
 

Accepted Manuscript

Dynamic Coefficients of Finite Length Journal Bearing. Evaluation
Using a Regular Perturbation Method

Claudio E. Merelli , Daniel O. Barilá , Gustavo G. Vignolo ,
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Lidia M. Quinzani , Dynamic Coefficients of Finite Length Journal Bearing. Evaluation Us-
ing a Regular Perturbation Method, International Journal of Mechanical Sciences (2018), doi:
https://doi.org/10.1016/j.ijmecsci.2018.11.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ijmecsci.2018.11.018
https://doi.org/10.1016/j.ijmecsci.2018.11.018


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

 

Highlights 

 New simple analytical expressions of static and dynamic parameters are presented 

 Regular perturbation method allows to extend the Ocvirk solution up to L/D and ~3/4 

 Force, friction factor, lubricant flow rate and attitude angle are considered 

 Damping and stiffness coefficients are predicted as a function of L/D and  

 The proposed method stands as a powerful tool to use in design and analysis of HJBs 
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ABSTRACT 

A set of simple expressions is deduced for static and dynamic parameters associated to 

hydrodynamic journal bearings (JB). The behavior of this system is governed by two 

dimensionless numbers, the aspect ratio, L/D, and the eccentricity ratio, . In a previous work, 

we presented a regular perturbation method that extended the Ocvirk solution and 

successfully described isothermal JBs up to L/D and  of ~1/2. Presently, we extend that 

methodology, modified using a smaller perturbation parameter, to obtain analytical 

expressions of the dynamic coefficients, as well as static variables like friction factor, load 

carrying capacity, lubricant flow rate and phase angle. The deduced expressions successfully 

describe the static and dynamic behavior of JBs up to L/D and  of ~3/4. 
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1. INTRODUCTION 

Fluid film lubrication occurs when opposing bearing surfaces are completely separated by 

a lubricant film. Hydrodynamic lubrication is described by the system of differential 

equations corresponding to mass, energy and momentum balances applied to the thin fluid 

film between journal and bearing walls in relative motion. In the particular case of a 

Newtonian fluid and slow, laminar, incompressible and isothermal flow, the mass and 

momentum equations can be simplified and then integrated into the film thickness to produce 

the so called Reynolds Equation [1-3]. This partial differential equation describes the pressure 

distribution in the thin fluid film with apparent simplicity. 

An order of magnitude analysis of the equations that describe the flow in hydrodynamic 

journal bearings (JB) shows that the flow is largely affected by the value of two geometric 

relations, the square of the aspect ratio (length over diameter), (L/D)
2
, and the eccentricity 

ratio, , defined as eccentricity (distance between rotor and bearing loci) over clearance 

(difference between bearing and rotor radius). The Reynolds Equation has analytical solution 

in the limit of both, L/D0 and L/D∞. They are known, respectively, as the infinitely short 

(ISJB) and infinitely long (ILJB) journal bearing approximations, and as the Ocvirk and 

Sommerfeld solutions as well. In the case of JBs of finite length, an exact analytical solution 

of the Reynolds Equation has not yet been found [2]. In fact, in a previous publication, we 

presented an analytical approximate solution of the Reynolds equation for isothermal finite 

length JBs by means of the regular perturbation method, using (L/D)
2
 as the perturbation 

parameter [4]. The novelty of that method lays on the treatment of the Ocvirk number as an 

expansible parameter. The first-order solution obtained with the proposed method extends the 

description of the Ocvirk solution (which describes reasonably well the behavior of finite 

length JBs up to L/D~1/4 and relatively small eccentricities) up to L/D~1/2 and ~1/2 (and 

combinations of larger eccentricities with smaller aspect ratios, or vice versa). Presently, we 

extend that methodology, modified using a smaller perturbation parameter, to obtain 

analytical expressions of more static variables and, what is more important, the dynamic 

coefficients associated to hydrodynamic JBs. 

Hydrodynamic JBs are considered a vital component of all rotating machinery. They are 

mainly used to support radial loads under high speed operating conditions. One of the 

essential aspects of JBs is their dynamic characteristics [1-3]. The stiffness and damping 

behavior of this mechanism affects its critical speed and, consequently, the stability of the 

rotor. This is of great importance especially in applications where the bearing is used as a 
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shock absorber or to dissipate destabilizing effects [3]. There are many works in the literature 

that deal with the calculation of the dynamic characteristics of JBs of different configurations, 

even considering additional circumstances such as misalignment of the shaft or rotor 

flexibility [5-16, and references within]. Most of these authors have used numerical methods 

to solve the Reynolds equation and calculate the dynamic coefficients, and a few have 

considered empirical or approximate analytical methods with different degrees of difficulty. 

For example, Yuan and Di-Gong [14] analyze the effects of partial-grooving on the 

performance of spiral-grooved spherical and conical bearings using a perturbation method to 

determine the dynamic coefficients. Analytical but very complex expressions of the 

coefficients are obtained after considering first order perturbed expressions of the film 

thickness and the pressure using the eccentricity as the perturbation parameter. Rao and 

coworkers [6] extended the approach of Reason and Narang [17] and determined the dynamic 

coefficients in finite length JBs combining the static and dynamic pressure fields of the limit 

cases of ISJB and ILJB. Interestingly, this empirical method, in which the limit solutions are 

combined using the harmonic pressure average technique, successfully predicts the 

coefficients for a wide range of eccentricities and aspect ratios. On the other hand, 

Chasalevris and Sfyris [9,18] proposed a complex but more robust methodology to determine 

analytical expressions of the dynamic coefficients. They solve the Reynolds equation 

considering separation of variables in additive and multiplicative form extending the 

description of the Sommerfeld solution (ILJB). The procedure gives place to four particular 

solutions of the Reynolds equation, which add to that of the homogenous one. The Sturm–

Liouville problems generated have direct forms of solution except in one case, which is 

solved using a power series. The dynamic coefficients, as well as the static parameters, so 

calculated agree with exact numerical results in the case of long JBs (L/D=4) and become 

further apart as the aspect ratio decreases (mainly for L/D<1). 

The dynamic coefficients have also been determined experimentally in several works [19-

24] and compared and commented in some reviews [25,26]. Analyzing those works, it can be 

appreciated that the experimental results have been generally produced to evaluate the 

performance of a particular configuration and their applicability to generic rotors is quite 

limited. However, experimental validation of the bearing models is very important. Both, data 

and model predictions of stiffness, damping, and mass coefficients are sensitive to design 

parameters, such as bearing dimensions, manufacturing tolerances, method of exciting the 

rotor-bearing system, thermal effects and elastic deformation, and change in fluid parameters 
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and flow conditions [26]. In the case of experimental results, the quality of the data is also 

related to the filtering and conditioning techniques. For all these reasons, agreement between 

theory and experiment with respect to dynamic bearing coefficients is seldom better than 10-

20%, even when using numerical solution of the most realistic models [26]. In an early work, 

Glienicke [19] assembled one of the first reliable systems that allowed the determination of 

the dynamic coefficients of JBs. He considered four characteristic turbine bearings with 

L/D=0.5, and then applied the obtained results to predict weak conditions of instability. After 

that, various and different systems have been assembled and tested. One of the most popular 

methods for experimentally measuring the frequency response functions of rotor bearing 

systems is to perturb the system using a sinusoidal force input. For example, Zhao and 

coworkers [21] used this method to analyze the dynamic behavior of plain-cylinder JBs in one 

of the latest studies in this area. 

In this paper, we extend the use of the regular perturbation method previously proposed [4] 

to calculate analytical expressions of the dynamic coefficients for isothermal finite length JBs, 

as well as some static parameters, like phase angle and lubricant flow rate, which were not 

included in the original work. New more simplified expressions of the static pressure, Ocvirk 

number, and friction coefficient are also included. 

 

2. GOVERNING EQUATIONS 

Figure 1 shows the system under study. It consists of a journal of radius R rotating at an 

angular velocity  within a static bearing of radius RB and length L. A liquid lubricant fluid 

fills the gap between them. The action of a load W displaces the rotor a distance e 

(eccentricity) respect to the bearing center, generating a fluid film of variable height, H(). 

Under high speed operating conditions, the pressure field generated in the fluid layer gives 

place to a reaction force F that withstands the load with low friction. The combined effect of 

rotation and loading produces the so called "attitude angle", , that is, an angle between the 

line of centers and the line of action of the applied static load. The mathematical analysis of 

the flow can be performed in Cartesian coordinates (see Figure 1), neglecting the effects of 

curvature, since the clearance, cR=RB-R, is much smaller than R. The gap H() can then be 

calculated from trigonometric relationships, resulting in: 

2

2cos( ) 1 sin ( ) cos( )R R

e
H c R e R c e

R

 
          

 
   

(1) 
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which defines 

1 cos( ) 1 cos( )
R R

H e
h

c c
      

   
(2) 

where 
R

e

c
   is the eccentricity ratio.  

 

 

Figure 1. Geometry notation and coordinate systems (left). Representation in 

Cartesian coordinates (right). 

 

Under the listed conditions, the mass and momentum balances that describe the flow of an 

incompressible Newtonian liquid under negligible gravitational effects and isothermal laminar 

flow with Reynolds number ( Re
UR




) of order one or smaller, are: 

1
0

  
  
   

u v w

y z
   

(3) 

2 2

2

1 '
0

  
   

   

L p u

R y
   

(4) 

2 2

2

'
0

  
    

  

p c v

y L y
   

(5) 

2

2

'
0

p w

z y

 
  

 
   

(6) 
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where the dimensionless variables are: 

X

R
 


 , 

R

Y
y

c
  , 

Z
z

L


 
, XV

u
U

  , YV
v

V
  , ZV

w
W

  , ' EXT

REF

P P
p

P




   
(7) 

The parameters U, V and W are the characteristic values of the longitudinal (VX), transversal 

(VY) and axial (VZ) velocities, respectively. PEXT is the ambient pressure, external to the 

lubricant, and PREF is the reference pressure. Equations (3) to (6) also consider that 
RU c

V
R

  

and 
U R

W
L

 , which come from the assumption that all terms in the mass balance have 

similar order of magnitude. PREF is taken as the order of magnitude of the pressure in the ISJB 

approximation [3,4], 

2 2

REF

R

U R L
P

R c R

   
    

      

(8) 

According to Eq. (5), the pressure gradient in the transversal direction (y) is negligible, 

allowing for Eqs. (4) and (6) to be integrated in this direction. The calculated velocities u and 

w can then be replaced into the mass balance, Eq. (3), to give place (after integration in the y-

direction and some solving) to the Reynolds equation [1-4]: 

2

3 3

2

1 1 ' 1 '

2 12 12

dh dh L p p
h h

dt d R z z

        
       

               

(9) 

The boundary conditions used to obtain this equation are: 

1 0 1 0 1 0
1  ;  0  ;    ;  0  ;  0  ;  0

y y y y y y

dh
u u v v w w

dt     
         (10) 

The variable t that appears in Eq. (3) is a dimensionless time, 
c

T
t

T
 , where the value of the 

characteristic time, Tc, can be obtained from the boundary condition 1y

dh
v

dt
 , as: 

1

      c
y c

R Ry

TR dH R
V T

Uc c dT U


  

   
(11) 

Traditionally, the performance of hydrodynamic JBs is related to the "Sommerfeld 

number", S, or its equivalent for short bearings, the "Ocvirk number", O [2,4,23]. These 

numbers measure the relative importance of the pressure to the mean pressure, Pp, which is 
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calculated as the force acting on the shaft divided by its projected area, 
2

p

F
P

RL
 . In this 

paper we use: 

22 2

p R

L U R L
O S

R RP c R

    
      

    
   

(12) 

A small value of these numbers not only indicates a large load capacity,  F, for a 

given PREF, but also suggests a large eccentricity. If the Ocvirk number is introduced in 

the Reynolds equation, its expression becomes: 

2 2
3 3

2 2

1 1 1

2 12 12

dh dh L p p
O h h

dt d R z

       
       

          
   

(13) 

where the new dimensionless pressure is defined as 
EXT

p

P P
p

P


  . 

 

3. DYNAMIC COEFFICIENTS 

The behavior of rotors is strongly influenced by the characteristics of their supports. In 

particular, the forces generated on the journal by the lubricant film of its bearings are 

nonlinear functions of the position and velocity of the center [3,24,27]. As commented above, 

the direction of the external load acting on the shaft does not match the direction of the center-

line of journal and bearing loci. For that reason, a vibration or small change in the magnitude 

of the force will produce a small non-collinear displacement of the rotor with a corresponding 

squeeze film pressure that is generated in addition to the wedge film pressure. The extra 

pressure gives rise to spring and damping forces in the lubricant film influencing the stability 

of the rotor-bearing system [24]. Figure 2 presents the JB coordinate system and the notation 

associated to the displacement of the journal center in dimensionless form. This center 

vibrates with amplitudes (t)=e(t)/cR and s(t)=es(t)/2cR around the equilibrium 

position {s,s}, being the magnitude of the displacement much smaller than s. Accordingly, 

the lubricant film thickness changes in time, h(,t), oscillating around the static position 

(from now on identified as hs()). The film thickness can then be expressed as the sum of the 

static term and a dynamic one, hd (,t) as: 
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     

   

     

, ,

1 cos
       

, ( ) cos ( )sin

s d

s s

d s

h t h h t

h
with

h t t t

    

   


      
   

(14) 

 

 

Figure 2. Representation, using dimensionless variables, of the location of bearing and journal 

centers when vibrating in the vicinity of the static equilibrium point. 

 

Consequently, the dimensionless velocity and acceleration of the journal center are: 

2 2

2 2
( )  ;   ( )  ;   ( )  ;   ( )s s

dy d d y d
t t t t

dt dt dt dt

 
          ,

  
(15) 

and the components of the dimensionless fluid film force can then be expressed as: 

( , , , , , )           ( , , , , , )  y yf f y y y f f y y y        
  (16) 

through equations that, for small amplitude motions about the equilibrium position, can be 

linearized using Taylor series expansion around the static journal position {s,s}. That is: 

    with  ,i i i i i i
i is

s s ss s s

df df df df df df
f f y y y i y

d dy dy dyd d
           

  
 

(17) 

From these equations, the linear stiffness, damping and inertia coefficients are defined 

[28,29], respectively, as: 
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,
                            with   

,

i i i
ij ij ij

s

s s

i ydf df df
k c m

dj j ydj d dj
d d

dt dt dt

 
      

     
   
    

 

  (18) 

where 
j

t




 represents the dimensionless velocity components of the shaft center (  and y ), 

and 
j

t t

  
 

  
 its accelerations (  and y ). Thus, for example, kΘy is the dimensionless stiffness 

coefficient that occurs in the Θ-direction due to static displacement in the y-direction. This 

cross-coupling behavior is easily demonstrated in the static calculation, where the center line 

has a dimensionless phase angle (ψ) with respect to the applied load, which varies with 

eccentricity ratio. Negative signs are used in the coefficients so positive values correspond to 

a reaction force. The inertia coefficients mij will be not considered further since they become 

relevant for excitations at high frequencies, which are beyond the scope of this publication. 

Given the definitions in Eq. (18), the dimensional stiffness and damping coefficients are: 

22 2
          

p p

ij ij ij ij

R R

RLP R LP
K k C c

c Uc
    (19) 

where the letters X and Y are used to designate the subscripts of the dimensional coefficients 

Kij and Cij, instead of  and y, following the nomenclature defined in Eq. (7). Additionally, 

considering Eq. (12), the order of magnitude of the fluid force and the dynamic coefficients 

are deduced to be: 

     
2 2 32 2 2

4 4 4
 ;    ;   

R R R R

R L UL R L R L
F UL K C L

O c D c O c D O c D

          
              

            

(20) 

The dynamic characteristics of the "journal-fluid-bearing" tribological system are 

frequently linked to the behavior of a mechanical model consisting in springs and dashpots 

[13,29]. According to this model, the system would be described by eight coefficients: four 

for elasticity or stiffness (kij) corresponding to direct (k, kyy) and cross-coupling (ky, ky,) 

springs, and four for damping (cij) associated to direct (c, cyy) and cross-coupling (cy, cy) 

dashpots (see representation in Figure 3). The "direct elasticity and damping" coefficients, 

k, kyy, c and cyy, correspond to forces directly opposed to the displacement and velocity 

of the shaft within the bearing. Likewise, the so-called "cross-coupling stiffness and damping" 

coefficients, ky, ky, cy and cy, can be associated to displacements and velocities 
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perpendicular to load application. 

 

 

Figure 3. Schematic representation of the fluid-film dynamic coefficients 

according to a mechanical model of springs and dashpots. 

 

By definition, each coefficient is evaluated in the equilibrium position with just one 

displacement or velocity different from zero. Consequently, the dimensionless pressure 

should be computed as [27,30,31]: 

 
      s s y yp p p p p p p p

   
(21) 

where ps is the static pressure and pj are the independent contributions from the small changes 

in the film thickness. Accordingly, five differential equations can be deduced, one for each 

contribution to p, by replacing p and h in the Reynolds equation using Eqs. (14) and (21). This 

step also involves performing a first-order Taylor series expansion of the term 1/h
3
 that 

appears in the expression of the fluid force, retaining just the first-order terms. The 

differential equations so obtained are listed in Appendix A. This system of equations can be 

solved numerically for a given aspect ratio and eccentricity to obtain the five pressure 

profiles. The dynamic coefficients can then be calculated from these profiles, previous 

integration to evaluate the fluid film force, as it will be shown in next Section.  
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4. PROPOSED SOLUTION 

As commented in the Introduction, most researchers use numerical methods to calculate 

the dynamic coefficients, and just a few have considered empirical or approximate analytical 

methods [6,9,14]. Given the success of the regular perturbation method previously proposed 

to solve the Reynolds equation under static conditions [4], that methodology is extended to 

calculate analytical expressions of the dynamic coefficients for isothermal finite length JBs.  

The flow rate and attitude or phase angle (), which were not included in the previous work, 

are also calculated. 

The proposed methodology considers the expansion of both, pressure and Ocvirk number, 

using a perturbation parameter, , based in the geometric ratio length over diameter [4]. In 

fact, the perturbation parameter used originally is (L/D)
2
. However, here we propose the use 

of the half-length of the bearing (L/2) in the calculation of , resulting in =(L/2D)
2
. This 

selection of perturbation parameter is actually more representative of the system (given its 

symmetry about z=0) and it allows to increase the range of aspect ratios where the 

approximation may be used (keeping <1). 

All contributions to the pressure (static and dynamic ones) and the Ocvirk number are then 

expanded using =(L/2D)
2
, that is  

2

0 1

2

0 1

 ( )     with  ,  ,  ,  ,  

 ( )

i i ip p p i s y y

O O O

       

    
   

(22) 

The pressure profiles can then be obtained by introducing these expansions into the equations 

in Appendix A and solving keeping just the terms up to order . Their expressions are listed in 

the Appendix B. As expected, the five pi0 depend just on O0 while the pi1 are function of both, 

O0 and O1. 

The calculation of the zero- and first-order Ocvirk numbers involves computing the mean 

pressure 
2

p

F
P

RL
 , where the load capacity, F, is: 

2 2
2 2 2 sin( ) cos( )X Y

A A
F F F P dA P dA        

    
 
  (23) 

From which the attitude angle, , can also be computed as: 

arctan X

Y

F

F


  

 

   (24)
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The zero- and first-order terms of the dimensionless force components can then be obtained 

by expanding the square brackets and considering dA Rd dZ RLd dz RLda      ,  pP P p  

(neglecting PEXT) and 
0 1 p p p   . Then, for example, for the static condition is: 

 

 

2
2

2

0 1 0

2
2

2

0 1 0

sin( ) 2  sin( )  sin( )

cos( ) 2  cos( )  cos( )

X
s s s

A A A
p

Y
y s s s

A A A
p

F
f p da p da p da

RLP

F
f p da p da p da

RLP




        


        

  

  
   

(25) 

Accordingly, the components of the static carrying capacity and the dynamic coefficients can 

be calculated from: 

 

 

 

2

0 0 1

2

0 0 1

2

0 0 1

2   

2   , ,

2       

i i i i

ij ij ij ij

ij ij ij ij

f f f f

k k k k i j y

c c c c

  



    

  


   

(26) 

where 

sin( )    ;     cos( )           with   0;1      k sk yk sk
A A

f p da f p da k   (27) 

sin( )     ;    cos( )     
        with   0;1

cos( )     ;    sin( )     

 

  

   
 
   


 

 

k k yyk yk
A A

y k k yk yk
A A

k p da k p da
k

k p da k p da

  

(28) 

sin( )     ;    cos( )     
        with   0;1

cos( )     ;    sin( )     

 

 

   
 
   


 

 

k yyk ykkA A

y k yk ykkA A

c p da c p da
k

c p da c p da

  

(29) 

The procedure used to calculate the components of the force and, consequently, the 

dynamic coefficients gives only positive values (see Eq. (26)). While this would seem to be a 

disadvantage of the method, it does not incur in a big problem because all the coefficients 

calculated by finite differences also maintain their sign for all values of eccentricity and 

aspect ratio. 

The parameters and coefficients that correspond to the ISJB are obtained considering =0 

(k=0 in Eqs. (27) to (29)) and integrating the equations in the z-direction. In this way, the 

following analytical results are obtained, 
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   

 

 

 

 

 

 

 

 

 

 

 

2
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2
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2 2

2
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0 03/2 5/2
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1
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41 1

8 1

16 1

2 1
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1 1

2 11 1
    ;    

4 41 1

2 11 1
   ;       

2 21 1

y

yy

y y

yy

O O
f f

O

OO
k k

OO
k k

OO
c c





 



 
  
  



    

  
 
   

 
  

 

 
  

   
0

0 0 2
2

2
;    

1
y y

O
c c 


  

 

   

(30) 

Similarly, the first-order terms of these parameters and coefficients (k=1 in Eqs. (27) to (29)), 

are: 

   

 

   

 

    
   

 

 

  

 

3

0 1 0 1

1 5/2
2

4 2

0 1 0 1

1 3
2

2 4 2 2 2

0

1 2 4 2 2 2

2

0 1 0 1

1 3
2

4 2

0 1 0 0 1

1 4
2

1

11 10 4 101

40 1

6 5 6 51
 

5 1

11 192 192 7 41

10 16 16 2

6 5 6 51

5 1

6 51 24 6 52

5 1

111

40

y

yy

y

O O O O
f

O O O O
f

O
O

O O O O
k

O O O O O
k

k







    
 

 

    


 

         
 

        

   


  

      


 


 

 

   

 

2

0 1 0 1

5/2
2

4 2

0 1 0 1 0 1

1 7/2
2

10 4 10

1

22 20 49 10 4 101

40 1
y

O O O O

O O O O O O
k 

   

 

      
 

  

   

(31) 
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



   




      




    
 

 

   
 

 

 

 

 

5. RESULTS 

In this section, the results obtained using the proposed perturbation method are compared 

to those from the numerical solution of the Reynolds equation and the Ocvirk solution. The 

three sets of results are identified, respectively, as "P&O" (referencing the fact that both, 

pressure and Ocvirk number are expanded), "Num" and "ISJB". The comparison is carried 

out in the whole range of eccentricity ratios (0<<1) for L/D=0.25, 0.5, 0.75 and 1.0. Thus, 

the perturbation parameter,  = (L/2D)
2
, takes the values 0.015625, 0.0625, 0.140625 and 

0.25, respectively. The new expression of the perturbation parameter gives place to smaller 

corrections over the ISJB solution than those obtained in the previous work (with  = (L/D)
2
), 

for a given aspect ratio, improving the predictions of most static parameters and of the 

dynamic coefficients. The only coefficient that somehow resents the change introduced in the 

expression of  is the friction coefficient, but, as it will be seen further down, the predictions 

are still an improvement over the ISJB. 

 

5.1. Static Results 

In the previous work, it was already demonstrated that the pressure profiles, as well as the 

Ocvirk number and the dimensionless friction coefficient, are better described by the P&O 

method than by equivalent methods in which just the pressure is expanded (either by 

considering p1 just a function of O0, or by calculating the Ocvirk number with the expanded 

expression of the pressure). The results corresponding to the three mentioned parameters are 

again briefly discussed in this Section, given the fact that a new expression of the perturbation 

parameter is used. The phase angle and flow rate, which were not presented in the first work, 
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are now included.  

 

Ocvirk number 

Figure 4 shows the Ocvirk number as a function of eccentricity ratio for the four chosen 

values of L/D. The numerical results as well as the predictions of the ISJB solution (O0) and 

the P&O approximation (O=O0+O1), according to Eqs. (30) and (31), are shown. The 

distance between the curves of the ISJB approximation and the P&O corresponds to the first-

order correction introduced by the proposed method. As expected, all results coincide at small  

 

 

Figure 4. Ocvirk number as a function of eccentricity ratio for different aspect ratios. 

Exact (Num) and approximate (P&O) solutions compared to the Ocvirk solution 

for infinitely short JB (ISJB).  
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eccentricity ratios (for all L/D) and small aspect ratios (at all eccentricities). As the aspect 

ratio increases, the Ocvirk number at a given eccentricity increases (see the Num curves), 

deviating from the ISJB solution. The P&O method also gives Ocvirk numbers that increase 

with L/D, but the predicted increment is not as large as it is shown by the numerical results. 

So, for example, in the limit case of L/D=1 and =0.8, where the value of O is underestimated 

by the ISJB approximation by a factor of about 3.5, the P&O gives a value that is less than 

two times smaller than the exact value. At these same conditions, the use of =(L/D)
2
 

overestimates the value of O by more than 50% [4]. 

 

Pressure profiles  

Figures 5 and 6 present some representative dimensionless pressure profiles. In the first 

one, the pressure is displayed as a function of the azimuthal direction (Θ) calculated at z=0 for 

=0.5 and L/D=0.75. On the other hand, Figure 6 shows the dimensionless pressure as a 

function of aspect ratio (for =0.5) and eccentricity ratio (for L/D=0.5) at the position Θ=0.5 

and z=0. All results were obtained considering the Gümbel's (or ) boundary condition [2]. 

The pressure profiles change noticeably with position and conditions, but those presented in 

the figures are representative of the relative value and shape of the curves corresponding to 

the numerical results and the predictions. As it may be appreciated, the predictions of the 

P&O are close to the numerical solution and they represent an improvement with respect to 

the ISJB, as already proven in Vignolo et al. [4]. For example, for the chosen conditions of 

Figure 5, the azimuthal position of the maximum pressure practically matches that of the 

numerical results, with a value that is overestimated just by 2.6%. This method predicts a 

pressure field that practically matches the exact solution up to L/D=0.75 and up to =0.75 (as 

shown in Figure 6 for =0.5 and L/D=0.5, respectively). In general, the results of 

dimensionless pressure profiles demonstrate that the P&O method captures very well the 

physics of the flow, at least up to aspect ratios of order one. 
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Figure 5. Dimensionless pressure profiles predicted at z=0 for L/D =0.75 and =0.5. 

 

 

Figure 6. Dimensionless pressure profiles at z=0 and =0.5 as a function of 

aspect ratio (left, =0.5) and eccentricity (right, L/D=0.5). 
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Friction coefficient 

The shear stress can be associated to the loss of power by friction in the JB. So, its 

integration over the journal area allows calculating the friction force, Ff, [4] 

2 1/2

0 1/2

   


     f fh
F RL d dz f F         (32) 

where the shear stress at the moving wall, or its dimensionless equivalent, Tw, can be 

calculated from Eq. (4) considering a non-slip boundary condition, as: 

2
1 1

2

R sh
w

h

cu L p h
T

y U O R h

 
              

       (33) 

As stated in Eq. (32), the friction force defines a friction coefficient, ff, when divided by the 

load carrying capacity. The dimensionless friction coefficient is then obtained combining the 

order of magnitude of Ff and F (see Eq. (20)), as 

2

f

R L
f

c R


 
 

. 

Furthermore, the π-film hypothesis allows to assume a linear velocity profile in the divergent 

zone of the fluid film (1<<2) [4], which combined with the above equations, gives the 

following equation to calculate the dimensionless friction coefficient, 

2 1 1/2 2 1/2

0 1/2 0 1/2

1 1
4

2
 


      

 
   

s
f

R L p
f h d dz O d dz

c R h
     (34) 

This equation clearly shows that the zero-order friction coefficient (which is also the ISJB 

solution) is given by the second term of the equation (which corresponds to the Couette flow 

between the moving walls) in its zero-order expression. Two integral terms then introduce the 

first-order correction to that solution; the first term of Eq. (34) evaluated using the zero-order 

expression of the pressure and the second one weighted by O1. The analytical expression of 

the dimensionless friction coefficient according to the P&O method is: 

   

 
 

3/2 3/2
2 22

2 2 2 2 2 2 2 2

2 4 4 2 2 2 2

4 2 4 2 2 2 2

8 1 1
4 2

16 16

4
                                       

5

11 192 192 7 4

16 16 2

f

R L
f

c R

      
      

              

      
 

   

   

       


   (35) 

where the expression for the ISJB is that in the first term. Figure 7 displays the dimensionless 
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friction coefficient as a function of eccentricity for the four aspect ratios. The values predicted 

by the P&O show a considerable improvement over the ISJB solution, even for aspect ratios 

and eccentricities near 1. In fact, the accuracy of the P&O in the calculation of the friction 

coefficient extends up to L/D~1 and ~0.9. 

 

 

Figure 7. Dimensionless friction coefficient as a function of eccentricity 

for different aspect ratios.´ 

 

Lubricant Flow rate 

The lubricant is constantly introduced into the JB at a rate that matches the fluid flow rate 

at which it exits through the edges (at z=1/2). Therefore, the flow rate of lubricant to be 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dynamic Coefficients… Merelli et al.  21 

 

supplied to the bearing (Qs) can be calculated by integrating the axial velocity of the fluid at 

the outlet sections. For example, at z=1/2, would be:  

22 2

/2 1/2

0 0 0 0

R

H h

s Z Z L z

Uc R
Q V R dY d w dy d

L



 


            (36) 

where it has been taken into account the order of magnitude of Y and VZ listed in Eq. (7) and 

the fact that 
U R

W
L

 . The axial velocity profile, which can be obtained by integrating Eq. 

(6) after changing the expression of PREF, is: 

 
2

21

2

 
  

 

sL p
w y h y

O R z
        (37) 

Replacing Eq. (37) in Eq. (36), and considering the Gümbell condition in the diverging 

section of the JB, is: 

1

3

0 1/2
12

R s
s

z

Uc L p
Q h d

O z


 
  

         (38) 

The dimensionless flow rate can then be defined as: 

1

3

0 1/2

1

2 2 24

s s s
s

R R z

Q Q p
q h d

Rc W c UL O z



    

         (39) 

To obtain the analytical expression of the flow rate predicted by the perturbation method, 

ps and O in Eq. (39) must be replaced by their expanded expressions. Then, since the Ocvirk 

number appears in the denominator of this equation, the expression of order  of the flow rate 

is calculated by multiplying both numerator and denominator by O0-O1 (which leaves just 

terms of order zero and two in the denominator) and then neglecting all terms of order two. 

The resulting expression of the dimensionless flow rate is: 

1 1 1

3 3 30 1 01

2

0 0 00 0 01/2 1/2 1/2

1 1 1

24

s s s
s

z z z

p p pO
q h d h d h d

O z O z O z
  

   
     

    
      (40) 

which, when solved using the expressions of ps0 and ps1 in the Appendix B, gives: 
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

       

          

 







  (41) 

Elaborating further, Eq. (41) can actually be simplified to: 

1
4 3

sq
  

  
  

          (42) 

that includes the solution for the ISJB (when =0). 

Figure 8 displays the predicted results as well as the numerically calculated flow rates for 

the four L/D. The dimensionless lateral fluid flow increases with the eccentricity ratio and 

slightly decreases with aspect ratio. This is due to the effect that these parameters have over 

the difference between the centerline pressure and the external one. All results agree for very 

short JBs, but both, the ISJB and the P&O predictions, overestimate the lateral flow as the 

aspect ratio increases. Actually, the improvement that the P&O represents in the estimation of 

the lubricant flow rate is not really significant, and its predictions fall short when compared 

with the Numeric results. In the case of flow rate, then, the first-order correction introduced 

by the method it is not sufficient, or the chosen perturbation parameter is too small. 

 

Phase angle 

The phase or attitude angle, , measures the misalignment between the line of journal and 

bearing loci and the direction of the applied load. It is calculated as the ratio of the 

longitudinal to the transversal components of the fluid force, as shown in Eq. (24). 
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Figure 8. Dimensionless axial flow rate as a function of eccentricity for different aspect ratios. 

 

The Ocvirk solution of the phase angle can then be obtained from Eq. (30). Its expression 

is:  

2

0

1
arctan

4

  
  

 
 

         (43) 

The prediction of P&O arises from combining the expressions of the force components in 

Eqs. (30) and (31). Figure 9 displays the calculated numerical and analytical results of the 

dimensionless phase angle, =/2. As observed, the ISJB solution underestimates the phase 

angle by an amount that increases with  and L/D. The P&O also underestimates  at most 

conditions, but its predictions follow more closely the Numeric results, being practically 
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identical at large eccentricity ratios. For instance, at L/D=1 and =0.8, the ISJB solution 

underestimates the value of  by 26% while the P&O does it just by 7%. 

 

 

Figure 9. Dimensionless phase angle as a function of eccentricity for different aspect ratios. 

 

5.2. Dynamic Results 

In this Section, the dynamic coefficients predicted by the proposed method are compared 

to those from the Numeric and ISJB solutions. As before, the comparison is carried out for 

0<<1 at the four chosen aspect ratios. The parameters are displayed referenced to the 

dimensionless static system of coordinates {x,y} shown in Figure 2 instead of {,y}. The use 

of a static reference system allows for a deeper and more comprehensible analysis of the 
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dynamic behavior of hydrodynamic bearings, and it facilitates the analyses of possible zones 

of instability. In fact, most studies in the literature represent the coefficients in this way [6-

9,13,28,30,31]. The transformation from the {,y} coordinates to {x,y} is done using the 

transformation matrix: 

cos( ) sin( ) cos( ) sin( )
  

sin( ) cos( ) sin( ) cos( )

xx xy y

y yyyx yy

G G G G

G GG G

 



       
             

   

   
 

    (44) 

where G stands for k or c. The dynamic coefficients will be displayed in their dimensionless 

form (according to the order of magnitudes shown in Eq. (20)). By transforming the dynamic 

coefficients of the moving reference system to the static one, the cross-coupling stiffness 

coefficients, kxy and kyx, may have opposite signs. In that case the coupling would give place 

to destabilizing forces that add energy to the orbit of the shaft, resulting in large amplitudes of 

displacement oscillation that cannot be cancelled by direct bearing dissipation [25].  

 

Stiffness coefficients 

Figures 10 and 11 display the dimensionless cross coupling and direct stiffness coefficients 

as a function of eccentricity for the four L/D. Actually, the cross-coupling stiffness coefficient 

kyx is negative at small eccentricity ratios, and Figure 10 displays its absolute value. The 

change of sign occurs at =0.65 for L/D→0 and at increasing values of  as the aspect ratio 

augments (see the Numeric results). The change in sign of kyx refers to the area of possible 

instability in the hydrodynamic bearings, which is associated to high Ocvirk numbers (small 

eccentricities) [32]. 

As can be seen in Figures 10 and 11, the predictions of the P&O method match very well 

the values of kyx and kyy calculated numerically for a large range of eccentricity values and 

aspect ratios. Moreover, the eccentricity at which the change of sign of kyx occurs is 

practically coincident, at least up to L/D=3/4, greatly improving the prediction of the ISJB 

solution. With respect to the direct stiffness coefficient kxx, the correction introduced by the 

first-order term improves the ISJB solution at all L/D and , except at small eccentricities 

(<0.3) for high aspect ratios (L/D>3/4). On the other hand, the cross-coupling stiffness 

coefficient kxy is satisfactorily calculated by the proposed method except at eccentricities 

larger than ~0.7 for all aspect ratios, where the calculated values underestimate the coefficient 

even more than the ISJB. When analyzing kxx, it has to be considered that this coefficient is 
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the smallest of the four at small eccentricities (when the dimensional coefficients and the 

reaction force, which is in the denominator of the dimensionless expressions, have their 

smaller values). The logarithmic plot emphasizes, then, the differences that appear among the 

predictions as L/D increases, even if they are not actually too large. 

 

 

Figure 10. Dimensionless stiffness coefficients kxx and kyx as a function of 

eccentricity for different aspect ratios. 

 

Summarizing, the regular perturbation method successfully extends the Ocvirk solution of 

the stiffness coefficients, giving excellent results in the whole range of eccentricities for 

aspect ratios smaller than about 3/4. Moreover, at L/D>3/4, the predicted results also represent 
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an improvement over the estimations of the ISJB approximation at most eccentricities. The 

failure appears at large eccentricities in the case of kyy and kyx ( larger than ~0.6 and ~0.7, 

respectively) and at small ones in case of kxx ( smaller than ~0.3). 

 

 

Figure 11. Dimensionless stiffness coefficients kyy and kxy as a function of 

eccentricity for different aspect ratios. 

 

Damping coefficients 

During operation, hydrodynamic JBs present some advantages with respect to rolling 

bearings, like the ability to dissipate energy. That is why it is important to have mathematical 

tools which allow for the reliable prediction of the damping coefficients. In that sense, the 
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cross-coupling damping coefficients characterize the stabilizing response of the system, while 

the direct ones are responsible of the dissipative capacity of the JB in case of impact and/or 

changes in the forces acting on the journal [3,24]. 

Figure 12 and 13 present the dimensionless damping coefficients as a function of 

eccentricity for the four L/D considered in this work. As expected, the predictions of the P&O 

are very similar to those of the ISJB solution at L/D=1/4 for all eccentricities. These 

predictions agree with the numerical results at least up to  of about 0.6. At larger 

eccentricities, they somehow underestimate at least three of the coefficients. 

 

 

Figure 12. Dimensionless damping coefficients cxx and cyx as a function of 

eccentricity for different aspect ratios. 
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Figure 13. Dimensionless damping coefficients cyy and cxy as a function of 

eccentricity for different aspect ratios. 

 

As L/D increases, the numerical solution of the damping coefficients, except cxx, separate 

from the ISJB solution even at low eccentricities. It is interesting to observe that the first-

order correction introduced by the P&O method captures the nature of the dynamic 

phenomena taking place, producing predictions that closely follow the exact numerical 

results, even for L/D=1 at eccentricities smaller than ~0.6. In the case of cxx, there is 

practically no noticeable differences between the solutions as eccentricity and aspect ratio 

vary. It is important to observe that the difference between the cross-coupling damping 

coefficients, which it is not described by the ISJB solution but appears in published 
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experimental data [19-22] and in numerical results, can actually be noticed in the proposed 

solution. 

 

Global error 

The improvement introduced by the P&O over the ISJB approximation in predicting the 

dynamic coefficients is clearly shown in Figure 14. This figure summarizes the global error of 

both methods by displaying the result of calculating: 

0.9

predicted Numeric

0

  log( ( ) ) log( ( ) ) coef coef


     (45) 

where coef() stands for any of the eight dynamic coefficients at a given L/D and . That is, 

the global error is calculated as the absolute value of the differences between the logarithmic 

values of a dynamic coefficient, summed over the thirty four eccentricity ratios considered in 

Figures 10 to 13. Logarithms are considered so that all differences are of order of magnitude 

1. 

 

 

Figure 14. Global error of the ISJB approximation and the P&O-perturbation in 

the calculation of the dynamic coefficients, calculated using Eq. (46). 
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As expected, in all cases the global error of the ISJB increases as the aspect ratio augments 

from 0.25 to 1. Apart from some cases at the smallest aspect ratio, the global error of the P&O 

is always smaller, for all coefficients and all aspect ratios. Moreover, except in the case of kyx 

and cyx, the rate of increase of the global error with L/D is much smaller in the case of P&O. 

 

Comparison with experimental results 

As commented in the Introduction Section, both, data and model predictions of the 

dynamic coefficients are sensitive to many design, processing, flow and fluid parameters and 

conditions, which difficult the comparison [25,26]. In this work we have chosen the data 

presented by Zhao et al. [21] for the comparison. To our best knowledge, this is the latest 

work that tests a plain-cylinder JB [26]. Besides, they use modern technology to reduce 

additional vibrations and the noise in the experimental data. These authors use a test rig with a 

rigid rotor and non-synchronous sinusoidal force input capability, that allow for static loads 

up to 40 kN, rotational frequencies up to 3600 rev/min, and sinusoidal forces up to 1.5kN. 

The bearing has a diameter of 152 mm with an aspect ratio (L/D) of 0.581 and a radial 

clearance of 0.114 mm. The lubricant considered is turbine oil 22 with a viscosity of 

48.6510
-3

 Pa.s at 20°C and 28.2510
-3

 Pa.s at 30°C. Excitation forces were measured using 

pressure sensors, displacements using eddy-current probes, and velocities and accelerations 

were calculated using numerical differentiation with low-pass filtering, which is then used to 

reduce the additional vibrations generated by the other machine elements of the test rig. 

Figure 15 displays the comparison between the dimensionless dynamic coefficients 

predicted by the P&O method and the experimental (Exp) and theoretical (THA) values 

informed by Zhao and coworkers, after been converted to the expressions of the variables 

presently used. Each Exp data shown in Figure 15 is centered in the quadratic polynomial 

fitting reported by the authors while the theoretical results correspond to the values calculated 

with  a thermo-hydrodynamic analysis (coupled Reynolds and energy equations) using a finite 

element method. The exact solution of the Reynolds equation under isothermal condition 

(Num) is not included in Figure 16 since, at L/D=0.58, it would practically match the results 

of P&O (as it can be deduced from Figures 10 to 13 for L/D=0.5 and <0.6, which 

corresponds to O>1). The dispersion displayed by the experimental data are denoted in Figure 

15 using grey ovals, which, given the logarithmic axis used, emphasize the dispersion when 

the load and/or coefficients are small.   
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Figure 15. Dynamic coefficients (absolute values) as a function of Ocvirk number. 

Comparison of experimental and theoretical data from Zhao et al. [21] for 

L/D=0.58 with predictions of the P&O model. The grey ovals indicate 

the dispersion in the experimental data. 

 

The global observation of Figure 15 yields some important conclusions. First of all, the 

agreement between the predictions of the P&O model and the data is remarkably good, even 

more after considering that P&O is an isothermal model. Second, the qualitative behavior of 

the predicted coefficients as a function of O is very similar to that of THA, showing in all 

cases the same trends. And third, not only most of the predicted values of the coefficients are 

not far from the theoretical ones of the THA but they are also close to the experimental data in 

many cases. 

As it was already shown, low values of η correspond to high values of O, and vice-versa 

(see Figure 4). Therefore, the results in Figures 10 and 11 indicate that the failure of P&O in 

predicting kyy and kxy should appear mainly at low values of O. Likewise, in the case of kxx, the 

failure should be at high values of O, while the cross-coupling stiffness coefficient kyx should 

be satisfactorily calculated by the model in the whole range of Ocvirk number covered by the 

experimental study. The results in Figure 15, agree with these observations, mainly when the 

coefficients are compared with the THA results. When compared with the experimental data, 
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a qualitative dissimilarity appears in the cross coupling coefficient kxy. In fact, the 

experimental data are positive at small values of O and display a change in sign at an Ocvirk 

number about 7-8. This is not detected by neither model, which predict negative values of kxy 

in the whole range of operational conditions considered. Even so, it should be observed that 

the kxy coefficient is the one that displays the smallest values, which justifies the apparently 

larger differences in the logarithmic scale. 

In regard to the damping coefficients, and according the analysis presented in previous 

sections, the P&O model should give reasonable good predictions of all these coefficients, 

mainly at high values of O. The results in Figure 15 show that this is true. A very good 

agreement can be appreciated among the results of the cross damping coefficients in this 

situation. What is more, the predictions of cxy and cyx from the P&O model are nearly 

coincident with those of the THA in all the operational range. cyy is overestimated at high 

values of O, but at low values the P&O model displays an excellent agreements with the 

measured coefficients, notably improving the result from the THA. cxx is somehow 

overestimated in the whole range of loads by both models. 

 

Conclusions 

The comparison of the predictions from the proposed methodology with the exact results 

obtained by numerically solving the Reynolds equation confirm that the set of deduced 

expressions of load carrying capacity (F), friction force (Ff), attitude angle (), lubricant flow 

rate (Qs) and stiffness (Kij) and damping (Cij) coefficients, as well as those of the pressure 

profiles and the Ocvirk number, O, constitute a powerful tool that can be used in the design 

and analysis of hydrodynamic JBs with aspect ratio up to 1. In fact, the proposed 

methodology successfully extends the Ocvirk solution to describe finite length JBs with 

aspect and eccentricity ratios up to 3/4 (or combinations of larger eccentricities with smaller 

aspect ratios or vice-versa). 

The proposed method complements, by means of simple direct analytical expressions, the 

one proposed by Chasalevris and Sfyris [9,15], which correctly describes the behavior of 

finite length JBs of large aspect ratio (L/D >1). Together, both sets of analytical expressions 

cover the whole range of aspect ratios. 

Although most existing experimental data of dynamic coefficients correspond to flow 

conditions or JB´s shapes [19-26] different to the ones used in this work, the comparison with 
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the data obtained by Zhao et al. for L/D = 0.58 [21] reveals that the proposed methodology is 

not only very simple but, even assuming isothermal conditions, gives coefficients that are of 

the right order the magnitude and that correctly capture the nature of the phenomena. 
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Nomenclature 

ijC  Damping coefficients 

ijc  Dimensionless damping coefficients, 2

R
ij ij

p

Uc
c C

R LP



 

Rc   Radial clearance 

D  Bearing diameter 

e  Eccentricity 

,X YF F  Fluid film force (F) components 

, yf f  Dimensionless fluid film force components, 
i

i

p

F
f

RLP



 

fF  Friction force  

ff  Friction coefficient, 
f

f

F
f

F
  

H  Fluid film gap 

h  Dimensionless fluid film gap, 
R

H
h

c
  

sh  Dimensionless static fluid film gap 

dh  Dimensionless dynamic fluid film gap 

ijK  Stiffness coefficients  

ijk  Dimensionless stiffness coefficients, 
R

ij ij

p

c
k K

RLP


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L  Bearing length 

O  Ocvirk number, 

2 2

p R

U R L
O

RP c R

 
   

  
 

P  Lubricant pressure 

p  Dimensionless lubricant pressure, 
EXT

p

P P
p

P


  

'p  Dimensionless lubricant pressure, ' EXT

REF

P P
p

P


  

EXTP  External pressure 

pP  Mean pressure, 
2

p

F
P

RL
  

REFP  Reference pressure, 

2 2

REF

R

U R L
P

R c R

   
    

  
 

sQ  Lubricant flow rate 

sq  Dimensionless lubricant flow rate, 
2

s
s

R

Q
q

Rc W



 

R  Journal radius 

BR  Bearing radius 

S  Sommerfeld number, 

2

p R

U R
S

RP c


 

 
 

T  Time 

t  Dimensionless time, 
c

T
t

T
  

cT  Characteristic time, c

R
T

U
  

wT  Dimensionless shear stress at the moving wall, 
w

h

u
T

y


 


 

, ,U V W  Characteristic values of velocity components 

, ,u v w  Dimensionless velocity components in moving reference system 

, ,X Y ZV V V  Velocity components in moving reference system 

W  Acting load 
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, ,X Y Z  Moving reference system of coordinates 

, ,y z  Dimensionless moving reference system of coordinates 

X, Y, Z  Static reference system of coordinates 

, ,x y z  Dimensionless static reference system of coordinates 

  Perturbation parameter, 

2

2

L

D

 
   

 
 

  Attitude angle 

  Eccentricity ratio, 
R

e

c
   

  Lubricant viscosity 

  Journal angular velocity 

  Dimensionless attitude angle, 
2


 


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Appendix A. Set of differential equations obtained by combining the expressions of the 

film thickness, Eq. (14), and pressure, Eq. (21), which include static and dynamic 

terms, with the Reynolds equation. 
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Appendix B. Zero- and first-order terms of the five contributions to the pressure (static 

and dynamic ones) calculated using the proposed perturbation methodology (in 

these expressions, 
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