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ABSTRACT 

Solid-state hydride compounds are a promising option for efficient and safe hydrogen storage 

systems. Lithium reactive hydride composite system 2LiBH4+MgH2/2LiH+MgB2 (Li-RHC) has 

been widely investigated owing to its high theoretical hydrogen storage capacity and low 

calculated reaction enthalpy (11.5 wt.% H2 and 45.9 kJ/mol H2). In this paper, a thorough 

investigation into the effect of the formation of nano TiAl alloys on the hydrogen storage 

properties of the Li-RHC is presented. The additive 3TiCl3.AlCl3 is used as nanoparticle 

precursor. For the investigated temperatures and hydrogen pressures, the addition of ~ 5 wt. % of 

3TiCl3.AlCl3 leads to hydrogenation/dehydrogenation times of only 30 min and to a reversible 

hydrogen storage capacity of 9.5 wt.%. The material containing 3TiCl3.AlCl3 possesses superior 

hydrogen storage properties in terms of rates and stable hydrogen capacity during several 

hydrogenation/dehydrogenation cycles. These enhancements are attributed to an in situ 

nanostructure and hexagonal AlTi3 phase observed by HR-TEM. This phase acts in a twofold 

manner, first promoting the nucleation of MgB2 upon dehydrogenation and second suppressing 

the formation of Li2B12H12 upon hydrogenation/dehydrogenation cycling.   
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1. INTRODUCTION 

Hydrogen is widely recognized as a promising energy carrier for a clean and environmental 

friendly energy. Nowadays, hydrogen is commonly stored in liquid or compressed gas form1-3. 

However, both storage methods are neither safe nor cost efficient. Hydrogen can also be stored 

in solid state: this is the safest solution to store it since mainly the pressure and temperature 

conditions are milder than those required for the compressed and cryogenic hydrogen storage 

methods, respectively. Because of their high volumetric hydrogen storage capacities, light metal 

complex hydrides are considered potential storage candidates for hydrogen driven applications4,5. 

Among the complex metal hydrides, LiBH4 possesses one of the highest gravimetric and 

volumetric hydrogen storage capacities (18.5 wt.% H2 and 121 kg H2/m
3, respectively)6-8. 

However, the dehydrogenation of LiBH4 takes place only at relatively high temperatures (over 

400 °C) and its decomposition products (i.e. LiH, B, Li2B12H12) are too stable to reversibly form 

LiBH4 under moderate temperature and hydrogen pressure9-14. Barkhordarian et al.
15

 and Vajo et 

al.
16 independently reported on the possibility to obtain fully reversible metal borohydrides based 

hydrogen storage systems. Owing to its theoretical hydrogen storage capacity and calculated 

reaction enthalpy (11.5 wt.% H2 and 45.9 kJ/mol H2), the 2LiBH4+MgH2/2LiH+MgB2 (Li-RHC) 

system is regarded as one of the most prominent candidates for hydrogen storage. However, the 

dehydrogenation andhydrogenation processes of this composite system take place only at relative 

elevated temperatures (over 350 °C) due to kinetic constraints. Under dynamic conditions the 

dehydrogenation reaction occurs in a steps reaction: 2LiBH4(l) + MgH2(s) → Mg(s) + 2LiBH4(l) + 

H2(g) → 2LiH(s) + MgB2(s) + 4H2(g) 
17. Additionally, as also observed in other RHC systems18-22, 

the Li-RHC system reacts via different pathways depending on the temperature and pressure 

conditions and requires an appropriate hydrogen overpressure during the dynamic 
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dehydrogenation process to assure the reversibility of the hydrogen uptake-release process23,24. In 

the last decade, several studies have been conducted to investigate the effect of transition metal 

(TM) based additives (e.g. Ti containing additives, Zr containing additives, V containing 

additives, Sc2O3, Nb2O5, NbF5 and Ce containing additives) on the 

dehydrogenation/hydrogenation reaction rates of 2LiBH4+MgH2. In addition, some attempts to 

improve the reaction kinetics of 2LiBH4+MgH2 by doping it with metallic Al were also taken25-

34. Among the transition metal additives, the Li-RHC doped with 5 mol % TiCl3 shows markedly 

improved kinetic behavior. Bösenberg et al.
25

  reported that the addition of TM or TM-

compounds improve the kinetic behavior of  Li-RHC by forming transition metal borides that 

provide heterogeneous nucleation sites for the formation of MgB2 upon desorption .  

In the present work, the effects of the in situ formation of nano AlTi alloys on the hydrogen 

storage properties of the Li-RHC system are thoroughly investigated. For comparison purposes, 

the hydrogenation and dehydrogenation properties of the Li-RHC+3TiCl3.AlCl3 system are 

compared with the ones of the pristine Li-RHC and Li-RHC+TiCl3 systems. The 

dehydrogenation and hydrogenation kinetic behavior are evaluated by volumetric and 

calorimetric techniques. The hydride systems are further characterized by means of in situ 

synchrotron powder X-ray diffraction, Magic Angle Spinning Solid-state Nuclear Magnetic 

Resonance, High resolution Transmission Electron Microscopy and Anomalous Small-Angle X-

ray Scattering methods. 

2. EXPERIMENTAL SECTION 

2.1. Sample preparation 

The raw materials were purchased in powder form from commercial suppliers without further 

modification: Lithium borohydride (LiBH4, 95 % purity, Sigma Aldrich), magnesium hydride 
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(MgH2, 98 % purity, Alfa Aesar), lithium hydride (LiH, 95 % purity, Sigma Aldrich), 

magnesium boride (MgB2, 99 % purity, Alfa Aesar), titanium (III) chloride (TiCl3, 99.999% 

purity, Alfa Aesar) and aluminum (III) chloride-titanium (III) chloride (3TiCl3.AlCl3, ∼ 76-78% 

TiCl3 purity, Fisher Scientific). The 2LiBH4+MgH2 (Li-RHCa) and 2LiH+MgB2 (Li-RHCd) 

systems were mixed in several different ratios with TiCl3 and 3TiCl3.AlCl3 (Li-RHCa +xA and 

Li-RHCd +xA, x= from 0.3125 to 2.5 mol %; A= TiCl3 or 3TiCl3.AlCl3). In order to obtain a 

homogeneous dispersion of the additives into the main hydride phases, all the materials were 

mechanically milled in a 8000M Mixer/Mill® High-Energy Ball Mill for 400 min using stainless 

steel vial and grinding medium in a ball-to-powder ratio of 20:1. Since the hydrogen storage 

capacity of the systems is sensibly affected by the amount of Cl- contained in the additives, the 

quantity of added TiCl3 was calculated to match the one of the Cl- contained in 3TiCl3.AlCl3. 

Therefore, all prepared materials are designated with respect to the amount of Cl- in the additives 

as indicated in Table 1. All material handling was carried out in MBraun Unilab glove boxes 

with oxygen and moisture controlled atmosphere (< 10 ppm of O2 and H2O) to prevent oxidation 

of the samples. 

Table 1. Prepared Hydride Mixtures 2LiBH4 + MgH2 and 2LiH + MgB2 doped with TiCl3 and 

3TiCl3.AlCl3 

No. 

Materials 

(The amount of additive is expressed in 
mol %) 

Mol % of 
added Cl- 

Designation 

1 2LiBH4 + MgH2 - Li-RHCa 

2 2LiBH4 + MgH2 + 2.5 mol % TiCl3 7.50 Li-RHCa+7.5 TiCl3 

3 2LiBH4 + MgH2 + 0.625 mol % 
(3TiCl3.AlCl3) 

7.50 Li-RHCa+7.5 (3TiCl3.AlCl3) 
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4 2LiBH4 + MgH2 + 0.9375 mol % 
(3TiCl3.AlCl3) 

11.2 Li-RHCa+11.2 (3TiCl3.AlCl3) 

5 2LiBH4 + MgH2 + 1.25 mol % 
(3TiCl3.AlCl3) 

15.0 Li-RHCa+15 (3TiCl3.AlCl3) 

6 2LiBH4 + MgH2 + 2.5 mol % 
(3TiCl3.AlCl3) 

30.0 Li-RHCa+30 (3TiCl3.AlCl3) 

7 2LiH + MgB2 + 2.5 mol % TiCl3 7.50 Li-RHCd + 7.5 TiCl3 

8 2LiH + MgB2 + 0.3125 mol % 
(3TiCl3.AlCl3) 

3.70 Li-RHCd+3.7 (3TiCl3.AlCl3) 

9 2LiH + MgB2 + 0.625 mol % 
(3TiCl3.AlCl3) 

7.50 Li-RHCd+7.5 (3TiCl3.AlCl3) 

10 2LiH + MgB2 + 2.5 mol % 
(3TiCl3.AlCl3) 

30.0 Li-RHCd+30 (3TiCl3.AlCl3) 

 

2.2. Sample characterization 

2.2.1. Volumetric measurements 

De-/hydrogenation measurements and hydrogen kinetic behavior of the materials were 

performed using a custom-built volumetric Sieverts type apparatus. The first dehydrogenation of 

some samples was measured from room temperature up to 400 °C with a temperature ramp of 

3 °C/min under 3 bar of H2. Hydrogenation-dehydrogenation cycling measurements for all the 

materials were performed 3 bar hydrogen overpressure at 400 °C for the dehydrogenation and 50 

bar at 350 °C for the hydrogenation. The hydrogen kinetic behavior was also evaluated via 

isothermal measurements at 360 °C, 370 °C, 380 °C, 390 °C and 400 °C under 50 bar and 3 bar 

of hydrogen for hydrogenation and dehydrogenation, respectively. The 

hydrogenation/dehydrogenation measurements lasted until the plateau was met the criteria: ∆wt 

(%) = 0.0002 and ∆t (min) = 1. For hydrogenation and dehydrogenation processes the activation 
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energies (Ea) were calculated by fitting of the kinetic curves with proper solid-gas models to 

obtain the kinetic rate constant (k) and by plotting ln(k) vs. 1/T (T = temperature).  

2.2.2. Coupled Sieverts with differential scanning calorimetry  

Coupled Sieverts-DSC measurements were carried out by using a high-pressure calorimeter 

(Sensys DSC, Setaram) coupled to a Sieverts-type apparatus (PCTPro-2000, Setaram & Hy-

Energy). The high-pressure cell of the calorimeter was loaded with ∼ 13-50 mg of the powder 

sample. The dehydrogenation was performed by heating the sample from room temperature up to 

450 °C with a heating rate of 5 °C/min under 3 bar H2 back pressure and the hydrogenation was 

carried out with a heating rate of 5 °C/min from room temperature to 350 °C under 50 bar H2. 

The calorimetric profiles were evaluated by the Calisto software to obtain the peak temperatures.  

2.2.3. Synchrotron powder X-Ray diffraction (SR-PXD) 

Ex situ PXD measurements were performed on Bruker D8 Discover in Bragg-Brentano 

geometry laboratory device equipped with a copper source (λ= 1.54184 Å) and general area 

detector35.  

In situ SR-PXD was carried out at the beamline I711 at Max-lab II (Lund, Sweden, λ = 

0.9938 Å), the measurement time was chosen to be 30 or 60 s for fixed exposure time mode and 

varied between 50 and 100 s for dose mode. All PXD data was referred to the magnitude of the 

scattering vector q= 4π sin θ/λ where λ is the X-ray wavelength and 2θ is the scattering angle. 

The diffracted intensity was measured by a Mar-165 CCD detector. The sample (0.5 mg–2 mg) 

was airtight encapsulated in a sapphire capillary and then mounted into an in house developed in 

situ cell, which is able to control heating temperatures and operating pressures36,37. The 2D 

diffraction patterns were azimuthally averaged and reduced to 1D diffractograms by using 

FIT2D program38.  

Page 9 of 49

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

 

2.2.4. Magic angle spinning solid-state nuclear magnetic resonance (MAS NMR) 

11B MAS NMR spectra of the materials were obtained on a Varian Direct-Drive VNMRS-600 

spectrometer (14.1 T) using a custom-built CP/MAS NMR probe for rotors with a diameter of 4 

mm. The experiments were performed at room temperature using airtight end-capped zirconia 

rotors packed with the samples in an argon-filled glovebox (O2 and H2O levels were monitored 

to be below 10 ppm). A spinning speed of υR = 12.0 kHz, a 0.5 µs excitation pulse for a 11B rf 

field strength of γB1/2π ≈ 60 kHz, and a 10 s relaxation delay was employed for each 

experiment.  

2.2.5. High resolution transmission electron microscopy (HR-TEM) 

HR-TEM images were obtained on a FEI Titan 80-300 microscope operating at 300 kV. The 

samples for TEM were prepared by dispersing a small amount of powder on a commercial 

silicon nitride membrane grid inside a glove box and then directly introducing the specimen into 

the microscope. The samples were exposed to air for a very short time. TEM image processing 

was done with the following programs: Digital Micrograph (License no. 90294175), i-TEM 

(License no. A2382500) and JEMs (License no. IEb59yBDflUMh). 

2.2.6. Energy dispersive spectroscopy (EDS) 

EDS measurements were performed using a FEI Talos (S)TEM running at 200 kV. The 

specimen was prepared by suspension of the sample powder in dry cyclohexane and 

ultrasonicating for 5 min, then one drop was placed on the copper grid and left to dry. Then the 

sample grid was mounted on the TEM sample holder and inserted for measurement. The data 

were collected using the ChemiSTEM technology from FEI with an X-FEG electron source and 

a High Angle Annular Dark Field (HAADF) detector setup. 

2.2.7. Small-angle X-ray scattering (ASAXS) 
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The Ti-ASAXS measurements were performed at the FCM beamline of the PTB installed at 

the synchrotron radiation facility BESSY II (HZB, Berlin, Germany)39. The beamline was 

combined with the HZB ASAXS instrument40. The four-crystal monochromator has an energy 

resolution of ∆E/E~1x10-4, using the Si (111) crystals41. An in vacuum version of a Pilatus 1M 

detector was used to record the scattering pattern42. All measurements were performed at two 

sample-to-detector distances (0.8 m and 3.70 m) to cover the maximum experimentally 

accessible q–range. Here, q is the magnitude of the scattering vector: q= 4π sin θ/λ, where λ is 

the wavelength of the radiation and θ is half of the scattering angle. In order to separate the 

resonant scattering of Ti-containing nanostructures, all measurements were carried out below the 

K absorption edge of titanium43. All selected energies Ei with their corresponding anomalous 

dispersion factors are listed in ESI Table S144. The samples were mounted on molybdenum 

sample holder sheets of 0.2 mm thickness with a circular hole of 5 mm in diameter. The samples 

were supported and sealed within Kapton tape on each side of the sample holder to avoid any 

change in oxidation state of the samples. They were mounted inside a glovebox. All ASAXS 

measurements were integrated and corrected for detector responsivity and sample transmission. 

For each measurement a sample of Ag-behenate powder was measured as a standard for the q-

axis in order to merge the curves measured at two different distances. Additionally, a glassy 

carbon standard was measured for all samples to convert the measured intensities to an absolute 

scale. The anomalous scattering contribution caused by the Ti containing structures was 

separated by using the method described in Haas et al.
45. The curves for the scattered intensity 

I(q,Ei) were fitted simultaneously for all energies, assuming spherical particles, according to: 

���, ��� = 	
²���� ����Ψ	���, ���� + ���� + �����    (1) 

where ∆ρ(Ei) is the electron density difference between particles and matrix, N(r) the particle 

size distribution, r the particle radius and ψ(r,q) the form factor for spherical particles. The term 
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����	summarizes scattering contributions from larger constituents, while B(Ei) describes the 

energy-dependent background (fluorescence and resonant-Raman scattering) and the scattering 

originating from surface roughness and large scale correlations of the powder. The form factor 

for spheres was given by: 

Ψ��, �� = �
�π	�³ ���

��������������
����   (2) 

To account for the polydispersity of Ti-containing particles in the hydride matrix, a normalized 

log-normal distribution was assumed: 

��� = !
"�#$	�

%&'	(− *�+� ,- ./
�σ/ 0           (3) 

with σ being the standard deviation of the distribution and R the mean radius. For the fitting 

procedure of the volume-weighted size distribution, the program SASfit has been used46. 

2.3. Thermodynamic calculations 

To determine the nature of the Al and Ti containing species, thermodynamic calculations were 

carried out using the HSC Chemistry software47. The calculations were done based on the 

reactivity of the Li-RHCd/Li-RHCa with 3TiCl3.AlCl3, respectively, under different temperature 

and pressure conditions. The most favorable reactions were identified through a combination of 

Gibbs minimization equilibrium with selected solid and gas species. The obtained results 

represent ideal phase equilibrium compositions useful to predict possible reaction mechanisms 

between the Li-RHCd/Li-RHCa matrix and the additive involving solid products and gaseous 

species such as B2H6, BxHy (x= 5 to 12, y = 5 to 14) and BxHyClz (x= 1, y = 1 and 2, z = 1 and 2). 

For all the calculations the solid orthorhombic LiBH4 (Pnma) was taken into account. Al-Ti 

alloys as well as MB2 (M = Ti and Al) were considered as possible products. Li2B12H12 was not 

taken into account owing to the lack of available physicochemical data. 

3. RESULTS 
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3.1. Volumetric and calorimetric investigations 

The influence of the amounts of the additive on the first non-isothermal dehydrogenation 

behavior as well as on the kinetic rates of the undoped and doped Li-RHCa mixtures have been 

investigated in a volumetric Sieverts apparatus (Fig. 1). In Fig. 1A the effect of two different 

additives (TiCl3 and 3TiCl3.AlCl3) in the Li-RHCa system are compared. The dehydrogenation 

reactions of all samples occur in two consecutive steps. The first step corresponds to the 

dehydrogenation of MgH2 to Mg and releases approximately 2.8 wt.% of hydrogen. In the 

second step, the reaction between Mg and LiBH4 to form MgB2 and LiH takes place with the 

release of about 8.5 wt.% of H2
17. In the case of the undoped Li-RHCa (Fig. 1A(a), B(a)), a long 

incubation period of about 10 hours is observed between the two dehydrogenation steps. This 

long interval between the two reaction steps is considerably reduced for the case of Li-

RHCa+7.5TiCl3 and Li-RHCa+7.5(3TiCl3.AlCl3), as can be seen in Fig. 1A(b) and (c). From the 

literature, it is well known that the addition of TiCl3 to Li-RHC notably enhances its kinetic 

behavior16,31,48. However, for future use of such a material in mobile applications, TiCl3 cost (~ 

80 USD/g) is a major constraint for the design of a solid-state hydrogen storage reservoir49. For 

these reasons, a Ti based cost efficient additive composed of 3TiCl3.AlCl3 (~ 0.50 USD/g) is 

here utilized50. Fig. 1B shows clearly that the increase in the molar amount of the cost effective 

3TiCl3.AlCl3 additive from 7.5 to 30 mol % of added Cl- avoids the described incubation period. 

However, as a consequence of the increased amount of the 3TiCl3.AlCl3 additive, the hydrogen 

capacity considerably decreases from about 10 wt.% to 8 wt.% H2. 
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Figure 1. First dehydrogenation reaction of the Li-RHCa composite systems measured from RT 

to 400°C, heating rate 3 °C/min, under PH2= 3 bar. A (a) undoped Li-RHCa; (b) Li-

RHCa+7.5TiCl3, (c) Li-RHCa+7.5(3TiCl3.AlCl3). B (a) undoped Li-RHCa, (b) Li-

RHCa+7.5(3TiCl3.AlCl3), (c) Li-RHCa+11.2(3TiCl3.AlCl3), (d) Li-RHCa+15(3TiCl3.AlCl3), (e) 

Li-RHCa+30(3TiCl3.AlCl3). 

Several samples composed of Li-RHCa and Li-RHCd plus different contents of 3TiCl3.AlCl3 

and TiCl3 additives have been cycled 20 times (ESI Fig. S1). Fig. 2 summarizes the evolution of 

the hydrogen capacity for the tested compositions. The addition of both additives (TiCl3 and 

3TiCl3.AlCl3) has a clear beneficial effect on the hydrogen storage capacity of the Li-RHCd (Fig. 

2B) rather than on Li-RHCa (Fig. 2A, ESI Table S2). The Li-RHCd+7.5(3TiCl3.AlCl3) material 

possesses the highest hydrogen capacity, i.e. around 9.5 wt.% H2, and a stable cycling behavior, 

i.e. the loss of capacity is smaller than 1 wt.%. The reduced capacity over the cycling period for 

most of the Li-RHCa compositions is above 1 wt.% (Fig. 2A(a)-(c), ESI Table S2), except for the 

system with large amount of additive (Fig. 2A(d), ESI Table S2). In contrast, when starting from 
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the desorbed state (Li-RHCd) with 7.5TiCl3, 7.5 and 30(3TiCl3.AlCl3) exhibit a drop of capacity 

below 1 wt.% (Fig. 2B(a), (c), (d), ESI Table S2). The Li-RHCd+3.7(3TiCl3.AlCl3), instead, 

shows the largest decrease of capacity (> 2 wt.%) upon cycling (Fig. 2B(b), ESI Table S2).  Fig. 

2A and 2B also show that hydrogen capacity is not always in correlation with the amount of 

additive, i.e. some compositions with lower amount of additive exhibit decreased hydrogen 

capacities (Fig. 2A(b) and Fig 2B(b)). In addition, the material Li-RHCd+3.7(3TiCl3.AlCl3) 

exhibits a fast deterioration of the reversible hydrogen capacity. These facts can be attributed to 

the non-homogenous distribution of the additive all over the base material (Li-RHC).   

 

Figure 2. Reversible hydrogen storage capacities versus number of cycles based on the 

desorption curves. Cycling process preformed at 350 °C and 400 °C under 50 bar and 3 bar of H2 

for the hydrogenation and dehydrogenation, respectively. A sample prepared in the hydrogenated 

state (Li-RHCa). B sample prepared in the dehydrogenated state (Li-RHCd). 

Fig. 3 shows the time required to reach 95% of the total hydrogen storage capacity during 

hydrogenation and dehydrogenation. In the case of the TiCl3 additive, Li-RHCa+7.5TiCl3 

presents better hydrogenation-dehydrogenation kinetic performance than Li-RHCd+7.5TiCl3 

(ESI Table S2). As seen in Fig. 3A(a) and B(a), the material Li-RHCa+7.5(3TiCl3.AlCl3) exhibits 
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the slowest kinetic performance. However, the Li-RHCd+7.5(3TiCl3.AlCl3) material possesses 

the shortest hydrogenation-dehydrogenation times (~ 30 min). A further increment of the amount 

of 3TiCl3.AlCl3 does not lead to faster kinetic behavior. 

 

Figure 3. Time to reach 95% of the maximum hydrogen content versus the number of cycles: A 

hydrogenation from the 2nd to the 19th cycle and B dehydrogenation from 2nd to 20th cycle. The 

cycling process is performed at 350 °C and 400 °C, under 50 bar and 3 bar of H2 for the 

hydrogenation and dehydrogenation, respectively. The hydrogen fraction was determined from 

the normalization of the kinetic curves taking as a reference the actual hydrogen capacity. 

Calorimetric measurements coupled with Sieverts apparatus for Li-RHCd, Li-RHCd+7.5TiCl3 

and Li-RHCd+7.5(3TiCl3.AlCl3) (ESI Fig. S2) show endothermic events related to the LiBH4 

phase transition (event I), LiBH4 melting (event II) and hydrogen release (events III and IV)51,52. 

Events (I and II) are slightly shifted toward lower temperatures in the doped materials. Events III 

and IV are associated to the dehydrogenation reaction of MgH2 and LiBH4 e with simultaneous 
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formation of MgB2, respectively17,52. These endothermic events related to the hydrogen release 

are in agreement with the coupled Sieverts measurements in the range of temperatures between 

330 °C and 450 °C. The dehydrogenation temperature of MgH2 is roughly 20 °C lower in the 

doped hydrogenated materials Li-RHCd+7.5(3TiCl3.AlCl3) and Li-RHCd+7.5TiCl3 (ESI Fig. 

S2(b) and (c)) in comparison to the undoped hydrogenated Li-RHCd (ESI Fig. S2(a)). The onset 

temperature for the decomposition of LiBH4 in the doped materials is at about 390 °C whereas 

that for the undoped material is at around 440 °C. From the volumetric curves, it is clear that the 

dehydrogenation processes for the doped materials are almost completed (ESI Fig. S2(e) and (f)) 

when reaching the final temperature of 450 °C. However, for the undoped material the second 

step of the dehydrogenation barely starts at 450 °C with a release of hydrogen of just 3.0 wt.% 

(ESI Fig. S2(d)). 

3.2. Characterization of the crystalline and non-crystalline phases: ex situ, in situ PXD 

and 
11
B MAS-NMR measurements 

The Li-RHCd+7.5(3TiCl3.AlCl3) material has the best performance in terms of hydrogen 

storage capacity, kinetic behavior and stability upon cycling (Fig. 2 and 3, ESI Table S2). In 

addition, it presents enhanced thermal properties in comparison with the undoped material (ESI 

Fig. S2). Hence, the material containing 7.5(3TiCl3.AlCl3) has been characterized and compared 

with the doped TiCl3 material with the same amount of Cl- (7.5TiCl3). Fig. 4 shows the ex situ 

PXD (A) diffraction patterns and 11B MAS NMR spectra (B) of the Li-RHCd+7.5(3TiCl3.AlCl3) 

and Li-RHCd+7.5TiCl3 after milling and cycling. The patterns of the Li-RHCd+7.5(3TiCl3.AlCl3) 

and Li-RHCd+7.5TiCl3 after milling (Fig. 4A(a), 4A(c)) exhibit reflections of MgB2, LiH and 

LiCl. After 20 cycles, the samples in dehydrogenated states (Fig. 4A(b) and (d)) show the 

presence of the phases found after milling and free Mg (always present in the as received MgB2). 
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In situ PXD measurement during heating, hydrogenation, dehydrogenation and cooling for the 

Li-RHCd+7.5(3TiCl3.AlCl3) sample after previous 20 cycles has been performed (ESI Fig. S3). 

At room temperature and during heating up to 350 °C, MgB2, LiH, LiCl and elemental Mg are 

found. Upon hydrogenation at 350 °C under 50 bar H2, the disappearance of residual Mg and 

MgB2 are followed by the formation of MgH2. At these temperatures, LiBH4 is not observed 

because it is in its molten state. At the end of the isothermal period at 50 bar H2 pressure, the 

reflections of unreacted MgB2 are still visible. However, the LiCl peaks are not visible anymore. 

After decreasing the pressure to 5 bar H2 and increasing the temperature up to 400 °C, Mg and 

then MgB2 reflections appear17,24. During the cooling period, the reappearance of the LiCl at 

275 °C is noticed. In the case of the material prepared in hydrogenated state (i.e. Li-

RHCa+7.5(3TiCl3.AlCl3) and Li-RHCa+7.5TiCl3), both the ex situ and in situ PXD (ESI Fig. S4 

and S5) show similar behavior as the material prepared starting from the dehydrogenated state 

(Li-RHCd). The ex situ PXD of the material after milling (ESI Fig. S4) exhibits the presence of 

LiBH4, MgH2 and LiCl, while after 20 cycles the material in desorbed state shows the presence 

MgB2, LiH, LiCl and free Mg. Moreover, the in situ PXD for the dehydrogenation mechanism 

starting from as-milled Li-RHCa+7.5(3TiCl3.AlCl3) is similar to the one described above for the 

Li-RHCd+7.5(3TiCl3.AlCl3) after 20 cycles (ESI Fig. S5). Interestingly, the presence of the 

additives, i.e. TiCl3, 3TiCl3.AlCl3, and crystalline Ti and Al containing phases, are not detected 

by PXD (Fig. 4A, ESI Fig. S3-S5). 

11B MAS NMR spectra of the milled and the cycled Li-RHCd+7.5(3TiCl3.AlCl3) and Li-

RHCd+7.5TiCl3 materials are shown in Fig. 4B. The spectra of the ball milled samples (Fig. 4B 

(a) and 4B (c)) are nearly identical and are dominated by the central-transition resonances from 

MgB2 with the centerband resonance at 100.3 ppm. In addition, the analysis of central transition 
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intensities of the spectra show a low-intensity centerband resonance is observed at 5.2 ppm, 

which constitutes 8.4 % and 5.1 % of the total 11B NMR intensity for the as-milled Li-

RHCd+7.5(3TiCl3.AlCl3) and Li-RHCd+7.5TiCl3 materials, respectively. 

 

 

Figure 4. A Ex situ PXD and B 11B MAS NMR spectra (14.1 T, υR = 12.0 kHz) of the doped 

samples prepared in the dehydrogenated state: (a) Li-RHCd+7.5(3TiCl3.AlCl3) after milling, (b) 

Li-RHCd+7.5(3TiCl3.AlCl3) after the 20th cycle, (c) Li-RHCd+7.5TiCl3 after milling and (d) Li-

RHCd+7.5TiCl3 after the 20th cycle. The diamonds (♦) indicate the 5.2 ppm centerband, 

observed for the two ball-milled samples, whereas centerband and spinning sideband resonances 

from Li2B12H12 and LiBH4 are indicated by asterisks (∗) and solid circles (•), respectively. 

Page 19 of 49

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 

 

 

The 11B NMR spectra of the cycled materials (Fig. 4B (b) and 4B (d)) are more complicated 

because of overlapping resonances (centerbands and spinning sidebands) of the boron-containing 

phases. In addition to MgB2, which is still the dominate phase in both cycled materials, 

resonances from unreacted Li2B12H12 at -15.2 ppm and LiBH4 at -40.5 ppm are also observed. 

For the Li-RHCd+7.5(3TiCl3.AlCl3) material (Fig. 4B (b)), two additional centerbands appear at 

2.4 ppm and 15.9 ppm, which could not be assigned to any specific phase and are thus, denoted 

unknown phases, UP(1) and UP(2), respectively. The 2.4 ppm peak might potentially originate 

from AlB2, following an earlier 11B NMR spectrum obtained for this phase at identical 

conditions. A deconvolution of the central transition region for the cycled Li-

RHCd+7.5(3TiCl3.AlCl3) material, including centerbands and spinning sidebands, gives the 

following relative 11B NMR intensities for the individual phases: 63.0 % MgB2, 12.2 % 

Li2B12H12, 0.6 % LiBH4, 20.9 % UP(1) and 3.3 % UP(2). The UP(1) and UP(2) resonances are 

not identified for the cycled Li-RHCd+7.5TiCl3 material (Fig. 4B (d)), which on the contrary 

includes a new resonance at approx. -6.3 ppm (UP(3)). This resonance is clearly visible as a 

high-frequency shoulder to the narrow centerband resonance from Li2B12H12 at -15.2 ppm, which 

gives a strong contribution to the spinning sidebands at 50 ppm, -30 ppm, and -135 ppm. A 

simulation of this spectrum results in the relative intensities: 59.2 % MgB2, 7.1 % Li2B12H12, 

6.5 % LiBH4, and 27.3 % UP(3). A resonance from TiB2 at -4.9 ppm is expected for all cycled 

samples. However, this signal is not observed in the NMR spectra. 

3.3. Nanostructure and distribution of the Ti-rich phase: ASAXS measurement  

The volume weighted size distributions of the Ti rich nanosized particles obtained by ASAXS 

measurements for the as-milled and cycled Li-RCHd plus TiCl3 and (3TiCl3.AlCl3) samples are 
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shown in Fig. 5. Li-RHCd+7.5TiCl3 in the as-milled state has been measured as a reference 

sample and the resulting ASAXS curves are shown in ESI Fig. S6, exemplarily. At q-values 

around 1 nm-1 the curves show a clear resonant scattering structure. At very high q-values above 

about 2.5 nm-1, incoherent and inelastic scattering contributions limit the further decrease of the 

scattered intensity. In the lower q-region the curves become off-resonant and follow a power law 

behavior. The exponent of the power-law amounts to 3.6, implying mass fractals with dense bulk 

and rough surfaces. Fig. 5 shows that the as-milled Li-RHCd+7.5TiCl3 and Li-

RHCd+7.5(3TiCl3.AlCl3) mainly differ in their polydispersity. The normalized standard 

deviation of the size distribution for as-milled Li-RHCd+7.5TiCl3 is 0.38 whereas the 

corresponding value for the as-milled Li-RHCd+7.5(3TiCl3.AlCl3) amounts to 0.57, which is 

around 33 % larger. The mean radius for as-milled Li-RHCd+7.5TiCl3 is around 3.6 nm while 

this value is about 32 % (5.3 nm) larger for the as-milled Li-RHCd+7.5(3TiCl3.AlCl3). For the 

Li-RHCd+7.5(3TiCl3.AlCl3) material after 20th cycles, the mean nanoparticle radius after 20 

cycles decreases to about 3.5 nm. Increasing the amount of the 3TiCl3.AlCl3 additive does not 

change significantly the size distribution as seen for Li-RHCd+30(3TiCl3.AlCl3). 
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Figure 5. Volume weighted size distributions of Ti rich - nanosized particles obtained by 

ASAXS for (a) as-milled Li-RHCd+7.5TiCl3, (b) as-milled Li-RHCd+7.5(3TiCl3.AlCl3), (c) Li-

RHCd+7.5(3TiCl3.AlCl3) after 20 cycles, (d) Li-RHCd+30(3TiCl3.AlCl3) after 20 cycles. 

4. DISCUSSION 

Hydrogen storage properties of Li-RHC have been notably improved by the addition of 

3TiCl3.AlCl3 (section 3.1). It has been shown that the Li-RHCd+7.5(3TiCl3.AlCl3) material 

exhibits the best performance upon cycling with a stable capacity of about 9.5 wt. % H2 and 

reduced hydrogenation and dehydrogenation times of about 30 min. The characterization of the 

crystalline and non-crystalline phases in the Li-RHCd+7.5(3TiCl3.AlCl3) after milling and 

cycling has been performed via ex situ and in situ PXD (Fig. 4A, ESI Fig. S3-S5) and 11B MAS 

NMR (Fig. 4B), respectively. ASAXS results (Fig. 5) show that Ti rich nanosized particles are 

dispersed in the sample. Therefore, to shed light on the nature of the additive within the hydride 

system and to understand the reasons laying behind the observed beneficial effect on the 
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material’s hydrogenation/dehydrogenation properties, the collected results are herein discussed 

in detail.  

4.1. Phase equilibrium compositions: Thermodynamic calculations 

In order to infer the crystalline and amorphous phases obtained by the interaction of Li-RHC 

and 3TiCl3.AlCl3, phase composition equilibrium calculations based on the Gibbs free energy 

minimization have been carried out with the HSC Chemistry software47. Taking into account the 

experimental results obtained from the characterizations of the materials (Fig. 4A and B, ESI 

Fig. S3-S5), the calculations for Li-RHCd+7.5(3TiCl3.AlCl3) and Li-RHCa+7.5(3TiCl3.AlCl3) 

materials under different conditions such as mechanical milling (MM), first hydrogenation and 

first dehydrogenation have been performed. In several works25-34, it has been proposed the 

formation of transition metal borides from the interaction between the Li-RHC material and 

transition metal based compounds. For the Li-RHC doped with 3TiCl3.AlCl3 (ESI Table S3), the 

calculations show that the formation of TiB2 and AlB2 upon milling is thermodynamically 

feasible for both the dehydrogenated (Li-RHCd) and hydrogenated (Li-RHCa) states as shown in 

reaction (4) and (5), respectively. These boride species remain stable upon cycling (ESI Table 

S3). 

(4)  0.072LiH(s) + 0.024MgB2(s) + 0.06(3TiCl3.AlCl3)(s) → 0.072LiCl(s) + 0.024Mg(s) + 
0.006AlB2(s) + 0.018TiB2(s) + 0.036H2(g)  

∆G1bar, 25 °C = – 10.9 kJ 

(5)  0.072LiBH4(s) + 0.006(3TiCl3.AlCl3)(s) → 0.018TiB2(s) + 0.072LiCl(s) + 0.006AlB2(s) + 
0.024B(s) + 0.144H2(g) 

∆G1bar, 25 °C = – 4.4 kJ 

Instead, if we consider the possible formation of Al-Ti alloys (ESI Table S4), the phase 

composition equilibrium calculations hint at the formation of the AlTi3 alloy during milling as 
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described in reactions (6) and (7) for the Li-RHCd and Li-RHCa, respectively. The calculations 

also suggest that this AlTi3 alloy remains stable upon cycle once formed (ESI Table S3).  

(6) 0.072LiH(s) + 0.06(3TiCl3.AlCl3) (s) → 0.072LiCl(s) + 0.006AlTi3(s) + 0.036H2(g) 

∆G1bar, 25 °C = – 7.6 kJ 

(7) 0.072LiBH4(s) + 0.006(3TiCl3.AlCl3) (s) → 0.072LiCl(s) + 0.006AlTi3(s) + 0.072B(s) + 
0.144H2(g) 

∆G1bar, 25 °C = – 3.5 kJ 

The formation of titanium boride species (TiB2 and AlB2) is thermodynamically more 

favorable than the formation of the AlTi3 alloy. Nonetheless, the characterization of the materials 

evidences certain discrepancy with the formation of the transition metal boride species (Fig. 4, 

ESI Fig. S3-S5). In the case of Li-RHCd+7.5(3TiCl3.AlCl3) and Li-RHCa+7.5(3TiCl3.AlCl3), the 

diffraction patterns after milling do not show the presence of free Mg as proposed in reaction (4), 

unless this phase is not detected due to its low amount (Fig. 4A(a) and Fig. S4 A(a)). 

Additionally, the NMR spectrum of the Li-RHCd+7.5(3TiCl3.AlCl3) material after cycling does 

not evidence clearly the presence of any transition metal boride species (Fig. 4 B (b)). On the 

contrary, the formation of the AlTi3 alloy after milling and after cycling appears to be likely (Fig. 

4A(a), (b) and 4B(a) and (b)) since neither the presence of free Mg nor the formation of 

transition metal boride species are included in reactions (6) and (7). Therefore, the formation of 

TiB2 and AlB2 might be kinetically restricted, so that the formation of the AlTi3 alloy takes 

place. 

4.2. Nature of the nanosized additive: HR-TEM 

Experimental results indicate that the additive (3TiCl3.AlCl3) interacts with Li-RHC (Fig. 4) 

and provides the in situ formation of nanostructured Ti-rich phase distributed on the MgB2 

particles (ESI Fig. S7). The phase equilibrium thermodynamic calculations suggest that the 
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nanosized Ti-rich phase is composed of Al and Ti, specifically AlTi3 alloy. Therefore, to verify 

the nature of the nanosized Ti-rich phase, HR-TEM observations combined with the analysis of 

the fast Fourier transformation analysis (FFT) and simulations of the electron diffraction pattern 

(DP) in Zone Axis (ZA) condition have been performed on several particles. Fig. 6 shows the 

HR-TEM micrographs and their respective analysis (FFT and simulated DP).  The presence of 

nanosized particles of hexagonal AlTi3 and cubic AlTi2 is observed in the material after milling 

(Fig. 6A) . Upon cycling (Fig. 6B and C), hexagonal AlTi3 and cubic AlTi2 are still seen and the 

appearance of cubic AlTi3 is noticed. The same Al-Ti alloys as for the Li-

RHCa+7.5(3TiCl3.AlCl3) are also observed (ESI Fig. S8). It is important to point out that the 

most frequently identified nanoparticles belong to the hexagonal AlTi3 phase. Mroevoer, Mg-Al 

alloys, Mg-Al-B compounds as well as TiB2 and AlB2 have not been identified via HR-TEM. 

These HR-TEM observations confirm the formation of nanosized AlTi alloys, mainly the 

hexagonal AlTi3, as predicted with the equilibrium thermodynamic calculations as shown in 

reaction (6) and (7), and in ESI Table S3 and S4. This is in concordance with the PXD analysis 

(Fig. 4A(a) and (b)) since no Al-Ti crystalline phase has been detected. NMR spectra (Fig. 4B) 

show the presence of a peak that might belongs to AlB2 (UP1) and of another peak which cannot 

be attributed to any boron containing species (UP2). Considering the HR-TEM observation, it is 

possible to discard AlB2 as a potentially or at least dominantly formed phase. Regarding the size 

of the Al-Ti alloys nanoparticles, it is possible to see in Fig. 6 that the sizes of the hexagonal 

AlTi3 after milling and cycling are in the range of 1 to 10 nm and 1 to 5 nm, respectively. These 

findings are in good agreement with the ASAXS results (Fig. 5). 

4.3. Effect of the 3TiCl3.AlCl3 additive on Li-RHC 

4.3.1. Interfacial energy minimization: d–value mismatch 
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In the previous section, the in situ formation of AlTi alloys (Section 4.2) has been verified by 

HR-TEM observation. It has been reported that phases with similar crystal structure as MgB2 can 

act as heterogeneous nucleation sites for its formation25. Several transition metal borides such as 

TiB2, NbB2 and VB2 are able to provide coherent interfaces to enhance the heterogeneous 

nucleation and growth of hexagonal MgB2
25-32,53. There are three necessary requirements for an 

effective heterogeneous nucleation: the most important is a low interfacial energy between the 

nucleation agent and the nucleate new phase (MgB2), the second is sufficiently high amount of 

the nucleation agent and the third is the homogenous distribution of the nucleation agent25,54,55. A 

sufficient condition for interfacial energy minimization is a minimized lattice mismatch in 

consecutive atom rows across an interface. To achieve the minimized lattice mismatch condition, 

the inter-planar spaces (d–value) between the closed-packed planes of the nucleation agent and 

the MgB2 should be lower than the critical d–value mismatch of 6 % 54. In our case, no 

transition-metal boride species have been detected as a product of the interaction between Li-

RHC material and the 3TiCl3.AlCl3 additive (Fig. 4 and Fig. 6). For this reason and considering 

that the AlTi alloys can potentially act as an effective heterogeneous nucleation center for MgB2, 

their d–value mismatches have been calculated. These parameters have been determined from 

the diffraction cards of the AlTi alloys determined via HR-TEM (Fig. 6): hexagonal-AlTi3 (ICSD 

191189), cubic-AlTi3 (ICSD 189695) and cubic-AlTi2 (ICSD 189696). The d–value mismatch 

for the closed-packed planes between the AlTi alloys and MgB2 are: MgB2{1011}//hexagonal-

AlTi3{2021} =3.3 %; MgB2{1010}//cubic-TiAl3{2020}= 31.9 % and MgB2{1010}//cubic-

TiAl2{2020}= 35.0 %. As seen, the hexagonal AlTi3 phase, the most frequent identified phase, 

shows a suitable d–value mismatch well below 6 %. Thus, it fulfils the first above-mentioned 

requirement for an efficient heterogeneous nucleation of MgB2. Moreover, based on the observed 
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kinetic improvement of the Li-RHCd+7.5(3TiCl3.AlCl3) (Fig. 3) and according to the ASAXS 

(Fig. 5), EDS in STEM-HAAFD mode (ESI Fig. S7) and HR-TEM results (Fig. 6), the in situ 

formed nanosized hexagonal-AlTi3 phase covers the second and third requirement since the 

proper amount of its nanoparticles is well distributed and upon cycling is located on the formed 

MgB2 to assure an enhanced heterogeneous nucleation of new MgB2 seeds. 
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Figure 6. HR-TEM characterization of the nanosized AlTi alloys in Li-RHCd+7.5(3TiCl3.AlCl3) 

material A after milling, B after 1st cycle (sample in dehydrogenated state) and C after 20th cycle 

(sample in dehydrogenated state). FFT was calculated in each region and compared to simulated 

diffraction patterns (DPs) in the adequate orientation; the width of the FFT and corresponding 

simulations is 18 nm-1. Structure cards: hexagonal AlTi3 ICSD 191189, cubic AlTi3 ICSD 

189695, cubic AlTi2 ICSD 189696. 

4.3.2. First dehydrogenation of Li-RHCa: effects on the incubation period 

It has been already reported that the reaction pathways of Li-RHC depend on the temperature 

and hydrogen pressure conditions24. LiBH4 and MgH2 individually decompose and do not form 

MgB2 under 1 bar of H2 overpressure in the temperature range from 400 to 450 °C, hindering the 

reversibility of Li-RHC14,24. The dehydrogenation of Li-RHC proceeds in three steps when it is 

carried out in the pressure range from 3  to 5 bar of H2: (1) fast decomposition of MgH2, (2) 

incubation period with a small hydrogen release and (3) reaction between free Mg and LiBH4 to 

form MgB2 and LiH. The incubation period is attributed to the reaction (8), which leads to the 

individual reaction of LiBH4 into Li2B12H12 and not to the LiBH4 decomposition to LiH, B and 

H2 (reaction (9)) because of the thermodynamic stability of the reactions, i.e. 56 kJ/mol H2 and 

75 kJ/mol H2, respectively14,56-58: 

(8)     2LiBH4(l)→(1/6)Li2B12H12(s)+(5/3)LiH(s)+(13/6)H2(g) 

(9)       LiBH4(l) → LiH(s) + B(s) + (3/2)H2(g) 

As proposed in the literature about LiBH4 + YH3
59,60 and 2LiBH4 + MgH2

57, reaction (8) may 

not proceed by the intermediate formation of gaseous di-borane (B2H6)
61,62 since the gas 

overpressure kinetically suppresses its formation. It has been proposed that the sluggish kinetic 

behavior of the first dehydrogenation of Li-RHC is associated with the formation of Li2B12H12 
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(reaction (8)) as an intermediate phase which blocks the direct contact between LiBH4 and Mg14. 

It has been found that at 450 °C under 10 bar of H2 overpressure, the formation of Li2B12H12 is 

avoided because the equilibrium pressure of reaction (8) is below 10 bar (~ 9 bar10), enhancing 

the dehydrogenation kinetic behavior compared to that at lower overpressure conditions57. 11B 

MAS NMR spectra of as-purchased LiBH4, pristine Li-RHCa and Li-RHCa+15(3TiCl3.AlCl3) 

materials after milling and partially dehydrogenated are shown in Fig. 7. The pressure conditions 

selected for the partially dehydrogenated samples are the reported equilibrium pressures for the 

reaction between Mg and LiBH4 to form MgB2 and LiH (3 bar H2 at 350 °C and 8 bar H2 at 

400 °C)63,64.  

 

Figure 7.  A NMR spectra of the (a) as-purchased LiBH4, (b) as-milled Li-RHCa, (b) as-milled 

Li-RHCa+15(3TiCl3.AlCl3), (d) Li-RHCa partially dehydrogenated at 350 °C under 3 bar of H2, 

(e) Li-RHCa+15(3TiCl3.AlCl3) partially dehydrogenated at 350 °C under 3 bar of H2, (f) Li-

RHCa partially dehydrogenated at 400 °C under 8 bar of H2, (g) Li-RHCa+15(3TiCl3.AlCl3) 

partially dehydrogenated at 400 °C under 8 bar of H2. B Zoom of A between -20 to 5 ppm to 
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highlight the peaks belonging to Li2B12H12 at about -15 ppm and amorphous boron between – 

2.5 ppm and 5 ppm.  

Under these conditions, the equilibrium pressures of the reaction (8) (~1.5 bar H2 at 350 °C 

and ~ 4 bar H2 at 400 °C) and reaction (9) (~ 0.5 bar H2 at 350 °C and ~ 1.5 bar H2 at 400 °C) are 

below to the selected experimental pressures and hence reactions (8) and (9) can be 

avoided10,14,57,58. It is important to mention that the partially dehydrogenated samples have been 

taken from the reactor after the dehydrogenation of MgH2 and after leaving the sample a while 

where no hydrogen release has been noticed. 

The as-purchased LiBH4, as-milled Li-RHCa and as-milled Li-RHCa+15(3TiCl3.AlCl3) 

samples (Fig. 7A(a)-(c)) show strong signals of LiBH4 at -41.4 ppm and broad peaks originating 

from amorphous boron. As seen in Fig. 7 B(a), as-purchased LiBH4 contains just amorphous 

boron (besides LiBH4). After milling (Fig. 7 B(b)), the as-milled Li-RHCa also shows small and 

broad peaks that belong to Li2B12H12. The addition of 3TiCl3.AlCl3 during milling makes 

possible the formation of a larger amount of boron (Fig. 7 B(c) bigger area of the free boron 

peak) as a result of the formation of the AlTi alloys (mainly AlTi3), which is in agreement with 

the predicted reaction (7) and the experimental results (ESI Fig. S4, S5 and Fig. 6). Therefore, 

this suggests that the energy transmitted by the grinding medium to the powder during milling is 

enough to promote two reactions. The first possible reaction is the decomposition of a small 

amount of LiBH4 to free boron and Li2B12H12 via two parallel reactions (reactions (8) and (9)). 

The second one is the reaction of the free boron contained in the as-purchased LiBH4 with LiH 

stemming from the decomposition of LiBH4 (as indicated in reaction (9)) to form Li2B12H12 and 

more free boron. In the case of the as-milled Li-RHCa after the partial dehydrogenation (Fig. 7 

(d) and (f)), the presence of free boron (Fig. 7B(d)) and Li2B12H12 is evident (Fig. 7 B(d) and (f)). 
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Experimental results show that during the first non-isothermal dehydrogenation of the as-milled 

Li-RHCa the incubation period does not always last the same time (ESI Fig. S9). It implies that 

the incubation period related to the formation of Li2B12H12 is highly dependent on the nature of 

the starting material and the amounts of boron and Li2B12H12 generated during milling which 

seems not to be homogenously distributed in the material. For as-milled Li-

RHCa+15(3TiCl3.AlCl3) after partial dehydrogenation (Fig. 7 B(e) and (g)), just the presence of 

Li2B12H12 is noticed. Ohba et al.
10 has calculated that the decomposition of Li2B12H12 towards 

LiH and free B presents a high enthalpy value of 125 kJ/mol H2. Caputo et al.
12 based on first-

principles calculations has reported that the decomposition of LiBH4 can proceed via different 

pathways and proposed that the Li2B12H12 is a product and not an intermediate phase because of 

its high stability. Pitt et al.
65 has experimentally confirmed that under vacuum or H2 overpressure 

conditions anhydrous Li2B12H12 begins to decompose after 250 °C to a substoichiometric 

Li2B12H12–x composition dependent on the amount of hydrogen released. Recently, White et al.
66 

has shown that Li2B12H12 can be converted into metal borides or borides species under harsh 

temperature and pressure conditions, e.g. the reaction between Li2B12H12 and MgH2 can form 

MgB2 and LiH above 500 °C upon dehydrogenation in vacuum.  

As mentioned above, the used temperature and hydrogen pressure conditions for the 

preparation of the samples for the NMR measurements (Fig. 7 (d)-(g)) are over the equilibrium 

pressures of reaction (8) and (9).  In this regard and owing to the high stability of Li2B12H12, it is 

possible to suggest that the small amount of formed Li2B12H12 upon dehydrogenation can come 

from the reaction between LiH, generated during the formation of MgB2, and the free boron 

contained in the as-purchased material and the one generated during the milling process.  This 

analysis allows a thorough interpretation of the results shown in Fig. 1. For the first non-
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isothermal dehydrogenation of Li-RHCa at 400 °C under 3 bar of overpressure (Fig. 1 A(a)), the 

incubation period starts at about 400 °C. At these conditions, the equilibrium pressure of reaction 

(8) is about 4 bar and thus the reaction pathway can undergo to the slow formation of Li2B12H12 

and LiH with an insignificant hydrogen release. Moreover, the free boron, already contained in 

the as-purchased LiBH4 material and then generated during milling, might react with the already 

formed LiH to produce more Li2B12H12, which finally remains stable. The presence of Li2B12H12 

precludes the contact between free Mg and LiBH4 and the fast formation of MgB2. This process 

might retard the third step of the dehydrogenation (i.e. the reaction of LiBH4 with Mg to form 

MgB2) until a minimum amount of MgB2 seeds are formed. In the case of the Li-

RHCa+x(3TiCl3.AlCl3) (x = 7.5, 11, 15 and 30) (Fig. 1B), during milling the formation of 

nanosized AlTi3 alloy (reaction (7)) produces free boron and Li2B12H12 as by-products (Fig. 7 

B(c)). Upon non-isothermal dehydrogenation (Fig. 1B(b)-(e)), a reduced incubation period (Li-

RHCa+7.5(3TiCl3.AlCl3)) or the direct fast LiBH4 decomposition (Li-RHCa+11, 15, 

30(3TiCl3.AlCl3)) after the MgH2 dehydrogenation are seen at about 400 °C under 3 bar H2 of 

overpressure. The reaction (8) is partially or totally avoided. It is possible to infer that upon the 

first dehydrogenation the formation of stable Li2B12H12 occurs as described for the as-milled Li-

RHCa. However, the well-distributed in situ formed nanosized AlTi3 alloy acts as an efficient 

heterogeneous nucleation agent for the rapid formation of MgB2 seeds (as shown in Section 

4.3.1). In spite of the small amount of stable and irreversible Li2B12H12, the availability of 

efficient heterogeneous nucleation sites improves the Mg-LiBH4 contact and avoids the further 

generation of Li2B12H12 by accelerating the formation of MgB2. It is important to point out that 

in Fig. 2 and 3 the Li-RHCa shows lower reversible hydrogen capacity and slightly higher 

deterioration rates than Li-RHCd upon cycling. This fact may account for the presence of 
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amorphous boron in as-received LiBH4 and to the further formation of stable Li2B12H12 during 

milling.  

4.3.3. Rate limiting step and hydrogenation-dehydrogenation activation energy 

In order to elucidate if the notable kinetic enhancement (Fig. 3 and Fig. S1) of the Li-

RHCd+7.5(3TiCl3.AlCl3) material is related to a change in the rate-limiting step and/or a 

decrease in the hydrogenation-dehydrogenation activation energy, gas-solid models have been 

applied.  

Fig. 8A shows the hydrogenation kinetic curves of the second cycle at 390 °C and their 

respective model fittings for the Li-RHCd+7.5(3TiCl3.AlCl3) and Li-RHCd materials. It is 

observed that the presence of the in situ formed AlTi alloys clearly increases the hydrogen 

uptake rate. In order to identify the proper rate limiting step mechanism for the hydrogenation 

process, the Sharp’s and Jone’s method has been applied: plotting the experimental value of 

(t/t0.5)experimental versus the theoretical ones (t/t0.5)theoretical (ESI Fig. S10)67,68. On the one hand, for 

all the hydrogenation curves of Li-RHCd material in the range of temperature between 360 °C 

and 400 °C, the Johnson-Mehl-Avrami (JMA) reaction model with n= 1 (one dimensional 

interface-controlled reaction) is the most suitable one69. On the other hand, for the Li-

RHCd+7.5(3TiCl3.AlCl3) material in the same range of temperature, the three-dimensional 

contracting volume reaction model (R3, three dimensional interface-controlled reaction) fits 

better70. Both models have been found as rate limiting steps in previous publications25,64,71 (ESI 

Fig. S10). All hydrogenation curves show good fitting agreements with a correlation coefficient 

R2 near 1 (Fig. 8A, ESI Fig. S11 kinetic curves fitting and fitting parameters for all the 

hydrogenation curves). In-situ SR-PXD measurements have shown that the hydrogenation 

process of the pure Li-RHC is a single step reaction which involves the formation of MgH2 and 
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LiBH4 from MgB2 and LiH17,24 and the same behavior has been observed in the in situ SR-PXD 

measurement carried out in this work (ESI Fig. S3). Fig. 8 (B and C) presents the hydrogenation 

activation energies (Ea) for the single step hydrogen uptake. As seen there, the hydrogenation Ea 

is reduced by about 60 kJ/mol H2 due to the presence of the additive (Li-RHCd = 184±6 kJ/mol 

H2 and Li-RHCd+7.5(3TiCl3.AlCl3) = 124±6 kJ/mol H2). The markedly improvement in the 

hydrogenation kinetic behavior can be attributed to two main factors: first, the reduced particle 

size of MgB2 down to about 300 nm (ESI Fig. S7A) that leads to a faster MgB2 consumption; 

second, the homogenous distribution of the nanosized particles of AlTi alloys located on the 

MgB2 that prevents the agglomeration, generates more active surface for the hydrogen-material 

interaction and enables the faster three dimensional interface movement. 
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Figure 8. Kinetic behavior for Li-RHCd and Li-RHCd+7.5(3TiCl3.AlCl3): A Hydrogenation and 

D Dehydrogenation kinetic curves of the 2nd cycle and model fitting. B and C Hydrogenation 

activation energy. E and F Dehydrogenation activation energy. 

In Fig. 8D a comparison between the dehydrogenation kinetic curves of Li-RHCd and Li-

RHCd+7.5(3TiCl3.AlCl3) at 390 °C clearly shows that the doping improves notably the 

material’s kinetic behavior. For the kinetic modelling of the dehydrogenation curves a novel 

approach proposed by Puszkiel et al.
64

 has been applied, consisting in the combination of two 

kinetic models, i.e. the JMA model for the first step (MgH2 decomposition) and the modified 

Prout-Topkins (PT) model for the second step (reaction between Mg and LiBH4 to give LiH, 
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MgB2 and H2 release)70,72. The fitting employing the combined model64 to the dehydrogenation 

curves of Li-RHCd and Li-RHCd+7.5(3TiCl3.AlCl3) between 370 °C and 400 °C under 3 bar of 

H2 shows good agreement with correlation coefficient R2 of about 1 (Fig. 8D, ESI Fig. S12). 

During the first step of the dehydrogenation, the MgH2 decomposition is limited by a MgH2/Mg 

interface-controlled mechanism along a one-dimensional dislocation line (JMA with n ~ 1)73. 

Fig. 8 (E and F) exhibits the dehydrogenation Ea for Li-RHCd and Li-RHCd+7.5(3TiCl3.AlCl3) 

corresponding to the first and second step. In the case of MgH2 decomposition (Fig. 8E(a) and 

F(a)), Ea is decreased from 172±19 kJ/mol H2 for Li-RHCd to 124±6 kJ/mol H2 for Li-

RHCd+7.5(3TiCl3.AlCl3). These results suggest that the reaction kinetics of the first step of the 

dehydrogenation process for Li-RHCd is enhanced by the presence of the nanosized AlTi alloy, 

which has been already seen for pure MgH2
73. Fig.8 E(b) and F(b) show the dehydrogenation Ea 

belonging to the second step for Li-RHCd and Li-RHCd+7.5(3TiCl3.AlCl3), respectively. The 

dehydrogenation Ea for Li-RHCd+7.5(3TiCl3.AlCl3) is lower than that for Li-RHCd, i.e. 215±18 

kJ/mol H2 and 293±12 kJ/mol H2, respectively. This is in agreement with the fitted autocatalytic 

(PT) model, in which the involvement of products as reactive phases is considered70. As 

explained in a previous section (4.3.1), the interaction of 3TiCl3.AlCl3 with the Li-RHC material 

produces in situ nanosized AlTi alloys. Hexagonal AlTi3 is the most abundant nanosized AlTi 

phase. This phase presents excellent properties to promote the fast growth of MgB2 nuclei and it 

is very well distributed. Therefore, the dehydrogenation Ea of the second step is markedly 

reduced due to the availability of well-distributed hexagonal AlTi3 nanoparticles acting as 

effective nucleation centers and allowing the fast formation of MgB2 on their surfaces.  

5. CONCLUSIONS 
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In this work, the effect of the formation of nano TiAl alloys on the hydrogenation storage 

properties of the 2LiBH4+MgH2/2LiH+MgB2 system has been investigated in detail. The 

samples have been prepared in both hydrogenated and dehydrogenated states adding either 

3TiCl3.AlCl3 or TiCl3. The hydrogenation/dehydrogenation rates of the doped composite systems 

show a significant enhancement compared to the pristine material. The 7.5(3TiCl3.AlCl3) doped 

Li-RHCd exhibits the best performance among the investigated systems. In fact, for this material 

the hydrogenation-dehydrogenation times are about 30 minutes and the reversible hydrogen 

storage capacity is about 9.5 wt.%. These values are stable through 20 

hydrogenation/dehydrogenation cycles. Moreover, in comparison to the pristine material, the 

activation energy for the hydrogenation of the Li-RHCd+7.5(3TiCl3.AlCl3) is significantly 

reduced by 60 kJ/mol H2. The dehydrogenation activation energies of the first and the second 

steps are also considerably decreased by about 50 kJ/mol H2 and 80 kJ/mol H2, respectively. This 

shows that the addition of 3TiCl3.AlCl3 has a strong effect on the Li-RHC system and a 

beneficial effect by avoiding the further generation of Li2B12H12. It has been found that the 

nanosized AlTi alloys are formed in situ as a result of the interaction between the 3TiCl3.AlCl3 

additive and Li-RHC upon milling. Among the observed AlTi alloys, the nanosized hexagonal 

AlTi3 is the most abundant species. These AlTi nanoparticles are stable upon 

hydrogenation/dehydrogenation cycling. The enhanced hydrogenation kinetic behavior is 

attributed to the nanosized AlTi alloys which facilitates the reduction of the particle size of 

MgB2 down to about 300 nm leading to a faster MgB2 consumption, preventing the MgB2 

agglomeration, generating more active surface for the hydrogen-material interaction and making 

possible the faster three dimensional interface movements. Upon dehydrogenation, nanosized 

AlTi alloys also account for the improvement during the first and second dehydrogenation steps. 
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The decomposition of MgH2 during the first step is catalyzed by the presence of these well-

distributed nanosized AlTi alloys. Furthermore, the kinetic behavior during second 

dehydrogenation step is improved by the presence of in situ formed nanosized and hexagonal 

AlTi3, which acts as an effective heterogeneous nucleation site for MgB2 nuclei and precludes 

the additional formation of Li2B12H12. This novel catalytic mechanism opens a potential for an 

economical and efficient design of hydrogen storage materials. 
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Li-RHCa, (t/t0.5)experimental vs. (t/t0.5)theoretical plots for Li-RHCd and Li-RHCd+7.5(3TiCl3.AlCl3), 

Li-RHCd and Li-RHCd+7.5(3TiCl3.AlCl3) hydrogenation and dehydrogenation curves fitted in 

the range of temperature between 360 oC and 400 oC. 
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