03.089			
474	Fernandez-Arrojo, L., Rodriguez-Colinas, B., Gutierrez-Alonso, P., Fernandez-Lobato, M.,			
475	Alcalde, M., Ballesteros, A.O., Plou, F.J., 2013. Dried alginate-entrapped enzymes			
476	(DALGEEs) and their application to the production of fructooligosaccharides. Process			
477	Biochem. 48, 677–682. https://doi.org/10.1016/j.procbio.2013.02.015			
478	Flores-Maltos, A., Rodríguez-Durán, L. V., Renovato, J., Contreras, J.C., Rodríguez, R.,			
479	Aguilar, C.N., 2011. Catalytical properties of free and immobilized aspergillus niger			
480	tannase. Enzyme Res. 2011. https://doi.org/10.4061/2011/768183			
481	Godjevargova, T., Gabrovska, K., 2003. Immobilization of urease onto membranes of			
482	modified acrylonitrile copolymer. J. Memb. Sci. 103, 107–111.			
483	https://doi.org/10.1016/S0376-7388(97)00121-X			
484	Gomez, C.G., Rinaudo, M., Villar, M. a., 2007. Oxidation of sodium alginate and			
485	characterization of the oxidized derivatives. Carbohydr. Polym. 67, 296-304.			
486	https://doi.org/10.1016/j.carbpol.2006.05.025			
487	Goradia, D., Cooney, J., Hodnett, B.K., Magner, E., 2006. Characteristics of a mesoporous			
488	silicate immobilized trypsin bioreactor in organic media. Biotechnol. Prog. 22, 1125-			
489	1131. https://doi.org/10.1021/bp050334y			
490	Gülay, S., Şanli-Mohamed, G., 2012. Immobilization of thermoalkalophilic recombinant			

191	esterase enzyme by entrapment in silicate coated Ca-aiginate beads and its hydrolytic
192	properties. Int. J. Biol. Macromol. 50, 545–551.
193	https://doi.org/10.1016/j.ijbiomac.2012.01.017
194	Iliescu, R.I., Andronescu, E., Ghitulica, C.D., Voicu, G., Ficai, A., Hoteteu, M., 2014.
195	Montmorillonite-alginate nanocomposite as a drug delivery system - Incorporation and
196	in vitro release of irinotecan. Int. J. Pharm. 463, 184–192.
197	https://doi.org/10.1016/j.ijpharm.2013.08.043
198	Jain, S., Datta, M., 2016. Montmorillonite-alginate microspheres as a delivery vehicle for
199	oral extended release of Venlafaxine hydrochloride. J. Drug Deliv. Sci. Technol. 33,
500	149–156. https://doi.org/10.1016/j.jddst.2016.04.002
501	Krajewska, B., 2004. Application of chitin- and chitosan-based materials for enzyme
502	immobilizations: A review. Enzyme Microb. Technol. 35, 126–139.
503	https://doi.org/10.1016/j.enzmictec.2003.12.013
504	Kumar, S., Haq, I., Prakash, J., Raj, A., 2017. Improved enzyme properties upon
505	glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus
506	licheniformis. Int. J. Biol. Macromol. 98, 24–33.
507	https://doi.org/10.1016/j.ijbiomac.2017.01.104
508	Landarani-Isfahani, A., Taheri-Kafrani, A., Amini, M., Mirkhani, V., Moghadam, M.,
509	Soozanipour, A., Razmjou, A., 2015. Xylanase Immobilized on Novel Multifunctional
510	Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and
511	Robust Biocatalyst. Langmuir 31, 9219–9227.
512	https://doi.org/10.1021/acs.langmuir.5b02004
513	Lei, Z., Jiang, Q., 2011. Synthesis and properties of immobilized pectinase onto the

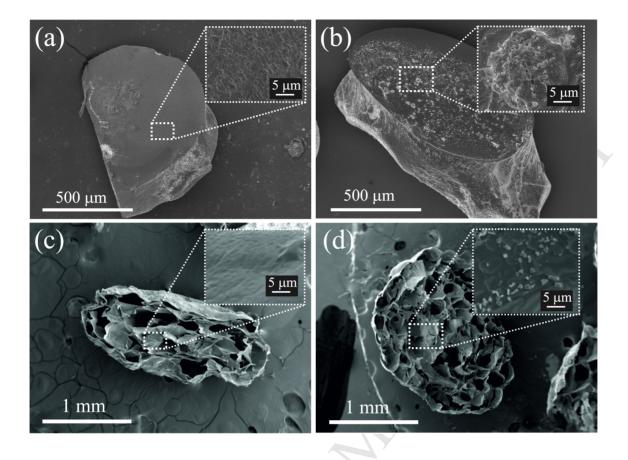
514	macroporous polyacrylamide microspheres. J. Agric. Food Chem. 59, 2592–2599.				
515	https://doi.org/10.1021/jf103719t				
516	Lencina, M.M.S., Ciolino, A.E., Andreucetti, N.A., Villar, M.A., 2015. Thermoresponsive				
517	hydrogels based on alginate-g-poly(N-isopropylacrylamide) copolymers obtained by				
518	low doses of gamma radiation. Eur. Polym. J. 68, 641-649.				
519	https://doi.org/10.1016/j.eurpolymj.2015.03.071				
520	Li, T., Li, S., Wang, N., Tain, L., 2008. Immobilization and stabilization of pectinase by				
521	multipoint attachment onto an activated agar-gel support. Food Chem. 109, 703-708.				
522	https://doi.org/10.1016/j.foodchem.2008.01.012				
523	Lira de Oliveira, R.L., da Silva, O.S., Converti, A., Porto, T.S., 2018. Thermodynamic and				
524	kinetic studies on pectinase extracted from Aspergillus aculeatus: Free and				
525	immobilized enzyme entrapped in alginate beads. Int. J. Biol. Macromol. 115, 1088-				
526	1093. https://doi.org/10.1016/j.ijbiomac.2018.04.154				
527	Ma, X., Wang, D., Yin, M., Lucente, J., Wang, W., Ding, T., Ye, X., Liu, D., 2017.				
528	Characteristics of pectinase treated with ultrasound both during and after the				
529	immobilization process. Ultrason. Sonochem. 36, 1–10.				
530	https://doi.org/10.1016/j.ultsonch.2016.10.026				
531	Mahesh, M., Arivizhivendhan, K. V., Maharaja, P., Boopathy, R., Hamsavathani, V.,				
532	Sekaran, G., 2016. Production, purification and immobilization of pectinase from				
533	Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its				
534	application on treatment of pectin containing wastewater. J. Mol. Catal. B Enzym. 133				
535	43–54. https://doi.org/10.1016/j.molcatb.2016.07.012				

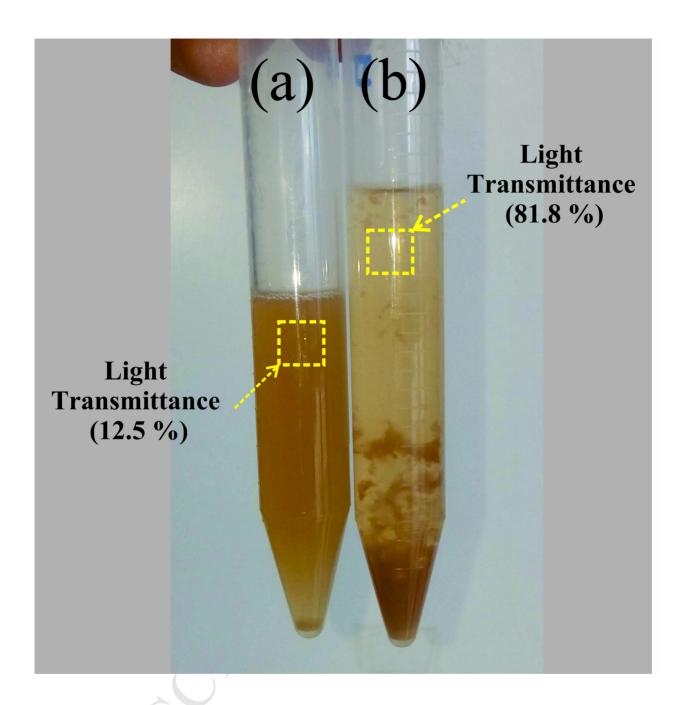
536	Martín, M.C., Morata de Ambrosini, V.I., 2014. Effect of a cold-active pectinolytic system
537	on colour development of Malbec red wines elaborated at low temperature. Int. J.
538	Food Sci. Technol. 49, 1893–1901. https://doi.org/10.1111/ijfs.12498
539	Merín, M.G., Martín, M.C., Rantsiou, K., Cocolin, L., De Ambrosini, V.I.M., 2015.
540	Characterization of pectinase activity for enology from yeasts occurring in Argentine
541	bonarda grape. Brazilian J. Microbiol. 46, 815-823. https://doi.org/10.1590/S1517-
542	838246320140160
543	Miller, G.L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing
544	Sugar. Anal. Chem. 31, 426–428. https://doi.org/10.1021/ac60147a030
545	Mohy, M.S., 2016. Enzyme Immobilization: Nanopolymers for Enzyme Immobilization
546	Applications Enzyme Immobilization: Nanopolymers for Enzyme Immobilization
547	Applications, in: CRC Concise Encyclopedia of Nanotechnology. Taylor & Francis,
548	pp. 196–202.
549	Mojsoc, K., 2013. Use of enzymes in wine making: a review. Int. J. Mark. Technol. 3, 112-
550	127.
551	Nadar, S.S., Rathod, V.K., 2016. Magnetic macromolecular cross linked enzyme
552	aggregates (CLEAs) of glucoamylase. Enzyme Microb. Technol. 83, 78-87.
553	https://doi.org/10.1016/j.enzmictec.2015.10.009
554	Nakagawa, K., Murakami, W., Hatanaka, T., 2013. Redistribution of Protein Biological
555	Activity in a Freeze-Dried Cake. Dry. Technol. 31, 102–111.
556	https://doi.org/10.1080/07373937.2012.723291
557	Nastaj, J., Przew, A., Rajkowska-my, M., 2016. Biosorption of Ni (II), Pb (II) and Zn
558	(II) on calcium alginate beads : equilibrium , kinetic and mechanism studies. Polish J.

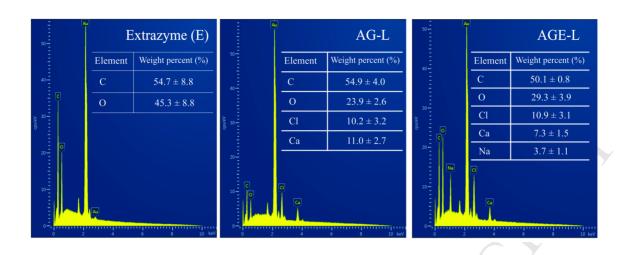
559	Chem. Technol. 18, 81–87. https://doi.org/10.1515/pjct-2016-0052				
560	Nawaz, M.A., Rehman, H.U., Bibi, Z., Aman, A., Ul Qader, S.A., 2015. Continuous				
561	degradation of maltose by enzyme entrapment technology using calcium alginate				
562	beads as a matrix. Biochem. Biophys. Reports 4, 250–256.				
563	https://doi.org/10.1016/j.bbrep.2015.09.025				
564	Peng, YK., Sun, LL., Shi, W., Long, JJ., 2016. Investigation of enzymatic activity,				
565	stability and structure changes of pectinase treated in supercritical carbon dioxide. J.				
566	Clean. Prod. 125, 331–340. https://doi.org/10.1016/j.jclepro.2016.03.058				
567	Rehman, H.U., Aman, A., Nawaz, M.A., Karim, A., Ghani, M., Baloch, A.H., Qader,				
568	S.A.U., 2016. Immobilization of pectin depolymerising polygalacturonase using				
569	different polymers. Int. J. Biol. Macromol. 82, 127–133.				
570	https://doi.org/10.1016/j.ijbiomac.2015.10.012				
571	Rehman, H.U., Aman, A., Silipo, A., Qader, S.A.U., Molinaro, A., Ansari, A., 2013.				
572	Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus				
573	licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chem. 139				
574	1081–1086. https://doi.org/10.1016/j.foodchem.2013.01.069				
575	Rehman, H.U., Aman, A., Zohra, R.R., Qader, S.A.U., 2014. Immobilization of pectin				
576	degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a				
577	support. Carbohydr. Polym. 102, 622–626.				
578	https://doi.org/10.1016/j.carbpol.2013.11.073				
579	Rehman, H.U., Siddique, N.N., Aman, A., Nawaz, M.A., Baloch, A.H., Qader, S.A.U.,				
580	2015. Morphological and molecular based identification of pectinase producing				

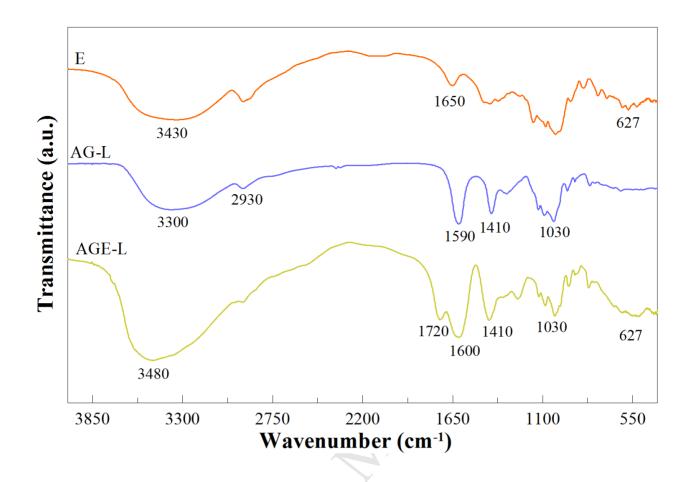
581	Bacillus licheniformis from rotten vegetable. J. Genet. Eng. Biotechnol. 13, 139-144		
582	https://doi.org/10.1016/j.jgeb.2015.07.004		
583	Ridley, B.L., Neill, M.A.O., Mohnen, D., 2001. Pectins: structure, biosynthesis, and		
584	oligogalacturonide-related signaling. Phytochemistry 57, 929–967.		
585	Romo-Sánchez, S., Camacho, C., Ramirez, H.L., Arévalo-Villena, M., 2014.		
586	Immobilization of Commercial Cellulase and Xylanase by Different Methods Using		
587	Two Polymeric Supports. Adv. Biosci. Biotechnol. 05, 517-526.		
588	https://doi.org/10.4236/abb.2014.56062		
589	Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H.S., Alvarez-Ramírez, J.,		
590	Vernon-Carter, E.J., 2010. Textural properties of alginate-pectin beads and		
591	survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in		
592	yoghurt. Food Res. Int. 43, 111–117. https://doi.org/10.1016/j.foodres.2009.09.010		
593	Seenuvasan, M., Kumar, K.S., Malar, C.G., Preethi, S., Kumar, M.A., Balaji, N., 2014.		
594	Characterization, analysis, and application of fabricated Fe3O4-chitosan-pectinase		
595	nanobiocatalyst. Appl. Biochem. Biotechnol. 172, 2706–2719.		
596	https://doi.org/10.1007/s12010-014-0725-5		
597	Sen, P., Nath, A., Bhattacharjee, C., 2016. Packed-Bed Bioreactor and Its Application in		
598	Dairy, Food, and Beverage Industry, in: Current Developments in Biotechnology and		
599	Bioengineering: Bioprocesses, Bioreactors and Controls. Elsevier B.V., pp. 235-277.		
600	https://doi.org/10.1016/B978-0-444-63663-8.00009-4		
601	Sheldon, R.A., van Pelt, S., 2013. Enzyme immobilisation in biocatalysis: Why, what and		
602	how. Chem. Soc. Rev. 42, 6223-6235. https://doi.org/10.1039/c3cs60075k		
603	Shin, B.Y., Lee, S. Il, Shin, Y.S., Balakrishnan, S., Narayan, R., 2004. Rheological,		

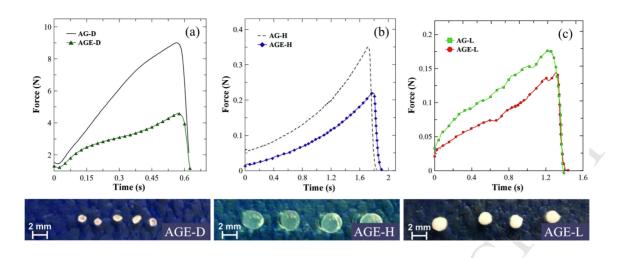
604	mechanical and biodegradation studies on blends of thermoplastic starch and
605	polycaprolactone. Polym. Eng. Sci. 44, 1429–1438. https://doi.org/10.1002/pen.20139
606	Sojitra, U. V., Nadar, S.S., Rathod, V.K., 2017. Immobilization of pectinase onto chitosan
607	magnetic nanoparticles by macromolecular cross-linker. Carbohydr. Polym. 157, 677-
608	685. https://doi.org/10.1016/j.carbpol.2016.10.018
609	

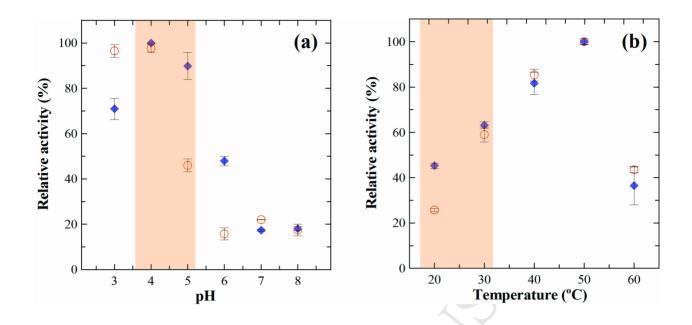

610	Figure	Captions

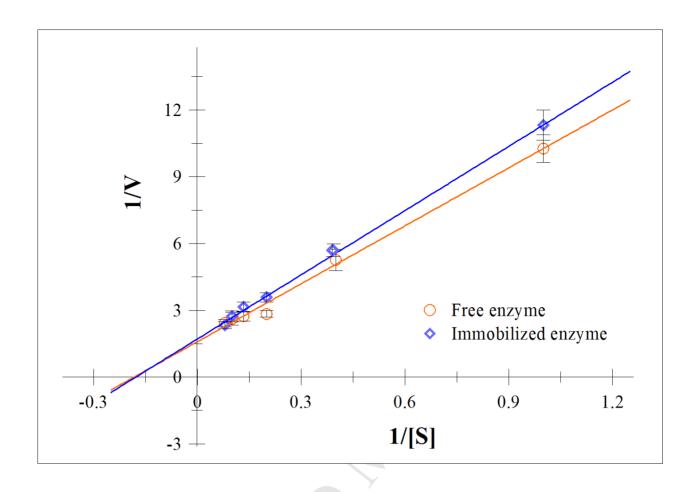

- Figure 1: SEM images of (a) dehydrated and (c) lyophilized beads without enzyme; and (b)
- dehydrated and (d) lyophilized beads with 0.3 % (m/v) pectinase.
- Figure 2: EDX spectra of commercial pectinase (E), calcium alginate lyophilized beads
- 614 (AG-L) and alginate/pectinase lyophilized beads (AGE-L).
- 615 **Figure 3:** FTIR analysis of commercial pectinase (E), calcium alginate lyophilized beads
- 616 (AG-L) and alginate/pectinase lyophilized beads (AGE-L).
- Figure 4: First compression cycle of TPA essay. (a) Dehydrated, (b) hydrated and (c)
- 618 lyophilized alginate and alginate/pectinase beads. Photos show the shape and size of
- alginate/pectinase beads.
- 620 Figure 5: Effect of (a) pH and (b) temperature on the enzymatic activity of (O) free
- pectinase and (\spadesuit) immobilized pectinase.
- **Figure 6:** Lineweaver-Burk curves of (O) free pectinase and (♠) immobilized pectinase.
- Figure 7: Reusability of immobilized pectinase (AGE-H) in batch reactions.
- Figure 8. Storage stability of free pectinase (E) and immobilized pectinase (AGE-H).
- 625 Figure 9. Effect of storage on the enzymatic activity of dehydrated (AGE-D) and
- 626 lyophilized (AGE-L) alginate/pectinase beads.
- Figure 10. Photograph of grape must (a) before and (b) after clarification process with the
- 628 (AGE-H) immobilized pectinase.

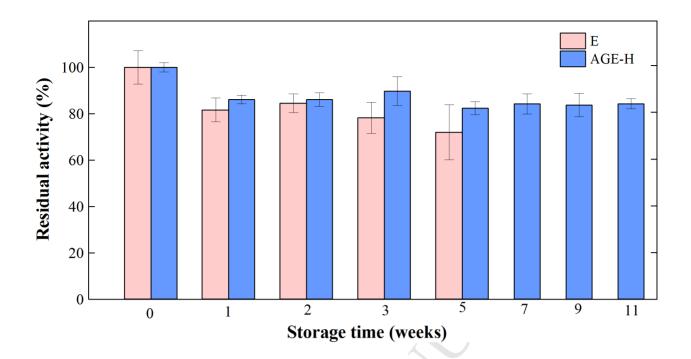

Table 1. Properties of grape must before and after pectinase clarification

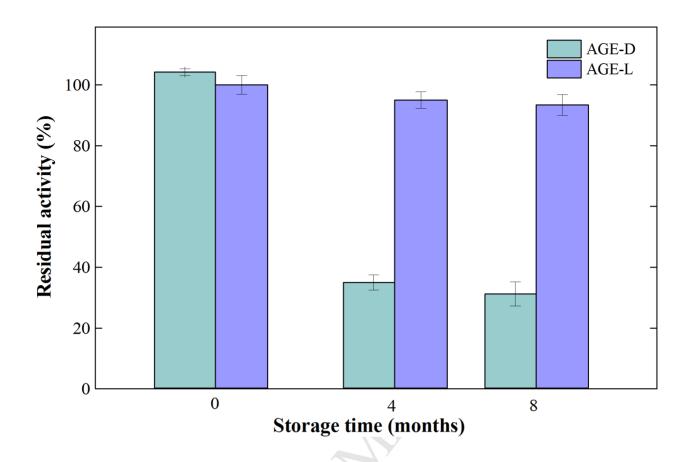

Duram autica	Untreated	Grape must after pectinase treatment	
Properties	grape must	Free enzyme	Immobilized enzyme
Light transmittance (%) at 650 nm	12.5 ± 0.1^{a}	67.2 ± 0.1^{b}	81.8 ± 0.8 °
Color at 420 nm	1.135 ± 0.191 ^a	0.619 ± 0.015 b	0.429 ± 0.033 °
Pectin	(+)	(-)	(-)

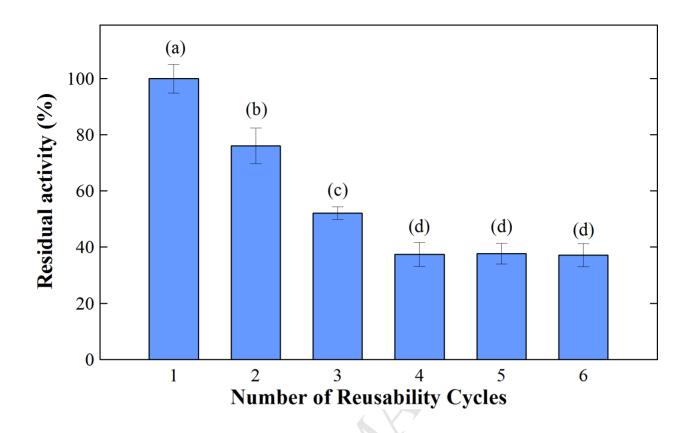

The values are the average of three determinations \pm standard deviation. Different letters in the same line indicate significant differences (p<0.05) between the treatments.











Highlights

Pectinase was effectively immobilized on calcium alginate beads via entrapment.

SEM and FTIR analysis evidenced the presence of pectinase throughout alginate matrix.

Immobilization did not modify optimal pH and temperature of free pectinase activity.

Immobilized pectinase showed activity even until six times of recycling.

The grape must turbidity decreased significantly using the immobilized pectinase.