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Fossil pollen records reveal a late rise of
open-habitat ecosystems in Patagonia
Luis Palazzesi1 & Viviana Barreda1

The timing of major turnovers in terrestrial ecosystems of the Cenozoic Era has been largely

interpreted from the analysis of the assumed feeding preference of extinct mammals. For

example, the expansion of open-habitat ecosystems (grasslands or savannas) is inferred to

have occurred earlier in Patagonia than elsewhere because of the early advent of high-

crowned teeth (hypsodont) mammals B26 Ma ago. However, the plant fossil record from

Patagonia implies another evolutionary scenario. Here we show that the dominance of key

open-habitat species—amaranths, Ephedra, asters and grasses—occurred during the last

10 Ma, about 15 Ma later than previously inferred using feeding/habitat ecology of extinct

mammals. This late rise of open-landscapes in southern South America brings into question

whether the expansion of open-habitat vegetation could have been the prime factor of high-

crowned mammal diversification.
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S
outhern South America has yielded one of the most diverse
mammalian faunas of the Neogene1, yet the vegetational
context of their evolution has remained conjectural because

of the lack of direct data. There is a widespread belief that the
precocious advent—about 26 Ma ago—of fossil hypsodont
mammal taxa presumed to have been feeding on grass is
reflecting the earlier expansion of grasslands in southern South
America than elsewhere2–6. In this study, the discovery of fossil
pollen assemblages preserved in shallow marine
palaeoenvironments in eastern Patagonia allowed us to explore
more directly the vegetation context during the earliest
dominance of hypsodont mammals. We sampled nine well-
constrained stratigraphic sections exposed at Chubut and Santa
Cruz provinces that span the past 26 Ma (Supplementary Fig. S1).
Each sample was scored for the frequency of the six ecologically
most important taxa (that is, Podocarpaceae (podocarps),
Nothofagaceae (southern beeches), Amaranthaceae (amaranths),
Ephedraceae (Ephedra), asters (Asteraceae), and grasses
(Poaceae)) that occur today in Patagonia, and appear to have
done so throughout much of the Cenozoic7. We arranged pollen
data in a 80-sample by 6-taxon matrix in which each cell
contained the proportions of selected taxa at a sample. We
applied a number of multivariate techniques (R- and Q-mode
cluster analysis, non-metric multidimensional analysis or non-
metric multidimensional scaling (NMDS), and a simultaneous
correlation analysis of the selected species) with the aim of
obtaining a better picture of what vegetation looked like during
the last 26 Ma. Our analysis reveals that humid-demanding forest
species (podocarps and southern beeches) dominated the
Patagonian landscapes until the mid-late Miocene, and an
open-landscape dominated by arid-adapted shrubs (amaranths
and Ephedra) became dominant by the late Miocene (10 Ma). We
also demonstrate that grasses were uncommon during virtually all
Cenozoic times in southern South America, and that their
dominance occurred much later than previously inferred using
the classic faunal indicators (for example, hypsodonty index).

Results
Two-mode cluster analysis. The Q-mode cluster analysis
recognized two major groups of samples with similar pollen
composition (Fig. 1). The first and most important break among
the samples separates the late Oligocene–mid Miocene samples
(cluster I) from all of the younger ones (cluster II). This break is
also supported by a cluster analysis with significance testing
(Supplementary Fig. S2). The R-mode cluster leads to the
recognition of two major groups of species that tend to co-occur
(Fig. 1a,b); the physiognomy (namely: trees, shrubs and herbs) of
the selected families, strongly affected by climatic conditions (for
example, precipitation levels), appear to drive the clustering.
Cluster A, linked at relatively high levels of similarity, is com-
posed of podocarps and southern beeches (forest trees). These
wet-dependent groups grow today in Patagonia along a narrow
strip in the Andes where rainfall is sufficient (B2,000 MAP) to
support these and other rainforest taxa8. Cluster B, in contrast, is
composed of asters, amaranths, Ephedra and grasses, most of
them distributed in treeless habitats (steppe group). For example,
Ephedra and amaranths, linked at high similarity in cluster II,
occupied semi-arid to arid regions, tolerating harsh condition of
o200 mm of rainfall annually9. With the Q- and R-mode cluster
data arrayed as axes on the two-mode clustering, a pronounced
floristic transition from the interval 26–16 Ma (late Oligocene–
mid Miocene) to 10 Ma–18 Ka (late Miocene–Quaternary) is
revealed (Fig. 1). The flora of the cluster A (forest taxa) is
concentrated in cluster I (late Oligocene–mid Miocene), while the
flora of cluster B (steppe-taxa) is concentrated in cluster II (late

Miocene–Quaternary). It thus seems clear that the abundance of
canopy taxa, reflecting humid conditions and closed habitats,
diminishes upwards and becomes replaced by steppe-taxa
(especially Ephedra and amaranths), reflecting more arid
conditions and open habitats. This replacement occurs close to
the mid-late Miocene boundary. Grasses were apparently not
abundant before the late Quaternary in the southernmost
latitudes of South America.

Non-metric multidimensional scaling. The distances among
samples in ordination space (Fig. 2) further support dissim-
ilarities between clusters I and II. Samples representing the
interval 26–16 Ma (late Oligocene–mid Miocene) plot far to the
right on the NMDS axis 1 because of their dominance of the wet-
dependent southern beech and podocarp trees. In contrast,
samples representing the interval 10 Ma–18 Ka (late Miocene–
Quaternary) plot far to the left on the NMDS axis 1 due to their
dominance of steppe-adapted taxa. Interestingly, asters, Ephedra,
amaranths and grasses all have similar scores on axis 1, implying
probable similar habitat preferences (that is, open habitats).

Bivariate correlation analysis. The correlation analysis
(Supplementary Fig. S3) reveals, as expected, a statistically strong
positive correlation among virtually all members of the arid
group. The weak correlation among species of the humid group
(podocarps and southern beeches) may be related to different
climatic adaptations. For example, podocarps only survive under
very humid conditions, while southern beeches may tolerate
seasonally dry conditions8. The strongest inverse correlation
scores are found between Ephedra and podocarps, and between
amaranths and podocarps, probably reflecting ecological
extremes.

The variations in the relative frequencies between forest and
steppe species through time are plotted to better visualize major
vegetation turnovers (Fig. 3). Overall, the relative distribution of
forest and steppe-taxa is relatively constant throughout much of
the earlier time interval (Oligocene to early Miocene), and this
distribution then becomes inverted in the time interval from the
late Miocene until the present day.

Discussion
The unique and detailed record of fossil pollen from Patagonia
reveals a significant interruption in the structure of the vegetation
from one dominated by rainforest species (late Oligocene–mid
Miocene) to one dominated by open-habitat species (late
Miocene–Quaternary). Our results further demonstrate that
grasslands were absent in the Patagonia before the Quaternary,
and that a virtually grassless ground cover of Ephedra, amaranths
and asters were dominant following the local disappearance of
forests by the late Miocene. The explosive radiation of hypsodont
mammals (usually presumed to have been fed on grass) in a
virtually grassless and canopy-dominated Patagonian environ-
ment is intriguing. Patches of open vegetation did occur within
the forested matrix since (at least) the Oligocene; for example,
wetland communities dominated by sedges (that is, Cyperaceae)
and bulrushes (that is, Typhaceae) may have formed large and
open areas within the tree-dominated landscape. This is
supported by high pollen percentages of these families, reaching
local dominance in some inland regions from Patagonia7,10.
Furthermore, the consistent presence of amaranths and Ephedra
before the local extinction of forest, in particular during the
interval 23–20 Ma (Fig. 1) supports the presence of a low-stature
vegetation in salt-stress and alkali-stress areas (for example,
coastal salt-marshes and probably some inland pockets).
Nonetheless, our data indicate that Patagonia was dominated
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by forest taxa by the late Oligocene–mid Miocene interval on the
basis of the fossil pollen record (Fig. 4).

The scarcity of fossil grass pollen in the Patagonian pre-
Pliocene record compared, for example, to aster pollen, also
dominant in present-day open habitats, implies either: (1) grass
pollen is rarely preserved; (2) grass pollen is frequently
overlooked/misidentified; or (3) grass pollen was scarce in these
ecosystems. Hypotheses 1 and 2 can be rejected because grass
fossil pollen is recorded since, at least, the Palaeocene, and
because it can be unambiguously assigned at the family level11.
Hypothesis 3 seems the most convincing; before grasses became
ecologically dominant, shrubs and herbs of asters, amaranths and
Ephedra might have had the pioneering role in repopulating the
vast and deforested late Miocene Patagonian landscapes.
Although, these shrubs, particularly Ephedra, became confined
to the driest regions of the present-day Patagonian desert, other
minor components that also formed part of the sclerophyllous
communities of the late Miocene, did not survive. For example,
some members of the Vivianiaceae (for example, Viviania
marifolia and Viviania albiflora) and the aster family (for
example, Schlechtendalia luzulaefolia, and Holocheilus–Proustia–
Jungia group) became locally extinct probably in response to the
subsequent climatic deterioration (that is, glacial periods of the
Quaternary). For this reason, during the last 10 million years the
southern range limit of these taxa contracted northward
(northeastern Argentina, Uruguay and Brazil) and/or westward
(western Argentina and Chile), probably retaining their ecological

preferences12–15(Niche Conservatism?). Overall, these data
suggest a late Miocene open-landscape, probably warmer than
today at the same latitude. As mentioned earlier, sedges and
bulrushes were also frequent during these times, indicating the
presence of humid spots (for example, ponds or permanently
saturated soils), where some locally extinct mammals lived,
including the Hydrochoeridae (for example, capybaras)16.

Apart from fossil pollen records, several recent lines of data
point towards a woody rather than a grassy landscape during the
late Oligocene–Miocene interval, such as the local distribution of
fossil phytoliths preserved in sediments. Phytoliths are particles of
hydrated silica formed in living plants that are liberated after they
die and decay17. Unlike pollen remains, phytoliths are
incorporated into the soil through the decay of leaf litter,
providing very specific local information. The fossil record of
phytoliths from the Patagonian fossiliferous site ‘Gran Barranca’
(central Patagonia), where the most complete sequence of middle
Cenozoic palaeo-faunas in South America is exposed18, has been
the subject of some debate during the last years. Former studies
suggested grass-dominated ecosystems during mid Eocene,
including the presence of C4 grass lineages19. Later analysis,
however, seems to favour the assumption that palms and woody
dicotyledons dominated phytolith assemblages at the ‘Gran
Barranca’ site during the Eocene-early Miocene20. Moreover,
the lack of C4 grasses in Patagonia was previously pointed out by
MacFadden et al.21 who analysed the tooth enamel of extinct
herbivores and concluded that high-crowned hypsodonts from
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Figure 1 | Two-mode cluster dendrogram plot of samples and taxa derived from Bray–Curtis dissimilarity indices. The Q-mode cluster of samples—

constrained by stratigraphic order—recognizes two main groups of samples from 1 to 59 and from 60 to 80 (26–16 and 10–0 Ma, respectively). Dashed-

lines represent a gap of time between the adjacent sampling units. Age-constraints are given in Supplementary Table S1. The R-mode cluster recognizes two

well-defined groups of physiognomic types: the wet-demanding group (a) containing rainforest trees (podocarps and southern beeches) and the arid-

adapted group (b) containing steppe elements (grasses, Ephedra, amaranths and asters). The analysis of the two-mode cluster shows an important

interruption in the structure of the vegetation from one dominated by rainforest species (I) to one dominated by open-habitat species (II). Even though

grasses were uncommon throughout the interval selected, the remaining steppe elements were abundant during the interval 23–20 Ma (samples 4 to 37)

and dominant during the interval 10–0 Ma (samples 60 to 80).
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southern South America occurred under a regime of C3

photosynthesis. All these data, along with the fact that
frugivores, insectivores and omnivores, including platyrrhine
primates were common during the Miocene of Patagonia,
indicate that forests persisted across Patagonian landscapes.

Regional and global forcing may have had a role in triggering
these floristic shifts, by eliminating more than 500,000 km2 of
forests and giving rise to the Americas’ most widespread desert.
In this scenario, the Andean uplift is inferred as having acted as
the major driving mechanism by blocking the passage of rain-
producing systems from the west, casting a shadow of dryness on
the lee side of the Andes since at least the late Miocene. Global
cooling events are also known to have triggered significant shifts
in aridity during the Cenozoic22. In this context, the two major
expansions of ice-sheets on Antarctica23 mirror the increase of
open-habitat species in Patagonia during the earliest Miocene
(23–20 Ma) and more significantly since the late Miocene
(10 Ma). Whether the Andean uplift or the global drop in
temperatures represents the prime driver of aridity in southern
South America remains to be tested. It seems reasonable to
assume that the Andean uplift reduced seasonal precipitation on
the leeward side of the mountains, while low global sea levels,
corresponding to glacial Antarctic events of the Miocene,
enhanced the increased continental aridity. The timing of the
onset of aridification inferred from the Patagonian fossil pollen
record fully agrees with that from Australia24, Africa25, North
America26, Europe27 and Asia28 on the basis of sedimentological
and/or palaeontological analyses. This points to a major
establishment of the world’s most important open-habitat
systems during a relatively small window of time by the late
Miocene/Pliocene.

Even though our picture of Patagonia contrasts markedly with
the traditional beliefs of an early emergence of grasslands by the
Oligocene on the basis of the advent of high-crowned hypsodont
mammals, complementary approaches (for example, tooth wear
scoring methods) have been giving new insights. For example,

Townsend and Croft29 using a microwear analysis assessed the
feeding preferences of three species of Notoungulata from the
Miocene of Patagonia, typically assumed to be grazers because of
their high levels of hypsodonty. They concluded that these extinct
mammals were primarily feeding on browse (that is, eating the
leaves and stems of dicotyledonous plants, such as trees, shrubs or
bushes) and pointed out that hypsodonty cannot tell us whether
or not an animal could have been a strict grazer; rather, they
stressed that palaeoecology must be assessed on a case by case
basis to evaluate its role in feeding29. Although we are unable to
challenge the adaptive value of hypsodonty from the fossil pollen
analysis, we demonstrate quantitatively that grasslands per se
were virtually absent prior to Quaternary in Patagonia: thus,
whatever the results of the microwear analysis, these animals
could not have been eating grass. Kaiser et al.30 showed that
external abrasives of very fine particle size have a major role in
naturally occurring tooth wear, which is consistent with the view
of Pascual and Ortiz Jaureguizar31, who interpreted precocious
hypsodonty in South American ungulates as an effective response
to abrasive volcanic ash that may had dusted the leaves of plants.

The present study adds a key piece to an intriguing puzzle by
incorporating a new floristic context for much of the evolutionary
history of mammalian herbivores in southern South America.
Future efforts will concentrate on enhance interdisciplinary
collaborations between palaeobotanists and palaeozoologists to
better identify and potentially correlate the most significant
turnovers between floras and faunas during the Neogene.
Understanding the past interactions among species during past
instances of biological diversifications will enable us to recognize
present and future responses to unpredicted scenarios.

Methods
Sampling. Detailed palynological analyses of six sampling units represented by
nine sections exposed at southeastern Argentina were undertaken for reconstruc-
tion of palaeovegetation of the past 26 Ma. Fossil pollen analysis has proved to be
the best suited palaeoecological approach to test hypotheses about what major
vegetation belts co-occurred, either at a regional or at a more local scale. A
regional-level reconstruction, in particular, may be addressed best by analysing the
fossil pollen contained in coastal-marine deposits32. This is because coastal or
marginal marine environments preserve a reasonably accurate representation of the
pollen derived from adjacent lands, with little of the complicating fluctuation of
local input present in terrestrial records (swamp and lake sediments). The nine
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sampled sections are Punta Nava (30 m), Cerro Chenque (208 m), Punta Delgada
(38 m), Cerro Viteau (117 m), Playa Las Cuevas (15 m), Cerro Antena (89 m),
Cañadón Baumann (64 m), Punta Pirámide (15 m) and Restinga Norte (10 m).
Overall, these sections primarily consist of fine-grained sandstones, coquinas and
heterolithic (fine-grained sandstone interbedded with mudstones) beds. The
geological setting, stratigraphy, depositional environment and age-constraint of the
sampling units have been analysed in detail elsewhere33–36 and summarized in
Supplementary Table S1. We collected and processed 405 samples and performed
quantitative and taxonomic palynological analyses on 165 samples from which we
selected 70 to better represent the landscape-level vegetation. These selected
samples contain dinoflagellate cysts as well as fluvial- (for example, Cyperaceae,
Azolla, Typhaceae-Sparganiaceae), broad-regional- (for example, Nothofagaceae,
Podocarpaceae, Asteraceae, Amaranthaceae, Poaceae) and restricted- (for example,
Poteaceae, Fabaceae) dispersal types. For comparison purposes, we selected from
the literature a late Quaternary analogue of 10 samples37. Standard palynological
techniques were used to process all samples38. We counted from 250 to 300
individuals per slide. All slides and residues are housed at the palynotheca of the
Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’.

Age calibration. Biostratigraphic and radiometric constraints on sampling units
are given in Supplementary Table S1.

Selected taxa. We selected plant families common across Patagonia during much
of the Cenozoic. These are the amaranth (Amaranthaceae), aster (Asteraceae),
Ephedra (Ephedraceae), southern beech (Nothofagaceae), grass (Poaceae) and
podocarp (Podocarpaceae) families. All these families (1) consist of wind-
pollinated taxa that produce copious amounts of easily dispersed pollen grains,
(2) produce morphologically distinctive pollen types and (3) today occupy
ecologically defined floristic formations (that is, rainforest or steppes). The most
common fossil taxa found in Patagonian deposits assigned to these families
are Chenopodipollis chenopodiaceoides (Martin) Truswell (Amaranthaceae),
Tubulifloridites antipodica Cookson, T. simplis Martin, T. pleistocenicus Martin and
Mutisiapollis viteauensis Barreda (Asteraceae), Equisetosporites claricristatus
(Shakmundes) Barreda, E. lusaticus (Krutzsch) Barreda and E. notensis (Cookson)
Romero (Ephedraceae), Nothofagidites spp. (Nothofagaceae), Graminidites spp.
(Poaceae) and Podocarpidites spp., Phyllocladidites mawsonii Cookson and Lygis-
tepollenites florinii (Cookson and Pike) Stover and Partridge (Podocarpaceae).

Quantitative analyses. The relative frequencies of the selected taxa were calcu-
lated from the total number of terrestrial spores and pollen grains. All multivariate
analyses were conducted using open source R version 2.15.0 (http://www.r-pro-
ject.org/). All analyses were run on square root transformation, which partially
reduces the problems associated with closed-sum percentage data39. We conducted
a constrained cluster analysis (CCA) to explore sample associations (Q-mode) and
a hierarchical cluster analysis (HCA) to explore taxonomic associations (R-mode).

We used the Bray–Curtis distance to create a matrix of dissimilarity before running
HCA. The agglomerative method used in HCA was the Ward. We used Chclust
(package ‘rioja’), that performs a CCA of a distance matrix, with clusters
constrained by sample order. The agglomeration method used in this CCA was the
coniss. We also compared the CCA with a HCA with bootstrapped P-values
(package ‘pvclust’), ensuring that artificial groupings would not be misinterpreted
(Supplementary Fig. S3). We ordinated the samples and species using NMDS
regarded as the most robust unconstrained ordination method in community
ecology40. The main objective of NMDS is to plot dissimilar objects far apart in the
ordination space and similar objects close to one another (‘metaMDS’ function,
package ‘vegan’). We conducted the Analysis of Similarity to test for significant
differences between sampling units41. The statistic R will be in the interval � 1 to
þ 1; the value 0 indicates completely random grouping while the value þ 1 or
close to þ 1 indicates that samples within sites are more similar to each other than
to samples from different sites. The correlation analysis among variables was used
to show whether and how strongly pairs of variables are related (‘panel.cor.res’
function, package ‘asbio’). Distributions of steppe and forest taxa were visualized
using bean-plots (package ‘beanplot’).
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20. Strömberg, C., Dunn, R., Khon, M., Madden, R. H. & Carlini, A. A. Was the
evolution of hypsodonty in South America a response to the spread of grassland
vegetation?: New phytolith records from Gran Barranca, Argentina. Soc.
Vertebrate Paleontol. Annu. Meet. (Pittsburg, PA, 2010).

21. MacFadden, B. J., Cerling, T. E. & Prado, J. Cenozoic Terrestrial Ecosystem
Evolution in Argentina: Evidence from Carbon Isotopes of Fossil Mammal
Teeth. Palaios 4, 319–327 (1996).

22. Lu, H., Wang, X. & Li, L. Aeolian sediment evidence that global cooling has
driven late. Cenozoic stepwise aridification in central Asia. ch. 342, pp 29–342
(Special Publications, Geological Society, London, 2010).

23. Zachos, J., Billups, K., Pagani, H., Sloan, L. & Thomas, E. Trends, rhythms, and
aberrations in global climate 65 Ma to Present. Science 292, 686–693 (2001).

24. Martin, H. A. Cenozoic climatic change and the development of the arid
vegetation in Australia. J. Arid Environ. 66, 533–563 (2006).

25. Jacobs, B. F. Palaeobotanical studies from tropical Africa: relevance to the
evolution of forest, woodland and savannah biomes. Phil. Trans. R. Soc. Lond. B
359, 1573–1583 (2004).
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