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Abstract. The purpose of this investigation is to contribute to the development of new 

anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening 

protocol that involved the search into molecular databases of new compounds and known drugs 

to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D 

structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed 

and open conformations. After the virtual screening, the resulting candidates were submitted to a 

second virtual filter, to find compounds with better chances of being effective for the treatment 

of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure 
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 2

of human P-gp and we validated the docking methodology selected to propose the best 

candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and 

in vivo by MES-test. Patch clamp studies allowed us to corroborate that our candidates, drugs 

used for the treatment of other pathologies like Ciprofloxacin, Losartan and Valsartan, exhibit 

inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, 

N,N´-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel 

inhibitory action. Finally, in-vivo studies confirmed the anticonvulsant action of Valsartan, 

Ciprofloxacin and N.N´-diphenethylsulfamide.  

1. Introduction 

Anticonvulsant drugs (ACD) are the mainstay of antiepileptic therapy.
1
 During the past 

decades, drug treatment of epilepsy has made significant progress by improving the number of 

new medications to control or prevent the seizures. However, two major problems remain 

unsolved in terms of clinical outcome: the development of drug resistant epilepsy and the 

occurrence of severe toxic effects caused by known ACD in responsive patients.
1
 These 

limitations faced in therapy have been subjected of extensive analysis.
2-3

 Experts in the field 

have concluded that more effective drugs can be designed if we incorporate in the early stages of 

the drug discovery process the actual knowledge of the molecular alterations that generate 

epileptic seizures, and the new structural and functional information about the molecular targets 

of the candidates (e.g.: Vigabatrin, Tiagabine, Perampanel).
3
 However the drugs found by this 

rational approach represent an exception in the history of ACD, since screening campaigns on 

animal models of epilepsy have been almost the exclusive strategy for identifying the marketed 

compounds. Particularly, the maximal electroshock seizure (MES) test and the pentylenetetrazol 

seizure (PTZ) test are the biological assays most widely used. They are included into the NIH 
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 3

anticonvulsant drug development program (ADD program) to initially evaluate promising 

structures as anticonvulsants.
4
  

As a general picture, the primary mechanisms of action of most ACD can be grouped into 

three main classes involving: 1) inhibition of voltage-activated ion channels (such as sodium 

and/or calcium) 2) increase of γ-Aminobutyric acid (GABA) levels in neural GABAergic 

pathways through intervention in its synthesis, transport, release and degradation 3) inhibition of 

glutamatergic excitatory synapses by a direct interaction of ACD with glutamate receptors or 

indirectly by precluding the glutamate liberation.
2,5

 However other alternative mechanisms of 

action have been identified for novel structures.
6-7

 For example, synaptic modulation through 

vesicle protein SV2A is the main mechanism for Levetiracetam and Brivacetam;
8
 and the recently 

withdrawn drug Retigabine is known as a neuronal Kv7 (KCNQ) potassium channel modulator.
6
 

Additionally, new candidates in clinical trials interact with new and different targets such as the 

cannabinoid system, the mammalian target of rapamycin (mTOR), acetylcholinesterase (AChE), 

serotonin receptors (5HT) and others.
7
   

In this investigation we focused on the identification of new ACD that act through the 

blockage of voltage-gated sodium channels (VGSCs). These ion channels are involved in the 

mechanism of action of many ACD with probed clinical efficacy (e.g: Phenytoin, Lamotrigine, 

Carbamazepine, Oxcarbazepine, Eslicarbazepine, Zonisamide and Lacosamide).
3,9-10

 In 

particular, we selected the VGSC isoform Nav1.2 as the molecular target of this investigation, 

since it is involved in epileptic disorders and it has confirmed interaction with the clinically 

relevant ACDs.
3,11 

 

From a structural point of view, eukaryote VGSCs are complex membrane proteins. They 

consist of a pore-forming α-subunit in association with one or more β-subunits.
12

 Nine different 
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 4

α subunits (Nav1.1 – Nav1.9) have been identified with four of them mainly expressed in the 

central nervous system (Nav1.1, Nav1.2, Nav1.3 and Nav1.6).
13

 The α-subunit comprises four 

domains (DI-DIV) each containing six membrane-spanning segments (S1-S6). The four domains 

contribute to the channel's voltage sensor (transmembrane helices S1-S4) and to the ion 

conducting pore.
12

 The voltage sensor is responsible for voltage-mediated gating of the pore by 

detecting changes in the transmembrane voltage through positive amino acids located at every 

fourth position of the highly conserved S4 segment. The pore is formed by S5 and S6 helices, 

linked by P-loops (P1 and P2 helices).
12 

The searching of isoform selectivity to a specific target constitutes a usual approach in the drug 

design process, mainly focused on reducing adverse effects. In this investigation we also 

considered functional selectivity, that is, the capacity of ACD to change their affinity depending 

on the conformational state of this ion channel target.
10

 The VGSCs can adopt at least three 

different conformational states depending on the voltage across the membrane (Figure 1). In 

neurons, at negative membrane potentials (-80 mV or less) most of them are in a resting state 

(closed conformation) and they activate in response to plasma membrane depolarization, 

allowing the conformational change from a closed to an open state that mediates an inward Na
+
 

current. During the depolarization phase of the action potential, the channels pass from the open 

state to a new nonconductive conformational state, the inactivated state.
5
 Some ACD show better 

affinity for the open and inactivated conformations of the VGSCs than for the closed one.
5,9-11,14

 

This allows functional selectivity based on the fact that ACD act only in the case VGSCs have 

reached one of these states.
10

 As the epileptic seizures are characterized by the increase of the 

neuronal excitability,  there are high probabilities to find the channels in the open and inactivated 

state.
10-11
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Figure 1. Three states model of VGSC.
15

 The conformations are dependent on the voltage across 

the membrane. 

On the other hand, one of the major problems of current ACD therapy is the development of 

drug-resistant epilepsy. Several causes have been proposed to explain this phenomenon.
16

 

Among them, the transporter hypothesis suggests that the expression and activity of efflux 

transporters, such as P-gp, prevent the access of ACD into their molecular targets in a subset of 

patients.
16-17

  

In this investigation, we applied a sequential virtual screening campaign to find new 

compounds that interact with the open conformation of the Nav1.2 pore but not with P-gp efflux 

transporter. As the 3D structure of human Nav1.2 is not available, initially we constructed 3D 

models of the target, in close and open conformations. After the virtual screening, the resulting 

candidates were submitted to a second virtual filter, in order to find compounds with better 

chances of being effective for the treatment of P-gp mediated resistant epilepsy. Again, no 
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 6

human 3D structure of P-gp is available, so we used several models of the macromolecule and 

we choose the docking protocols that best replicate the experimental data for the screening.   

 The sequential search was performed over databases that include FDA-approved compounds, 

nutraceuticals and drugs in the experimental stage. To find anticonvulsant activities in 

compounds that belong to the universe of available drugs is a strategy known as drug 

repositioning, and it has several advantages over the traditional drug development process.
18

 For 

example, these compounds have already been tested in a significant number of toxicity assays, so 

the rate of failure due to adverse effects in the following steps of the drug discovery pipeline is 

lower than the one predicted for new compounds.
18

 Similarly, known drugs have successful and 

well documented pharmacokinetic studies, that reduce the time of the drug development 

process.
19

 We also included a home-made virtual database that comprises structures synthesized 

in our laboratory. Previous investigations from our research group and others pointed to 

sulfamide as an attractive chemical entity with anticonvulsant properties.
20-22

 As a consequence 

of our investigations, we found sulfamide derivatives that outperform structurally related 

anticonvulsant drugs in terms of potency against MES test.
16-18

 There is not a direct correlation 

between the activity in MES test and the mechanism of action of the ACD, but traditional 

sodium channel blockers (such as Phenytoin, Lamotrigine and Carbamazepine) are active in this 

assay.
23-24

 For that reason, we included in the virtual screening the sulfamide derivatives that 

were active in this acute model.  

Finally, four candidates were evaluated on sodium channel activity applying the patch clamp 

technique on HEK293 cells expressing the Nav1.2 channel isoform and in-vivo test through the 

traditional MES assay of convulsions in mice. All of them showed inhibitory effect on the 

Nav1.2 channels and three of them also demonstrated anticonvulsant activity in vivo.   
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 7

2. Results  

2.1 Construction of human Nav1.2 models. Initially, we modeled the 3D structure of the 

Nav1.2 isoform in the closed and open conformations. We constructed the α-subunit of the 

channel, which is functional on its own and contains the region of interactions with ACD (which 

is located in the conducting pore of the macrostructure).
13-24

 The closed pore conformation was 

built by means of the GPCR-I-TASSER server, which is based on the protein threading server I-

TASSER but incorporates restrictions associated with transmembrane proteins.
25

 The four 

domains were modeled separately and the best solution of each one was selected based on the 

metric provided by the server for estimating the quality of the predictions. The values of C-score 

of the best models varied between -0.59 and -2.47 depending on the domain and the TM-scores 

were higher than 0.43 (the C-score is typically in the range of [-5,2] and a TM-score lower than 

0.17 means random similarity). More details are given in supporting information section (Table 

S1). Once the domains were constructed, the final heterotetrameric structure was assembled by 

superposition with the crystal structure of bacterium Arcobacter butzleri (NavAb, protein data 

bank (PDB)
26

 entry: 3RVY
27

). This template emerged in the threading procedure and it showed 

the highest percentage of sequence coverage in the alignment process with NCBI-BLAST server. 

Finally the whole α-subunit of the channel was submitted to energy minimization with the 

SANDER module of AMBER11 software
28

 (details are given in supporting information.). Figure 

2A shows the overall architecture of the final model. Ramachandran plots confirmed the high 

quality of the model, with 97.6% of residues placed in the allowed regions and few amino acids 

(2.4%) with unfavorable positions (Figure S1). Another important structural aspect reproduced in 

the model is the presence of the “DEKA” motif. Eukaryotic sodium channels host a highly 

conserved selectivity filter of ions, located at the P-loops that connect the S5 and S6 helices of 
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 8

the four domains.
29

 This filter is composed of four amino acid side chains of Asp (D), Glu (E), 

Lys (K) and Ala (A) residues, placed in domains I to IV, respectively. Figure 2B shows the 

location of the DEKA ring in the model.  It is important to note that none of the outlier residues 

identified in the Ramachandran plot are part of the defined active site for the docking simulations 

or the DEKA motif. Additionally, our model was correctly classified as a membrane protein by 

QMEANbrane software,
30

 which also identified the pore as the transmembrane region of the 

model (Figure S2). 
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 9

 

Figure 2. A: Final model of the sodium Channel (isoform Nav1.2) in a closed conformation 

(Top and side view). B: DEKA ring. 

As highlighted in the previous paragraph, the architecture of the sodium channel in bacterium 

was used for assembling the domains of human Nav1.2 channel. The selection of this pattern is 

supported by the parameters found in the alignment process, but it shows a closed conformation. 

To predict the 3D architecture of the target in the open pore conformation we modified the 

template, following the strategy applied by Tomasic et. al. for the construction of the open pore 

conformation model of the human Nav1.4 isoform.
31

 The authors analyzed the structural data 

available for the non-selective NaK cation channel of Bacillus cereus. Interestingly, there are 

experimental structures in the open and closed pore conformation of the NaK channel for this 

bacterium (PDB entries: 3E86 and 2AHY respectively), that allow us to suggest where are the 

main structural differences between the two states. The superposition of the two experimental 

structures of NaK channels showed that these two conformations diverge mostly in the inner 

region of the pore, below the selectivity filter (Figure S3). The same observation can be 

accomplished with the comparison between the open conformation of the NaK channel (PDB 

entry: 3E86) and the NavAb template for the closed state (PDB entry: RVY). Particularly, the 

major changes can be observed in the coordinates of the S6 helices that comprise the pore of the 

channel (Figure S3). Therefore, we imitated the “opened pore template” constructed by Tomasic 

and coworkers for Nav1.4 models by replacing the coordinates of the S6 segment of NavAb by 

the ones obtained for the open pore conformation of the NaK channel.
32

 It is important to 

mention that the structural changes in the S6 segments are accompanied by modifications in the 

position of the S4 segments (voltage sensor). The change of position of S4 helices cannot be 
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 10

modeled in the open pore conformation since they are absent in NaK template, so we deleted 

them for the construction of the model, to avoid the superimposition of S4 with the S6 segment.
32

 

In other words, the open model of the human Nav1.2 channel built for this investigation included 

the segments S5 and S6 of the four domains of the channel. The S5-S6 portions constitute the 

pore of the macrostructure and contain the active site of ACD, so they are valuable for the virtual 

screening campaign proposed in this investigation. Initially, the sequences of S5 and S6 

segments of each domain were aligned by means of homology methods with MODELLER 

software.
33-36

 The solutions with the highest discrete optimized protein energy (DOPE) score 

were selected for each domain (values between 0.9 and 1.7, Table S1). Then the pore was 

assembled with superposition of the domains with the open pore template. Finally the model was 

submitted to energy minimization with the SANDER module of AMBER11.
28

 Details are given 

in experimental section. The Ramachandran plots confirmed the high quality of the final model, 

with 91.9% of amino acids located in the allowed regions and few amino acids (8.1%) with 

unfavorable positions (Figure S4). Again, none of the residues that comprise the active site or the 

selectivity filters are outliers in the Ramachandran plot and QMEANbrane software correctly 

classified the model as a membrane protein with the pore into the transmembrane region (Figure 

S5).  Figure 3 shows the final architecture of the open pore obtained for human Nav1.2 model 

and the position of the DEKA ring, which was also well reproduced in this conformation. 
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 11

  

Figure 3. Final model of the sodium Channel (isoform Nav1.2) in an open conformation (Top 

and side view). B: DEKA ring. 

 

2.2 Validation of the docking protocol for Nav1.2 virtual screening.  With the models of 

Nav1.2 available, the next step was the selection of the docking conditions for virtual screening. 

We analyzed the ability of the software to discriminate known binders from non-binders of 

Nav1.2 through the docking score. To this end we carefully compiled a test set of 183 active 

compounds and 323 inactive structures mainly from CHEMBL database
37

 (see experimental 
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 12

section). Autodock Vina (flexible mode)
38

 was used for molecular docking in both close and 

open conformation of the target. The active site was defined based on the experimental data.
39

 

The information available pointed to the residues numbered from Phe1764 to Tyr1771 as 

important for the interactions of the channel with known ACD.
24,39

  

Figure 4 shows the receiver operating characteristic (ROC) curves for the best model of each 

conformation. The ROC curves plot the sensitivity of the model (true positive rate) as a function 

of the false positive rate (1−specificity) at various threshold settings.
 40

 Accordingly, a perfect 

classification of compounds would be represented in the graph by a line that starts from the 

origin, reaches vertically the upper left corner, and then goes to the upper right corner. The area 

under the curve (AUC) will be equal to one in this ideal performance while an AUC of 0.5 will 

represent a random selection of active and inactive compounds. The AUC values for our best 

docking models were 0.916 for the open conformation and 0.878 for the close one, which 

demonstrated the capacity of the protocols to truly discern between active and inactive 

compounds. The lower value of AUC achieved for the close conformation was expected if we 

consider that ACD have low affinities to the target in this state. The poorer interactions might 

have influence in the correct classification of known binders through the docking score. For that 

reason, we selected the best docking conditions achieved for the simulation in the open structure, 

which is also more representative of the active conformation of the target. 
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Figure 4. ROC-type curves obtained from docking simulations into the active site of the open 

(red) and close (blue) models of Nav1.2. 

2.3 Nav1.2 Virtual screening. The docking protocol detailed before was used for the virtual 

screening of 9133 structures of FDA-approved compounds, nutraceuticals and drugs in the 

experimental stage (available from DrugBank4.0
41

 and ZINC-FDA databases,
42

 as detailed in 

experimental section). A docking score of -9.0 Kcal/mol was defined as the threshold value to 

differentiate active from inactive compounds in the virtual screening of the database. This value 

has associated a specificity value of 93% and a sensitivity of 63% in the test set, according to the 

ROC curve. We decided to prioritize specificity over sensitivity to avoid the selection and 

purchase of false positives for the biological assays (at expenses of losing true positives during 

the search, due to the lower sensitivity rate). Additionally, 28 sulfamide derivatives synthesized 

in our laboratory were submitted for the virtual screening.
20-22

 We set the docking threshold 

value to -8.1 kcal/mol for this in-house database, which is associated to a good balance between 

specificity and sensitivity for the test set (80% and 88% respectively). We changed the cutoff 
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value because in these conditions there are high chances to get true positive candidates (88% of 

sensitivity), and we are particularly interested in these structures due to previous findings about 

their anticonvulsant activity in vivo (even at the risk of testing false positive compounds).
20-22

   

Finally, the model classified as Nav1.2 blockers 1181 compounds from ZINC database, 1596 

structures from DrugBank and 3 sulfamide derivatives from our lab. The selected structures were 

submitted to the second step in the virtual screening to avoid P-gp substrates. 

2.4 Human P-gp models and validation of the docking protocol for virtual screening. P-

glycoprotein is an important efflux transporter that belongs to the ATP-binding cassette (ABC) 

family, and it is expressed in many barriers and excretory tissues. As other ABC transporters, P-

gp has the important function of preventing the entrance of exogenous compounds into 

susceptible organs and cells.
17

 On the other hand; P-gp may affect negatively the 

pharmacokinetic profile of new candidates by limiting the bioavailability of the drugs in the 

brain target thanks to its overexpression or activation.
17

 

 In a preceding investigation we constructed a P-gp human model and defined a validated 

docking protocol for virtual screening of P-gp substrates.
43

 Afterwards, Szewczyk et al deposited 

new experimental structures of mouse P-gp into the PDB,
44

 providing more information about 

the architecture of the active site and the binding mode of certain ligands.
  

In this investigation we used our best docking protocol (Autodock Vina, flexible docking)
43

 to 

simulate the interaction of a new test set into the crystal structures of Szewczyk and coworkers 

(PDB codes 4Q9I, 4Q9J, 4Q9K and 4Q9L).
44

 Interestingly, the authors identified two different 

locations and orientations of the ligands in the substrate-binding pocket of 4Q9I, 4Q9J and 

4Q9L. These findings are consistent with previous investigations that pointed to several binding 

sites for substrates and inhibitors of the glycoprotein.
45-46

 The two binding sites proposed in each 
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 15

crystal structure were considered separately as the docking region, and two different docking 

runs were performed for these macromolecules. The docking protocol was run over an extended 

test set of 1206 P-gp binders and non-binders (23 times bigger than the original
43

) for the 

comparison of the results with different structures of the anti-target. The set was taken from the 

database of 1275 binders and non-binders provided by Broccatelli et al,
47

 which was manually 

curated.
 
More information is given in experimental section.  

Table 1 shows the results of the AUC calculated for the docking of the extended test set.  

Interestingly, the docking protocol considering the P-gp human model kept its capacity to 

discriminate binders from non-binders of the test set used in this investigation (1206 structures, 

AUC value of 0.92), which is considerably more challenging than the original set compiled 

previously (52 compounds, AUC 0.83).
43

 Additionally, the docking simulation based on the 

human model showed better performance than the calculations with the crystal structures of 

mouse glycoprotein, so it was selected for virtual screening.  

 

Table 1. Values of AUC achieved from the docking simulations of the extended test set (1206 

compounds). 

 

Target
a
 Flexible residues

b
 AUC 

4Q9I Phe332_Tyr949_Phe979_Phe728 0.81 

4Q9I Trp228_Ala225_Leu221_Phe339_Phe332 0.79 

4Q9J Val978_Met982_Phe332_Met68_Phe71 0.76 

4Q9J Trp228_Ala225_Leu221_Phe339 0.78 

4Q9K Leu335_Phe332_Met982_Val978_Phe979_Ser725 0.81 

4Q9L Gln721_Ser725_Phe979_Phe339 0.79 
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4Q9L Met945_Phe332_Phe339_Met982 0.80 

hP-gp model Tyr-307, Tyr-953, Phe-343, Phe-978. 0.92 

 

a
PDB code of the macroestructures employed in the simulations. 

b
Aminoacids of the target 

considered as flexible in the docking simulation.  

 

2.5 P-gp virtual screening. The structures that survived the first Nav1.2 virtual screening 

were submitted to the P-gp filter, in order to eliminate compounds with high affinity to this 

protein. P-gp acts in the screening as an anti-target, so the best candidates should have a docking 

score higher than the threshold number. For the compounds recovered from ZINC and Drugbank 

databases, this value was set as -8.5 Kcal/mol, which is able to predict the 89% of the known 

binders (sensitivity value of 0.89) and the 55% of non-binders (specificity value of 0.55).  

As the numbers suggest, we prioritized sensitivity over specificity to identify correctly the 

positive ligands and consequently discard them after the screening. About 190 structures from 

ZINC and Drugbank were classified as Nav1.2 blockers and P-gp non-binders. A careful analysis 

of the available literature showed that two of the candidates, Ropivacaine and Cibenzoline, have 

been already tested as sodium channel blockers.
48-50

 These findings provided us confidence in the 

capacity of the screening method to find active structures. Finally, three candidates were 

available for biological assays:  Losartan and Valsaltan, two drugs used to treat hypertension by 

inhibiting angiotensin II receptor
 
and Ciprofloxacin, a fluoroquinolone based antibiotic drug 

(Figure 5). 

Regarding sulfamide derivatives, a more “balanced” restriction was applied for the threshold 

value, which was set as -9.0 Kcal/mol (sensitivity of 73% and specificity of 80% for the test set). 

Three candidates were classified as non-substrates of P-gp. Among them, N, N´-
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diphenethylsulfamide showed the best score in the docking simulation with Nav1.2, so this 

compound was selected for biological evaluations (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Chemical structures of the candidates and their docking scores for Nav1.2 and P-gp 

screening.  

 

2.6 Biological assays.  

Losartan 

Nav1.2: -9.7; P-gp: -8.5 

Valsartan 

Nav1.2: -9.8; P-gp: -8.4 

Ciprofloxacin 

Nav1.2: -9.1; P-gp: -8.2 

N, N’-diphenethylsulfamide 

Nav1.2: -9.5; P-gp: -8.8 
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2.6.1 Electrophysiological assays. Patch clamp technique was used to measure the effect of the 

candidates on sodium channel activity. The ability of each candidate to change the sodium 

current mediated by hNav1.2 channels stably expressed in HEK293 cell was tested in the whole-

cell configuration by applying a 15 ms voltage-step from a holding potential of -70 mV to -20 

mV. In the same experimental conditions, we also tested the effect of 100 µM Phenytoin, in 

order to compare the inhibitory potency of the candidates with this classic AED. The results are 

shown in Figure 6. All candidates produced a significant inhibitory effect on hNav1.2 currents. 

N, N´-diphenethylsulfamide was the most potent candidate showing a relative Na
+
 current 

reduction similar to that obtained with Phenytoin, both tested at 100 µM concentration (36.9 % ± 

8.2; n = 3, p < 0.05 and 37.4%±3.4; n = 6, p<0.05, % of current inhibition with N.N´-

diphenethylsulfamide and Phenytoin, respectively). Additionally, Ciprofloxacin, Losartan and 

Valsartan were also able to inhibit the hNav 1.2 currents at 300 µM concentration (20,9 % ± 4,8, 

n=5; 20,3 % ± 1,9, n=4; 18,2 % ± 3,2, n=7, respectively). 
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Figure 6. Effect of the candidates and Phenytoin on whole-cell Na
+
 currents mediated by 

hNav1.2 channels. Color code as follows: Phenytoin in violet, N,N´-diphenethylsulfamide in 

green, Ciprofloxacin in yellow, Valsartan in red, Losartan in blue and control solutions without 

compound in black. A: results obtained from a typical whole-cell voltage-clamp protocol 

(holding potential of -70 mV and test potential of -20 mV) applied under  control conditions or in 

the presence of the indicated compounds. B: Mean values ±ESM of the relative current blockage 

of Na+ currents by each drug. Statistically significant differences showing a p<0.05 were marked 

with an asterisk (Paired t-test).  

Figure 7 shows the results of the docking simulation of the candidates into the active site of 

Nav1.2 (open conformation).  According to our predictions, lipophilic and pi-stacking 

interactions between the N, N´-diphenethylsulfamide and the active site play an important role in 

the binding event. Particularly, aromatic side chains of Phe1462, Phe 1754 and Tyr1758 interact 

with the phenyl substituents of the candidate. Valsartan, Losartan and Ciprofloxacin showed in 
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lesser extent a similar type of interaction. Additionally, hydrogen bonding interactions were 

detected between Ciprofloxacin and the Nitrogen atom of the backbone of Phe1462.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Interactions predicted by docking simulations between the candidates and Nav1.2. A: 

N, N´-diphenethylsulfamide (carbon atoms in green, nitrogen atoms in blue) B: Ciprofloxacin 

(carbon atoms in pink, nitrogen atoms in blue) C: Valsartan (carbon atoms in purple, nitrogen 

atoms in blue). D: Losartan (carbon atoms in purple, nitrogen atoms in blue, chlorine atom in 

green). Hydrogen atoms attached to carbon atoms were omitted for simplicity. 

2.6.2 In vivo assays. The biological evaluation in mice of the candidates was performed 

following the standard procedures proposed by the NIH anticonvulsant drug development (ADD) 

program, via the anticonvulsant screening project (ASP).
4
 We tested the compounds against 

MES test because there is evidence about the inhibitory effects on the convulsions caused in this 
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assay by the ACD that acts as sodium channels blockers.
23 

We also measured primary toxicity of 

the drugs (sedation and ataxia) with the standardized RotoRod test, which is also included in the 

primary phase of the ADD program.
4
 The compounds were administrated to animals (mice) 

intraperitoneally at the lower doses of the program (30, 100 mg/Kg), and all the assays were 

performed at 0.5 and 4 hr. Details are given in experimental section. The results obtained from the 

evaluation are shown in Table 2, which included the data already reported for N.N´-

diphenethylsulfamide.
21

 

 

Table 2. Anticonvulsant and neurotoxic effects of the candidates in mice. 

 

 

 

 

a: 

Number of protected animals relative to the total number of mice tested in Maximal Electroshock 

Seizure at each time and concentration. 
b
: Number of animals with sedative effects relative to the 

total number of mice tested at each time and concentration. 

 

No anticonvulsant activity was observed for Losartan at the tested doses. Valsartan showed 

anticonvulsant action with 50% of animals protected at both 0.5 and 4 h after administration 

Compound Dose (mg/Kg) 
MES test

a
 RotoRod test

b
 

0.5h 4h 0.5h 4h 

N, N´-diphenethylsulfamide
17

 
30 0/3 0/3 0/3 0/3 

100 3/3 0/3 0/3 0/3 

Losartan  
30 0/2 0/2 0/2 0/2 

100 0/2 0/2 0/2 0/2 

Valsartan 
30 0/2 0/2 0/2 0/2 

100 1/2 1/2 0/2 0/2 

Ciprofloxacin 
30 0/2 2/4 1/2 0/4 

100 0/2 1/4 0/2 0/2 
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(dose: 100mg/kg). Regarding Ciprofloxacin, it showed a remarkable positive response at both 

tested concentrations (4 h after administration), with 50% of protection at the lower dose. 

According to these results Valsartan, Ciprofloxacin and N, N´-diphenethylsulfamide are the most 

promising structures for future analysis. It is important to mention that Ciprofloxacin evidenced 

sedative effects in one mice (Rotorod test), so more experiments will be performed at lower 

doses to see if the anticonvulsant action prevails without these adverse effects. 

3. Conclusions.  

The universe of anticonvulsant drugs collects a set of diverse structures that exert their action 

through the interaction with many biological targets. The actual knowledge of these targets at 

molecular level (and their alterations that generate seizures) provides the opportunity to find new 

compounds via target–based drug discovery strategies. In this investigation we constructed the 

structure of human Nav1.2 and validated the docking protocol employed for the selection of 

candidates in virtual screening. Additionally, we integrated a re-validated P-gp filter to avoid the 

interactions of the compounds with this efflux transporter. Electrophysiological assays showed 

that all the selected structures were able to inhibit Na
+
 currents, suggesting the interaction of 

these compounds with Nav1.2 channel. Moreover, in vivo assays showed that only Losartan 

failed to protect animals against MES test. 

The use of the patch-clamp technique applied to a heterologous system is the gold standard to 

validate the predictions of the human Nav1.2 structural model since the compounds are tested on 

the current carried by this specific channel isoform.
14

 However, the positive results obtained by 

this approach do not guarantee a direct correlation with in vivo effects. Differences between in 

vitro and in vivo assays can be explained by several factors that depend on: (i) the target, (ii) the 

selectivity of each compound (iii) and/or its pharmacokinetics. (i) The pharmacological 
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sensitivity of Nav channels can be modified by posttranscriptional modifications such as 

alternative splicing, channel protein phosphorylation and/or glycosylation. The expression of 

auxiliary beta subunits and co-localization with other membrane proteins in native cells can also 

modify the activity of the channel blockers.
51

 (ii) Some AEDs are able to exert their antiepileptic 

effect by acting in multiple targets.
52

 Most of them are non-selective for neuronal Nav channels 

isoforms, and they are  able to modify other ions channels (such as K
+
 and Ca

2+
 channels), 

inotropic receptors (like GABA-A and NMDA) and enzymes (GABA transaminase and glutamic 

acid decarboxylase).
3,7

 (iii) In some cases, the drug candidates are  unable to reach a significant 

concentration on the target environment when they are tested  in vivo. The drug metabolisms and 

their ability to cross the blood-brain barrier are critical to obtain significant concentrations in the 

central nervous system, but these factors do not influence its in vitro activity.
53

 Some of these 

factors could explain the observed protection of Valsartan and Ciprofloxacin in vivo, in spite of 

their low inhibitory potency in the heterologously expressed Nav1.2 channel.  

 On the other hand, we observed that N, N´-diphenethylsulfamide and Phenytoin exhibited 

similar effects on the Nav1.2 currents. However, Phenytoin is 10-fold more potent in MES test in 

mice than our candidate (ED50: 34,5 and 263 µmol/Kg for phenytoin and N, N´-

diphenethylsulfamide respectively).
21,54

 This fact could be explained by differences in the 

selectivity and the pharmacokinetics profile of both compounds.
52

 Our results provide us the 

opportunity for further structural optimization based on the interactions with Nav1.2 proposed by 

molecular modeling. 

     

4. Methods.  

4.1 Molecular modeling 
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4.1.1 Construction of Nav1.2. The closed pore conformation was built with GPCR-I-TASSER 

server.
25

 The input sequence was taken from UNIPROT
55

 (code Q99250) and the four domains 

were modeled individually. To this end we defined as domain I, II, III and IV the amino acids 

numbered as 111-456, 741-1013, 1190-1504 and 1513-1611, respectively. The selection was 

based on the search of conserved domains in NCBI-BLAST server. The final macrostructure was 

assembled by superimposition with a NavAb template (PDB entry: 3RVY). The open pore 

conformation was assembled as explained in the Results and discussion section.  

Both closed and open geometries were minimized (1000 cycles for the water molecules 

followed by 2500 cycles for the entire systems) using the ff03.r1 version of the AMBER force 

field.
28 

4.1.2 Docking protocol for Nav1.2. To select the docking software and conditions, we first 

constructed the active subset with 180 compounds that interact with Nav1.2 (IC50 ≤ 100 µM) 

reported in CHEMBL database.
56

 Additionally we included some ACD with proved interaction 

with the target: Phenytoin, Carbamazepine and Lamotrigine.
23

 Unfortunately we have poor 

information about inactive compounds. We found that structures like Deprenyl, Gabapentin, 

Mecamylamine, Moclobemide, Nialamide, Procainamide, Tiapride and Topiramate do not have 

affinity with Nav1.2.
57

 In order to increase the number of inactive compounds (and to better 

simulate the conditions expected in virtual screening of big databases) we performed a similarity 

search into ZINC database
42

 with the inactive compounds as templates. We assumed that 

structures with similar characteristics will be also inactive against the target. The similarity 

threshold was set from 70% (Nialamide) to 99% (Mecamylamine), depending on the number of 

similar compounds recovered from each template. The final test set has 506 structures, 183 

defined as active and 323 as inactive.  
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Autodock Vina (flexible mode) was used for the molecular docking of the test set in both 

closed and open conformation of Nav1.2. The docking active site was set according to 

experimental data, which pointed the pore region as the place for interaction of ACD and local 

anesthetics.
24,39

 This area covers the amino acids numbered from Phe1764 to Tyr1771. We 

defined the grid size of 16 x 19 x 25 A
3
 for the closed conformation and 20x20x20 A

3
 for the 

open conformation. Flexible residues were also considered during the simulation: Gln383, 

Ser413, Phe1764 and Tyr1771 side chains were allowed to move in the close conformation 

whereas Phe1462, Ser1463, Phe1756 and Tyr1760 were allowed to rotate in the open state.   

4.1.3 Docking protocol for P-gp. In previous investigations we constructed a human P-gp 

model mainly based on the structure encoded as 3G61 in PDB, which showed the highest 

sequence coverage (92%) and percent of identity (82%) among other templates.
43 

Then
 
we 

docked into this macrostructure a test set of 26 binders and 26 non-binders of P-gp which was 

built based on a careful analysis of the experimental data available.
58-61

 The comparison of 

several docking software and conditions allowed us to conclude that Autodock Vina flexible 

docking is the best choice among the tested options;
43

 and we used this model in conjunction 

with ligand-based virtual screening to successfully find new anticonvulsant compounds.
62-63

 In 

this investigation, the compounds included in the test set for the validation of the docking 

simulations were taken from the database of Broccatelli et al,
47

 which comprise 666 binders and 

609 nonbinders of the protein. After the analysis of the literature we were able to identify reliable 

data for 1206 of these compounds, so they were used to define our extended test set. In addition 

to our previously reported model of the 3D structure of human P-gp,
43

 we utilized the 

experimental structures of mouse P-gp encoded as 4Q9I, 4Q9J, 4Q9K and 4Q9L in the PDB for 

the docking of the set. In all cases, the crystallographic ligands were stripped, and Hydrogen 
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atoms were added using the leap module of AMBER11.
28 

The “docking active site” for each 

macrostructure was defined through a grid centered on the crystallographic ligand. As mentioned 

before in the text, most of the complex show two ligands simultaneously crystalized into the 

protein (PDB codes 4Q9I, 4Q9J and 4Q9L). So, we considered both possibilities as the docking 

active site. We used a 20x20x20 A
3
 grid size and performed 100 docking runs for each 

compound using the default parameters for the rest of the variables. We computed rigid and 

flexible docking (data not shown) and the best solutions were obtained by the inclusion of 

mobility of the amino acid side chains that interact with the crystallized ligand (Table 1).  

4.1.4 Virtual screening. The search of new candidates was performed over Drugbank
41

 and 

ZINC-FDA databases.
42 

Drugbank includes 7818 compounds of FDA-approved compounds, 

nutraceuticals and drugs in the experimental stage. The structures were downloaded from the 

database in SDF format and the 2D coordinates were converted to 3D with OpenBabel2.1.2 

software.
64

 Compounds with molecular weight lower than 160 or higher than 600 were 

discarded. The remaining 5775 molecules were protonated at physiological pH. (7.4) and 

submitted to energy minimization with OpenBabel2.1.2: 750 steps of Monte Carlo search and 

geometry optimization with MMFF94 force field followed by 300 cycles of conjugated gradient 

method for the energy minimization for the best conformation.
64

 Regarding ZINC database, we 

employed a subset of compounds that contains 3358 structures FDA-approved drugs (with their 

tautomers and other isomers)
42

 in a ready to dock format (pdbqt files). 

4.2 Biological assays 

4.2.1 Electrophysiology. Patch-clamp experiments were performed in HEK293 cell lines stably 

expressing hNaV1.2 (a kind gift of GlaxoSmithKline, Stevenage, UK) that have been described 

in literature.
65-66
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4.2.1.1 Cell culture. HEK293 cell lines were cultured in DMEM F12, containing 10% fetal 

bovine serum (FBS), and 0.5% geneticin G418 sulfate. Cells were grown in a 95% O2/5% CO2 

atmosphere at 37°C and with 95% humidity. Cells were passaged using trypsin when they 

reached 70% confluence. The day of the experiment cells were detached using Accutase 

(ThermoFisher). An appropriate volume of cells suspension was added to a conical tube and 

centrifuged at 1000 rpm for 5 min. The pellet was resuspended in 5 ml DMEM F12 medium 

without FBS and geneticin and used for patch-clamp experiments. Immediately before 

electrophysiological recordings, cells were allowed to settle onto the coverglass bottom of a 3 ml 

experimental chamber. Data were collected within 4-6 hours after cell isolation. 

4.2.1.2 Whole-cell voltage-clamp recordings. Cells were observed with a mechanically 

stabilized inverted microscope (Telaval 3, Carl Zeiss, Jena, Germany) equipped with a 40X 

objective lens. The test solutions were applied through a multibarreled pipette positioned close to 

the target cell. After each experiment on a single cell, the experimental chamber was replaced by 

another one containing a new sample of cells. All experiments were performed at room 

temperature (~22 ºC). 

The standard tight-seal whole-cell configurations of the patch-clamp technique
67-68

 were used 

to record macroscopic currents. Glass pipettes were drawn from WPI PG52165-4 glass on a two-

stage vertical micropipette puller (PP-83, Narishige Scientific Instrument Laboratories, Tokyo, 

Japan) and pipette resistance ranged from 1.5 to 2.5 MΩ.  

Whole-cell currents were filtered with a 4-pole lowpass Bessel filter (Axopatch 200A 

amplifier) at 2 kHz and digitized (Digidata 1440, Molecular devices) at a sampling frequency of 

200 kHz (5µs). The experimental recordings were stored on a computer hard disk for later 

analysis. Cells were placed in a recording chamber and perfused with extracellular solution 
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containing (in mM): NaCl 140, KCl 5, CaCl2 2, MgCl2 1, HEPES 10 and glucose 11; pH was 

adjusted to 7.4 with NaOH. In the cases were current was greater than 1 nA, NaCl was reduced 

to 50 mM in extracellular solution (by replacing it with N-methyl-D-glucamine) to reduce the 

effect of series resistance in Nav currents. The patch electrodes were filled with pipette solution 

containing (in mM): CsF 140, EGTA 10, HEPES 10, NaCl 5, MgCl2 2; the pH was adjusted to 

7.3 with CsOH. Whole-cell current stability was monitored by applying successive 10 ms 

voltage steps (from a holding potential of -70 mV to a test potential of -20 mV), discarding cells 

in which the peak current amplitude did not remain constant in time. After the current was stable 

(∼10 min), the same voltage-clamp step protocol was applied in the control or in the presence of 

compound candidates. We also included the inhibitory effect of 100 µM Phenytoin for 

comparative purposes. In all cases, the inhibition was observed as the decay in the peak 

amplitude.  

4.2.1.3 Statistical analyses. The effects of the compounds on Nav current were compared using 

paired t-test. A p value <0.05 was considered statistically significant. All data were expressed as 

mean ± S.E.M.  

4.2.1.4 Drugs and Reagents. CsF, EGTA and Na2ATP were purchased from Sigma Chemical 

Co. Accustase was purchased from ThermoFisher. All other reagents including DMEM medium 

and FBS were of analytical grade and purchased from local suppliers. N, N´-

diphenethylsulfamide, Losartan and Valsartan were dissolved in dimethyl sulfoxide (DMSO).  

Fresh aliquots of stock solutions of compound in DMSO were added to the bath solution on the 

day of the experiment. Appropriate amounts of DMSO were added to all control solutions 

without compound.  
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4.2.2 In vivo assays. The evaluation of the anticonvulsant activity followed the Anticonvulsant 

Drug Development (ADD) Program of the National Institute of Health.
4
 Adult male albino mice 

(18-23 g) of the same age and weight have been selected, in order to minimize biological 

variability. The animals were provided by the Faculty of Veterinary, National University of La 

Plata. They were maintained under a regime of 12-hr light/dark cycle and allowed free access to 

food and water, except during the time they were removed from their cages for testing. Every 

effort was made to minimize animal stress. The animal care for the experimental protocols was 

conducted in accordance with the NIH guidelines for the Care and Use of Laboratory Animals 

and it was approved by the Ethical Committee of Exact Sciences Faculty of University of La 

Plata.  

The candidates were administered intraperitoneally in physiological solution (volume of 0.01 ml/g 

body weight). We selected the concentrations of 30 and 100 mg/Kg for the candidates, and the assays 

were performed at 0.5 and 4 hours.  

Maximal electroshock seizures were provoked in mice by delivering a 60 Hz/50 mA electrical-

stimulus for 0.2 s via ear clip electrodes by means of a UGO Basile equipment. In these 

conditions, normal mice experience maximal seizures, characterized by a short period of tonic 

flexion followed by a longer period of tonic extension of the hind limbs and a final clonic 

episode.
4
 The anticonvulsant activity of the candidates was detected through the absence of the 

hind limbs extension.  
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Figure 1. Three states model of VGSC.11 The conformations are dependent on the voltage across the 
membrane.  
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Figure 2. A: Final model of the sodium Channel (isoform Nav1.2) in a closed conformation (Top and side 
view). B: DEKA ring.  
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Figure 3. Final model of the sodium Channel (isoform Nav1.2) in an open conformation (Top and side view). 
B: DEKA ring.  
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Figure 4. ROC-type curves obtained from docking simulations into the active site of the open (red) and close 
(blue) models of Nav1.2.  
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Figure 5. Chemical structures of the candidates and their docking scores for Nav1.2 and P-gp screening.  
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Figure 6. Effect of the candidates and Phenytoin on whole-cell Na+ currents mediated by hNav1.2 channels. 
Color code as follows: Phenytoin in violet, N,N´-diphenethylsulfamide in green, Ciprofloxacin in yellow, 

Valsartan in red, Losartan in blue and control solutions without compound in black. A: results obtained from 
a typical whole-cell voltage-clamp protocol (holding potential of -70 mV and test potential of -20 mV) 

applied under  control conditions or in the presence of the indicated compounds. B: Mean values ±ESM of 
the relative current blockage of Na+ currents by each drug. Statistically significant differences showing a 

p<0.05 were marked with an asterisk (Paired t-test).  
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Figure 7. Interactions predicted by docking simulations between the  candidates and Nav1.2. A: N, N´-
diphenethylsulfamide (carbon atoms in green, nitrogen atoms in blue) B: Ciprofloxacin (carbon atoms in 
pink, nitrogen atoms in blue) C: Valsartan (carbon atoms in purple, nitrogen atoms in blue). D: Losartan 
(carbon atoms in purple, nitrogen atoms in blue, chlorine atom in green). Hydrogen atoms attached to 

carbon atoms were omitted for simplicity.  
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