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ABSTRACT 

The oxidative stress generation in bacteria by the presence of antibiotics (in this case 

silver nanoparticles (AgNPs)) is already widely known. Previously, we demonstrated that 

AgNPs generate oxidative stress in Staphylococcus aureus and Escherichia coli mediated by 

the increase of reactive oxygen species (ROS). In this work we are demonstrating the 

consequences of the oxidative stress by the presence of AgNPs; these bacterial strains 

increased the levels of oxidized proteins and lipids. In addition, it was possible to determine 
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which reactive oxygen species are mainly responsible for the oxidative damage to 

macromolecules. Also, we found that the bacterial DNA was fragmented and the membrane 

potential was modified. This increase in the levels of ROS found in both, S. aureus and E. 

coli, was associated with the oxidation of different types of important macromolecules for 

the normal functioning of cell, so the oxidative stress would be one of the mechanisms by 

which the AgNPs would exert their toxicity in both strains, one Gram positive and the other 

Gram negative of great clinical relevance. 

 

1ABBREVIATIONS:8-OHdG: 8-hydroxy-2′-deoxyguanosine,  AgNPs: silver nanoparticles, ANS: 1-

anilino-8-naphthalene sulphonate, AOPP: Advanced Oxidation Protein Products, BIP: 2,2'-bipyridyl , CAT: 

catalase enzyme, dG: deoxyguanosine, GSH: glutathione, MANN: mannitol, MDA: Malondialdehyde, MHB: 

Mueller Hinton Broth, ROS: reactive oxygen species
1 

 

Keywords. Oxidative stress, bacteria, silver nanoparticles, macromolecules 

oxidation.1 

1. INTRODUCTION 

The great progress that has been made in nanotechnology in the last 10 years, has led 

to a big progress in different fields of study. We can find innumerable studies on the 

antimicrobial activity of AgNPs in different bacterial genera (1-4) in the medicine field but the 

mechanism by which they exert their action has a long way to investigate. Duran et al.(5) 

resume the latest research in the subject, where different mechanisms are proposed, such as 

the interaction between the plasma membrane and their rupture, interference on the 

                                                           

 

ACCEPTED M
ANUSCRIP

T



4 
 

respiratory chain, free radical generation, oxidation of essential cellular components, among 

others.  

It is already well known that oxidative stress is involved in the toxicity of different 

antibiotics (6, 7). It has been seen how different antimicrobials of clinical use produced 

oxidative stress in different bacterial genera, with the consequent oxidation of essential 

macromolecules and cell death (1-5, 8). Determination of the oxidation of macromolecules such 

as lipids, proteins and DNA is a feasible strategy that allows us to corroborate whether 

oxidative stress is involved in the antibacterial activity. 

It was documented how the membrane potential in Staphylococcus aureus was 

modified in presence of antibiotics that generated oxidative stress, using the probe 1-anilino-

8-naphthalene sulphonate (ANS), so it can also be applied as a technique to corroborate the 

oxidative stress generation(9,10). Another strategy is the use of ROS scavengers to determine 

which species is the most involved in the generation or damage caused by ROS. The ROS 

scavengers can act upon a specific species or on the total of species generated. Tiron is a 

physical sequestering agent of anion superoxide (O2
.-), 2,2'-bipyridyl (BIP) is a chelating 

agent of Fe2+ (in the Fenton reaction), it indirectly inhibits hydroxyl radical (HO•). Mannitol 

(MANN) is a specific chemical sequestering agent of HO• and the catalase enzyme (CAT) 

participates in the catalysis of hydrogen peroxide (H2O2). Finally, Glutathione (GSH) is a 

tripeptide that acts as a general redox ROS scavenger (11,12,13). 

We observed in previous results that biosynthesized AgNPs that shown antibacterial 

activity, generated an increase of ROS and reactive nitrogen intermediates (RNI) in S. aureus, 

Escherichia coli and Pseudomonas aeruginosa, being responsible for their toxicity and 

bacterial death (14). The aim of this work was analyze the damage of oxidative stress generated 
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by AgNPs over macromolecules and membrane potential in bacteria, to evaluate AgNPs 

mechanism of toxicity. According to the above mentioned, we set out to delve into the 

mechanism of action of AgNPs, by determining markers of oxidative damage, such as 

proteins, lipids and DNA oxidation and changes in membrane potential, in a Gram positive 

and Gram negative bacterial gender. 

2. MATERIALS AND METHODS 

2.1. Chemicals and reagents: Luria Bertani broth and the probe ANS from MP 

Biomedicals (France), silver nitrate (AgNO3), potassium iodide (KI), Chloramine T, 

Phosphate Buffer Solution (PBS) from Ciccarelli (Argentina), Mueller Hinton broth from 

Britania (Argentina), Trichloroacetic acid from BioPack (Argentina), thiobarbituric acid, 

Tiron, GSH, BIP, CAT, MANN, and 8-hydroxy-2′-deoxyguanosine (8-OHdG, ≥ 98%) and 

deoxyguanosine (dG, ≥ 99%) were all purchased from Sigma-Aldrich (Argentina). 

2.2. Bacterial strains: S. aureus ATCC 29213 and E. coli ATCC 25922 were used for 

the assays. The strains were grown aerobically in MHB for 24 h at 37°C. 

2.3. Biosynthesis of AgNPs. The AgNPs were prepared according to the described by 

Quinteros et al. (15). An overnight culture of P. aeruginosa was centrifuged and obtained the 

supernatant. An AgNO3 solution (10 mM) was added to the supernatant and incubated for 24 

h with constant stirring at 37 °C. The AgNPs obtained were characterized by 

spectrophotometry (on a Shimadzu UV-vis spectrophotometer), transmission electron 

microscopy (TEM) (JEM-JEOL1120 EXII model microscope operating at 80 kV) and 

dynamic light scattering (DLS) Delsa Nano C instrument (Beckman Coulter) (16). 

2.4. Advanced Oxidation Protein Products (AOPP). AOPP levels were determined by 

spectrophotometric method, which uses the Chloramine T as a witness of the positive control, 
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which in presence of KI, absorbed at 340 nm. The initial inoculum work was contacted with 

0.5 mL of AgNPs (3, 7.5 and 15 pM) or phosphate saline buffer (PBS -pH 7) as control 

without AgNPs. In a previous study we determined that the maximum ROS generated by 

AgNPs for S. aureus and E. coli was 1 and 4 h, respectively (14). From these data, in this case, 

the samples were taken at different times 0, 1, 4 and 24 h. To each sample 50 µL of KI 1.16 

M and 50 µL of acetic acid were added and was measured at 340 nm by spectrophotometric 

(17). The concentrations of AOPP were expressed as chloramine-Tequivalents per mg of 

proteins (18). 

2.5. Lipid Peroxidation. Overnight cultures were centrifuged and the pellets were 

resuspended in PBS buffer (pH 7). 0.5 mL of inoculum was incubated with 0.5 mL of AgNPs 

(3, 7.5 and 15 pM) or PBS as control. For S. aureus, the samples were taken at 0, 1 and 24 h 

of contact, and 0, 4 and 24 h for E. coli. To each sample, 1 mL trichloroacetic acid 35% w/v 

was added and incubated at room temperature for 20 minutes in darkness. Then, 1 mL of 

thiobarbituric acid was added and incubated at 80° C for 30 minutes. After cooling in an ice 

bath, the samples were centrifuged and the absorbance of the supernatant were measured at 

535 nm by spectrophotometry. The results were expressed as nM of MDA per mg of protein 

(8). 

2.6. Membrane potential. Modifications in the membrane potential were determined 

by measuring the fluorescence of ANS probe (9). The overnight cultures of studied strains 

were centrifuged and resuspended in the PBS buffer. The inoculum obtained (0.5 mL) was 

incubated with 0.5 mL of AgNPs (15 pM) or PBS (control sample). According to previous 

studies, samples were taken at different times for E. coli (0, 4 and 24 h) and for S. aureus (0, 

1 and 24 h) (11). Then, 40 µL of probe (60µM) was added to each sample and incubated for 

20 minutes at room temperature. The fluorescence was measured with a spectrofluorometric 
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(Synergy HT Multi-Mode Microplate Reader - Biotek Instruments, Inc.) with the excitation 

and emission wavelengths at 360 and 520 nm, respectively. The results were expressed as 

fluorescence per mg of protein (19). 

2.7. DNA oxidation. Overnight culture (0.5 mL) were incubated with 0.5 mL AgNPs 

(15 pM) or PBS buffer as control sample (pH 7) at 37 °C, for 2 h with stirring. DNA extraction 

was performed using the EasyPure bacterial genomic DNA kit following the manufacturer's 

instructions (20). Oxidation of nucleoside dG was determined through the ratio of areas of 

corresponding peaks attributed to dG or 8-OHdG. Levels of dG and 8-OHdG were quantified 

by using standards of non-oxidized and oxidized nucleoside, respectively (21).The HPLC 

system (Jasco chromatograph), consisting of a quaternary pump (PU-2089s Plus), equipped 

with a Jasco Multiple Wavelenght detector (Jasco UV-2077 Plus) set at 254 nm. 

Chromatographic separations were performed on a C18 Restek (25 cm x 4.5 mm x 5 µm) 

column and a guard column was also used, Phenomenex Security Guar Fusion® RP (4 x 30 

mm), both thermostatized at 30 ºC. Chromatographic analyses were performed with the 

mobile phase consisting of citrate buffer in water (pH = 5.1): Methanol HPLC grade (93:7, 

v/v) mixture at a flow rate of 1 mL/min with 20 µL injection volumes being applied. 

Retention times were 9.6 min and 13.2 min from dG and 8-OHdG, respectively. The total run 

time was 15 minutes. 

2.8. Interaction nanoparticles-DNA. In order to analyze the interaction between the 

bacterial DNA and the biosynthesized nanoparticles, variations in the DNA spectrum were 

observed when the AgNPs were added. The absorbance of DNA was measured between 0.1 

and 1 (5 – 50 µg/mL of DNA double strain) in a Shimadzu UV-vis spectrophotometer. First, 

E. coli 25922 DNA was extracted using the EasyPure® bacterial genomic DNA kit following 

the manufacturer's instructions (20). To determine the peak corresponding to the E. coli DNA, 
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200 µL of DNA extract was taken (initial sample, 20 µg/mL final concentration) and 

measured spectrophotometrically, between 200 and 550 nm. Then, 20 additions of 5 µL 

AgNPs (15 pM final concentration) or PBS buffer (control sample, pH 7) were made 

consecutively (14). Each sample was measured spectrophotometrically to observe changes in 

the peak to bacterial DNA (22, 23). 

2.9. Statistical analysis. The assays were performed in triplicate. Data were expressed 

as means ± SD and analyzed by the Student’s t-test. *P<0.5, **P<0.05, ***P<0.005 were 

used as the levels of statistical significance. 

3. RESULTS  

3.1. Synthesis and Characterization of AgNPs. The formation of AgNPs was observed 

by UV-vis spectroscopy. The spectral curve was performed between 200 and 1000 nm. The 

characteristic peak of AgNPs was obtained at 400 nm (Figure 1A). TEM images show AgNPs 

with uniform size (approximately 40 nm) and pseudoespheroidal form (Figure 1B). These 

data were confirmed by means of DLS. 

3.2. Advanced Oxidation Protein Products (AOPP). Three concentrations of AgNPs 

were evaluated at different times and changes in AOPP levels were analyzed. For both strains, 

AOPP levels were AgNPs concentration dependents (P<0,005) and the maximum AOPP 

values were observed at the highest concentration of AgNPs evaluated (15 pM) (P<0,005) 

(Figure 2 A y B). Catalase, GSH and MANN addition produced a reduction in 29%, 50% and 

75% in AOPP values for E. coli at the time of maximum generation of ROS. For S. aureus, 

it was found that the addition of BIP and CAT reduced the protein oxidation in 35% and 30%, 

respectively, at the time of maximum generation of ROS (Supplementary data). 

3.3. Lipid Peroxidation. Lipid peroxidation was evaluated by determining the 

concentration of MDA at different concentrations of AgNPs and different times. It was 
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observed that E. coli MDA values were concentration dependent (P<0.005). The maximum 

value of MDA was found for the highest concentration of AgNPs at 24 h of contact (P<0.005) 

(Figure 2 C). For S. aureus, the concentration of MDA was significantly higher after 24 h of 

treatment with high concentrations of nanoparticles (15 pM) (P<0.005), whereas no 

differences were observed between lower concentrations of nanoparticles and the untreated 

sample (Figure 2 D). The addition of Tiron and GSH, reduced MDA values in E. coli in 32% 

and 47%, in the maximum time of ROS generation (4 h) respect to the control without 

scavengers. The lipids oxidation was reduced in 46%, 36% and 22% with BIP, CAT and 

MANN respectively, in S. aureus, at the maximum level of ROS (1h) (Supplementary data). 

3.4. Membrane potential. In contrast to Gram positive strain, it was found that E. coli 

values of fluorescence increased in comparison with the control without AgNPs. The 

membrane modifications profiles obtained for both, treated and control samples, were 

similar. A decrease in the fluorescence levels at 4 h, and an increase at 24 h of contact between 

AgNPs and E. coli cells were observed (Figure 3A). The S. aureus strain showed an increase 

in fluorescence at the maximum generation of ROS. Then, was observed a reduction in the 

measured fluorescence (Figure 3B). 

3.5 DNA oxidation. The quantification of 8-OH-dG inside the cells is the most widely 

methodology used to evaluate the oxidative damage in the DNA molecule. On the one hand, 

it has been seen in E. coli an increase of 56 % in the level of 8-OH-dG with respect to the 

control sample. On the other hand, was not observed the peak corresponded to AgNPs, 

probably because the fragmentation or the destruction of the DNA during assays (Table1). 

3.6. Interaction AgNPs-DNA. The spectral curve of the DNA between 200 and 800 

nm was performed. The ratio between the absorbance measured at 260 and 280 nm, 
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respectively was 1.8, indicating that DNA extraction was pure, without contaminants like 

proteins, ARN or others. The first additions of AgNPs (5 µL to 10µL) produced an increase 

in the absorbance of the DNA (Figure 4A). Then, with the following aggregates (from 15 µL 

to 130 µL of AgNPs), the spectral curve of DNA changed into another completely different. 

The peak at 260 nm disappeared. The appearance of two peaks was observed, one small at 

approximately 250 nm (DNA fragmentation) and another large peak at 290 nm (Figure 4B). 

Finally, the peak at 250 nm completely disappeared (total DNA destruction) and was 

observed one peak at wavelengths near 400 nm (Figure 4C). 

4. DISCUSSION 

The antibacterial activity of AgNPs has been demonstrated in a large number of 

studies published in recent years (1-4, 24, 25). However, the exactly mechanism involved in their 

bacterial toxicity remain unclear. Different ways were proposed, for example, McQuillan et 

al, suggested that the antimicrobial activity of the AgNPs takes place after the dissolution of 

the cellular membrane in E. coli K21,and then the silver ions are responsible for the 

antibacterial activity(26). Furthermore, there are a lot of publications that show the formation 

of ROS as a result of interactions between AgNPs and bacteria (14, 27, 28). In previous studies, 

it was found that the AgNPs had antimicrobial activity and generated an increase of ROS in 

E. coli, S. aureus and P. aeruginosa, leaving to the cells in a state of oxidative stress (15) . In 

this work, we found that in E. coli and S. aureus there was oxidative damage in proteins and 

lipids. Also, the addition of ROS scavengers allowed analyzing which reactive species was 

responsible for the oxidative damage observed. According to the above, the increase in 

intracellular ROS levels would be the main responsible for the oxidation of proteins. 

However, the main difference between both strains was that the increase in protein oxidation 
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of E. coli was gradual during 24 h of contact, with the maximum concentration of AgNPs, 

and for S. aureus, the increase of AOPP was abr1upt during the first hour of contact with 

AgNPs and after was constant until the end of the assay. At low concentrations of AgNPs, S. 

aureus gradually increases its AOPP levels until getting the maximum at 24 h, while in E. 

coli the values are kept constant over time. In the control sample without NP large amounts 

of AOPP were quantified, higher than in the treated sample with AgNPs at low 

concentrations, due to a progressive accumulation in the cells (24 h incubation). An oxidative 

stimulus (low NP concentrations and long incubation times) produces an incomplete 

oxidation of the proteins and also an activation of the proteolytic systems of the cells to 

recover those proteins completely oxidized. However, high concentrations of NPs produce 

high protein damage by ROS, saturating the proteolytic pathways (samples treated with 7.5 

and 15 pM at 0 and 1 h of incubation), so the levels of AOPP are high. Páez et al., 

demonstrated that the generation of intermediate products of oxidized proteins, such as 

carbonyls, was related to the generation of AOPP produced by ciprofloxacin (CIP) in S. 

aureus. The AOPP are the products that lead to the regeneration of proteins17. 

As in S. aureus, this behavior can be observed in E. coli at 4 h of incubation with NPs. 

The greater stimulus of ROS leads to a greater oxidation of proteins with the consequent 

degradation by the bacterial proteolysis systems. At 4 hours of contact between E. coli and 

AgNPs, the presence of MANN and CAT reduced the oxidation of the proteins. In S. aureus, 

the addition of BIP and CAT, decrease the AOPP values at the maximum of ROS (1h). These 

results indicated that probably the HO• was the main species responsible for the oxidative 

damage observed in both genders. 

Respect to lipid peroxidation, we observed that MDA values increase in both strains 

during 24 h of contact with AgNPs. In E. coli, the degree of lipid peroxidation depended on 
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the incubation time and the concentration of AgNPs, while in S. aureus, only observed that 

the values of MDA increased in the 24 h of contact when the maximum concentration of 

AgNPs was assayed. This results agrees with Applerot et al. (29) where CuO nanoparticles 

increased MDA values in E. coli and S. aureus, being more significantly in E. coli. The 

addition of ROS scavengers in E. coli produced a decrease in MDA values with GSH and 

Tiron, in the maximum generation of ROS. In S. aureus, the addition of CAT and BIP 

decreased lipid peroxidation. These results indicated that the main responsible for lipid 

oxidation were O2
•-and HO• for E. coli and S. aureus, respectively. 

The ANS probe is widely used to observe variations in the potential of the lipid 

membrane (30).With respect to the effect of AgNPs presence on the membrane potential, in E. 

coli firstly a decrease in the probe fluorescence was observed and then an increase in the 

fluorescence value at 24 h of incubation with NPs.  For S. aureus, an inverse fluorescence 

profile was obtained, there was an increase in the fluorescence in the first hour, and then a 

decrease in the fluorescence value was observed, until reaching the basal value of the control 

sample. This observation would indicate that the presence of AgNPs would produce a change 

in the potential of the membrane. The differential action of AgNPs on both strains may be 

due to the difference in the membrane composition of Gram positive and Gram negative 

bacteria. However, there are other parameters to consider, since Páez et al.(9) reported that 

different antibiotics which produced oxidative stress as a mechanism of action, led to a 

modification in the membrane potential of the sensitive S. aureus strain, whereas in the 

resistant S. aureus strain there were not significant changes observed. These results show an 

integral analysis between ROS generation and oxidative damage in macromolecules. In 

addition, it was possible to show which is the main species derived from the incomplete 

reduction of oxygen that produced the damage in lipids and proteins, in both strains. 
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The DNA damage produced by AgNPs was studied to understand its toxicity in 

prokaryotic cells (31). In this work, it was observed oxidation, fragmentation and destruction 

of DNA bases. It has been described that free radicals can cause oxidative modifications in 

DNA, including chain breakage and oxidation of its bases(32). Among oxidized products of 

DNA damage, 8-OHdG is the most studied because it is easily quantifiable (32).In E. coli, it 

was found that AgNPs produced an increase of 60% in the oxidized base with respect to the 

control without NPsAg. However, in S. aureus, it was not possible to quantify the oxidized 

and non-oxidized base after incubation with AgNPs. The absence of DNA signal, could 

indicate the partial or total destruction in S. aureus DNA. UV-vis spectroscopy was used to 

determine DNA fragmentation. It is a simple and useful technique to analyze the interaction 

of DNA with small molecules (33). The results obtained in this work are comparable with 

other studies, where the addition of AgNPs (synthesized from fungi) increased the intensity 

of DNA peak at 260 nm. This change was produced by the formation of a complex between 

AgNPs and DNA (34). Additionally, it is known that the UV-vis spectrum of the guanosine 

nucleotide can be measured at wavelengths close to 250 nm. So, it is probably that the peak 

of DNA observed at 250 nm in this work, corresponds to the fragmentation of DNA by the 

action of AgNPs. 

5. CONCLUSION 

A biosynthetic product could be obtained with the advantages that this represents, 

using the culture supernatant of a P. aeruginosa reference strain and without the addition of 

toxic reducing agents. The AgNPs could be characterized by different techniques that 

confirmed the pseudospheroidal form and uniform distribution. Also, an increase in the levels 

of oxidized lipids and AOPP was observed in both strains studied. Probably, these changes 
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produced the modifications in membrane potential of the cells. The damage to the bacterial 

DNA could be corroborated. It was observed oxidation and fragmentation in the bacterial 

DNA. Based on these results, cellular damage by the generation of oxidative stress with the 

consequent oxidation of macromolecules should be considered as the main mechanism of 

action by which AgNPs exert their antimicrobial activity. 

In this way, we make a great contribution with respect to the toxicity produced by 

AgNPs in bacterial strains of clinical relevance. 
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FIGURE 1. UV-vis spectrum (A) and TEM image (B) of AgNPs biosynthesized. 

FIGURE 2. Determination of AOPP and MDA in S. aureus ATCC 29213 (A and C ) and E. 

coli ATCC 25922 (B and D)incubated with different concentrations of AgNPs or without NPs 

as the control.  **P<0.05, *** P<0.005. 

FIGURE 4. Determination of MDA in S. aureus ATCC 29213 (A) and E. coli ATCC 25922 

(B) incubated with different concentrations of AgNPs and without AgNPs as control. 

**P<0.05, ***P<0.005. 

FIGURE 6. Membrane potential determination in S. aureus ATCC 29213 (A) and E. coli 

ATCC 25922 (B) incubated with AgNPs and without AgNPs as control. 

FIGURE 7.E. coli DNA interaction: (A) with AgNPs 5-10 µL, B) with AgNPs 80- 130 µL 

and C) with AgNPs 150- 210 µL. 
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TABLE 1. Relationship between oxidized and non-oxidized nucleoside in E. coli and S. 

aureus, with and without AgNPs (15 pM).  

 8-OHdG/dG 

 E. coli  
 

S. aureus 

Control 0,87 

 

0,73 

Treated sample 1,39* ----- 
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