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Short title: 

β-NGF and TrKA expression in llama male 

Abstract 

β-Nerve Growth Factor (β-NGF) is a seminal plasma element, responsible for inducing 

ovulation in camelids. The main organ of β-NGF production remains nondescript. The 

aims of this study were: (1) characterize gene expression and protein localization of β-

NGF and its main receptor TrKA in the llama male reproductive tract, and (2) 

determine whether the seminal β-NGF interacts with ejaculated sperm by localizing β-

NGF and TrKA in epididymal, ejaculated, and acrosome reacted (AR) sperms and, 

additionally, by identifying β-NGF presence in sperm-adsorbed proteins (SAP). Both 

β-NGF and TrkA transcripts are widely expressed along the male reproductive tract, 

with a higher expression level of β-NGF at prostate (p<0.05). β-NGF immunolabeling 

was only positive for prostate, whereas TrKA label was present in epithelial and 

muscular cells of testis, prostate, bulbourethral glands and epididymis. Using an 
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immunofluorescent technique, β-NGF was co-localized with TrKA in the middle piece 

of ejaculated and AR sperm. However, only TrKA was observed in epididymal sperm 

indicating that β-NGF could have a seminal origin. This was also confirmed by 

identification of four β-NGF isoforms in SAP. This study extends the knowledge about 

the participation of β-NGF/TrkA in llama reproduction, providing evidence that may 

have roles in the regulation of sperm physiology. 

Graphical Abstract 

Both β-NGF and TrkA transcripts are widely expressed along the male reproductive 
tract, with a higher expression level at prostate. TrKA but no β-NGF was observed in 
epididymal sperm, whereas β-NGF and TrkA were present in ejaculated sperm 
(acrosome-reacted and non-acrosome-reacted). Four β-NGF isoforms were observed in 
sperm adsorbed proteins. 

 

Keywords: Spermatozoa, seminal plasma, β-nerve growth factor, South American 

Camelids 
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SAP, sperm-adsorbed protein; EE, electroejaculation; OIF, ovulation-inducing factor; 

SP, seminal plasma; AR, acrosome reacted. 
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1. INTRODUCTION 

Nerve growth factor-beta (β-NGF) is a polypeptide growth factor that regulates 

survival, growth, and differentiation of specific peripheral and central neurons via its 

high-affinity receptor, tyrosine kinase receptor A (TrKA), and low-affinity receptor, 

p75 neurotrophin receptor (p75NTR) (Dechant & Barde, 1997; Schecterson & 

Bothwell, 2010). Although initially discovered in the neural tissue, β-NGF was 

subsequently found to be expressed in a large array of non-neuronal cell types 

(Ceccanti et al., 2013; Ehrhard, Erb, Graumann, & Otten, 1993; Ricci et al., 2007; 

Yamamoto, Sobue, Yamamoto, & Mitsuma, 1996). 

Several studies have shown that β-NGF also influences the reproductive function of 

both males and females (Bao et al., 2014; Li & Zhou, 2013). In this regard, 

expressions of β-NGF and its high and low affinity receptors, TrKA and p75NTR, 

have been detected in different organs of the male reproductive tract in a large variety 

of species (Li et al., 2005; MacGrogan, Despres, Romand, & Dicou, 1991; Shikata et 

al., 1984; Wang, Dong, Chen, Hei, & Dong, 2011). The prostate and seminal vesicles 
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are the major sites of β-NGF expression in the bull (Harper & Thoenen, 1980; 

Hofmann & Unsicker, 1982), the male guinea pig (Harper et al., 1979), the rat 

(Squillacioti, De Luca, Paino, Langella, & Mirabella, 2009) and the rabbit (Maranesi et 

al., 2015). Both β-NGF and its corresponding receptors (TrKA and p75NTR) have 

been implicated in autocrine and paracrine regulation of spermatogenesis (Mutter, 

Middendorff, & Davidoff, 1999; Parvinen et al., 1992; Persson et al., 1990; Seidl, 

Buchberger, & Erck, 1996) and also in testis morphogenesis (Russo et al., 1999). 

Moreover, β-NGF might play a role in regard to sperm function. Presence of β-NGF 

and its receptor TrKA have been reported in hamster epididymal sperm (Jin, Tanaka, 

Watanabe, Matsuda, & Taya, 2010) and in ejaculated bull and human sperm (Li et al., 

2010; Li, Zheng, Wang, & Zhou, 2010); supporting evidence that β-NGF modulates 

certain sperm functions such as apoptosis, sperm motility and acrosome reaction in a 

time- and dose-dependent manner (Jin, Tanaka, Watanabe, Matsuda, & Taya, 2010). 

The β-NGF has also been described in the seminal fluid of several livestock species 

(Adams, Adams, Singh, & Baerwald, 2012; Druart et al., 2013).  

In camelids, β-NGF was pointed as the major ovulation-inducing factor (OIF) 

component of seminal plasma (SP) capable of inducing ovulation in llamas (Ratto, 

Delbaere, Leduc, Pierson, & Adams, 2011), alpacas (Kershaw-Young, Druart, 

Vaughan, & Maxwell, 2012) and dromedary (Fatnassi et al., 2017). Additionally, a 

recent study in the rabbit, other reflex ovulator species, also postulated the β-NGF as 

the main ovulation inducing factor of the seminal plasma (constituting 1.5% of the 

total proteins). The β-NGF may induce ovulation via endocrine and neural 
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mechanisms (Maranesi et al., 2018). Similar findings were evidenced in 

urethrostomized llamas (Berland et al., 2016).  

A recent study by immunohistochemistry indicates that the primary seminal source of 

β-NGF would be the prostate in llamas (Bogle et al., 2018), however there is not 

information regarding to the gene expression of this factor. Similarly, it is also 

unknown if this factor is capable of influencing the sperm physiology in these species, 

considering that concentration of β-NGF is particularly high in the SP of camelids, up 

to 15–45% of total protein (Fatnassi et al., 2017; Tanco, Ratto, Lazzarotto, & Adams, 

2011). 

The present study has, therefore, been undertaken to: (1) determinate the presence and 

abundance of β-NGF and TrKA transcripts and protein localization in the male 

reproductive tract in llamas, (2) determine whether the β-NGF of SP interacts with 

ejaculated sperm by localizing β-NGF and TrKA in epididymal, ejaculated non-

reacted, and ejaculated acrosome reacted sperm and, additionally, by identifying its 

presence in sperm-adsorbed proteins (SAP). 

2. RESULTS 

Experiment 1 

mRNA relative abundance of β-NGF and TrKA in llama male reproductive tract 

Transcripts for β-NGF and TrKA were detected in testis, epididymis (head, body, and 

tail), bulbourethral gland and prostate, but with distinct abundance (Figure 1). β-NGF 

relative abundance was greater in the prostate than in the testis, body, and tail of 
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epididymis and bulbourethral gland (p < .05). No statistical differences were found for 

epididymis head expression. While, mRNA relative abundance of TrKA was at steady 

state amounts between testicles, prostate, bulbourethral glands and epididymis.  

Immunolocalization of β-NGF and TrKA in the reproductive tract of llama males 

The immunopositive reaction of TrKA was detected along the reproductive tract, 

whereas only the prostate showed positive immunostaining for β-NGF (Figure 2). No 

immunostaining was in control sections. 

In testicles, clear immunostaining of TrKA was observed in seminiferous tubules: 

Sertoli cells, spermatocytes, and spermatids (Figure 3a). A strong reaction was also 

noted in the Leydig cells. No immunoreaction was observed in the tunica albuginea. 

In the caput of the epididymis, positive staining for TrKA was restricted to the 

epithelial cells, being with a strong mark in the stereocilia. All epithelial cell types and 

smooth muscles of the corpus and cauda epididymis were strongly positive for TrKA 

(Figure 3b-d). 

Within the tubuloalveolar bulbourethral glands, only the apical epithelium of the ducts 

exhibited a regular TrKA immuno-staining, whereas the mark was irregularly 

distributed in the acini and smooth muscle (Figure 3e). 

In the prostate, positive labeling for TrKA was detected in the apical secretory 

epithelium, whereas mild mark was observed in the smooth muscles underlying gland 

cells (Figure 3f).  
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Strong immuno-staining of β-NGF was localized in the whole cytoplasm of epithelial 

cells of prostate glandular epithelium having accumulation of the reaction products on 

the supra-nuclear portion. No mark was detected at stroma level (Figure 2f). 

Experiment 2 

Immunolocalization of β-NGF and TrKA in epididymal sperm, ejaculated non-

acrosome reacted and ejaculated acrosome reacted sperm 

TrKA protein was present in the middle piece of epididymal and in ejaculated sperm, 

both acrosome reacted (AR) and non-AR (Figure 4 a-c).  

β-NGF was mainly localized in the middle piece of both AR and non-AR ejaculated 

sperm, whereas no label was detected in epididymal sperm (Figure 4 d-e).  

Experiment 3 

Identification of β-NGF in llama SAP 

β-NGF western analysis of SAP revealed four β-NGF species of 13, 17, 23 and 35 kDa 

(Figure 5). Among them, the 13, 23 and 35 kDa protein bands identity was confirmed 

by mass spectrometry, showing sequence homology with the Camelus ferus Beta-

nerve growth factor precursor sequence registered in the database of the National 

Centre for Biotechnology (Accession Number EPY74508.1) (Table 1). The identity of 

the 17 kDa band was undetermined due to the absence of a significant score. 
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3. DISCUSSION 

To the best of our knowledge, this is the first report that describes the differential 

expression of mRNA and proteins of β-NGF and its high affinity receptor TrKA, in the 

reproductive tract of male llamas. β-NGF, as a component of the seminal plasma, has 

an important role in camelids reproduction, being responsible for inducing ovulation 

(Ratto, Delbaere, Leduc, Pierson, & Adams, 2011). In other species, both prostate and 

vesicular glands are the major sites of β-NGF expression (Hofmann & Unsicker, 1982; 

Maranesi et al., 2015; Squillacioti, De Luca, Paino, Langella, & Mirabella, 2009). It is 

known that in camelids vesicular glands are absent (Tibary & Anouassi, 1997). In the 

present study, the noticeable greater amounts of β-NGF transcripts and protein found 

in the prostate would indicate that, in the llama, seminal β-NGF has a prostatic origin. 

A recent report, based on immuno-histochemical analysis, also pointed the prostate as 

the main source of β-NGF production in llamas (Bogle et al., 2018). Authors found β-

NGF positive signal along the male reproductive tract, whereas in the present study 

was only found in the prostate. This could be explained by the different primary 

antibody working dilutions used in these two studies (1:400 vs 1:1,500). Our results 

also differ from reports in other mammals in which positive β-NGF immunostaining 

was observed not only in prostate but also in testicles, epididymis and other accessory 

glands (e.g. rabbit [Maranesi et al., 2015], golden hamster [Jin, Tanaka, Watanabe, 

Matsuda, & Taya, 2010], and rat [Li et al., 2005]). On the other hand, β-NGF gene 

expression was found along the male reproductive tract. Even though it is advised to 

use the lesser primary antibody concentration, it should be considered the possibility 
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that immunohistochemistry resulted less sensitive than PCR, therefore presence of low 

amounts of β-NGF in testis, epididymis and bulbourethral glands cannot be discarded.  

The presence of β-NGF specific receptor, TrKA indicates that the organs studied are 

capable of responding to β-NGF. Genetic expression of both, β-NGF and TrKA, would 

indicate a role in the reproductive functions. In the gonads, it has been postulated that 

β- NGF exerts an autocrine and/or paracrine function during testicular development 

and spermatogenesis (Koeva, Davidoff, & Popova, 1999; Persson et al., 1990). The co-

expression of β-NGF and its receptor TrKA, within the same apical epithelium and 

muscular cells of prostate also supports a possible regulatory function on cell 

development.  

In order to increase our knowledge about the functions of β-NGF described in 

camelids seminal plasma, we study its presence in spermatozoa. We revealed that β-

NGF receptor TrKA, but no β-NGF was expressed at epididymal sperm cells, whereas 

ejaculated sperm were immune-positive for both, β-NGF and TrKA. This observation 

led us to presume that β-NGF is provided by seminal plasma to the spermatozoa. 

Supporting this hypothesis, β-NGF was detected abundantly in SAP fraction, easily 

removed by 0.5 M KCl. This technique is consistent with descriptions for SAP in 

llama (Zampini, Sequeira, Argañaraz, & Apichela, 2017) and other livestock (e.g., 

bulls [Einspanier et al., 1994; Manjunath, Bergeron, Lefebvre, & Fan, 2007], rams 

[Bergeron, Villemure, Lazure, & Manjunath, 2005; Pérez-Pé, Cebrián-Pérez, & 

Muino-Blanco, 2001], and boars [Garénaux et al., 2015]). 
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Western blot revealed four β-NGF isoforms in SAP, being more abundant the 13 kDa 

mature form. The 16.5 kDa mature form described by Seidah et al. (1996) could be 

coincident with the 17 kDa form here described. The 35 kDa precursor has been 

described in human prostate, as well as the partially processed 22-23 kDa form of pro-

NGF (Delsite, & Djakiew, 1999). 

In the present study, β-NGF localization was restricted to the middle piece of llama 

ejaculated sperm. By contrast, in human sperm β-NGF was located at the middle piece 

and the neck (Li et al., 2010), in bovine above the equatorial region of the sperm head 

and tail (Li, Zheng, Wang, & Zhou, 2010) and in golden hamster the tail and neck (Jin, 

Tanaka, Watanabe, Matsuda, & Taya, 2010). Indeed, contrary to the observations 

described by those authors, we found that TrKA co-localize with β-NGF in llama 

sperm. Taken together, the results of the present study suggest a species-specific 

localization of β-NGF and its receptor in the mammalian spermatozoa that could be 

related to different functional response. 

According to our results, the consistent expression of β-NGF in the sperm middle 

pieces can have an impact on mitochondria function. In this regard, it has been 

recently demonstrated that β-NGF stimulates mitochondrial activity and biogenesis in 

TM4 Sertoli cells line (Jiang et al., 2018). 

In the sperm cell, presence of β-NGF in the middle piece could also be related to 

sperm motility. Studies performed on ejaculated sperm (e.g. bovine [Li et al., 2010], 

human [Shi et al., 2012]) and sperm from epididymis (golden hamster [Jin, Tanaka, 

Watanabe, Matsuda, & Taya, 2010]), demonstrate that sperm motility increases in a 
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time- and dose-dependent manner when β-NGF is added to the sperm culture medium. 

It is worthy to distinguish that, in camelids, ejaculated sperm lack of progressive 

motility, having only oscillatory movement (Giuliano et al., 2008); whereas sperm 

collected form epididymis display forward progressive motility (Morton, K. M., 

Bathgate, R., Evans, G., & Maxwell, W. C. , 2007). Moreover, when seminal plasma is 

removed or diluted, the progressive motility increases (Kershaw-Young & Maxwell., 

2011; Fumuso et al., 2018). These findings could indicate that one or several factors 

present in seminal plasma modulate sperm motility. More in-depth studies are needed 

to determine if β-NGF is one of them. β-NGF was still present in acrosome reacted 

sperm, suggesting that it may be necessary for the fertilization process. Presence of β-

NGF in llama uterine and oviductal fluid is still unknown, but it can be expected to 

reinforce and control its action during sperm transit along the female reproductive 

tract. 

In conclusion, our findings confirm that the β-NGF/ TrKA system is present in 

testicles, prostate, bulbourethral glands and epididymis. The prostate is the main 

source of seminal β-NGF in llamas. 

For the first time, presence of β-NGF and its main receptor were described in the 

sperm of camelids being co-localized in the middle piece.  
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4. MATERIALS AND METHODS 

4.1 Experiment 1. Presence of β-NGF and TrKA in the reproductive tract of 

llama males 

4.1.a Animals 

Three male llamas between 3 and 4 years old from a local abattoir (Bella Vista, 

Tucumán, Argentina) localized at 27°01′58″S latitude and 65°18′25″W longitude on 

the sea level were used during the winter of 2016. 

4.1.b Reproductive organs 

The reproductive organs were obtained immediately after slaughtering, in accordance 

with protocols approved by local institutional animal care. The testis, epididymis 

(head, body, and tail), bulbourethral glands and prostate were dissected into small 

pieces (less than 0.5cm thick). The tissues were fixed with 10% formaldehyde in PBS 

(pH 7.4) for histological and immunohistochemical analysis or stored in RNAlater 

solution (Ambion, Austin, TX, USA) at −70°C until RNA isolation, according to the 

manufacturer’s instructions, for gene expression analysis. 

A section of the epididymis was reserved for sperm collection, as described below. 

4.1.c mRNA relative abundance of β-NGF and TrKA 

Fifty mg of testis, epididymis (head, body, and tail), bulbourethral gland and prostate 

samples, stored in RNAlater solution were used to isolate mRNA using the Genelute 

Direct mRNA Miniprep kit (Sigma Co., St. Louis, MO, USA), according to the 
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manufacturer’s instructions. Reverse transcription was performed using Moloney 

murine leukemia Virus (M-MLV) reverse transcriptase (Promega, Madison, WI) and 

oligo (dT)15 primer. The reaction mixture (25 μl) consisted of 5.5 μl of mRNA, 50 

mMTris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 0.5mM of each 

dNTP, 25 pmol of oligo (dT)15, 200 units of reverse transcriptase, and RNase-free 

water. Reactions were performed by incubating the mixture in a thermal cycler at 42°C 

for 90 min, followed by enzyme inactivation at 94°C for 5 min. 

PCR amplification of testis, epididymis (head, body, and tail), bulbourethral gland and 

prostate cDNA samples (n = 3) were carried out in a final volume of 10 μl containing 

0.5 μl of cDNA, 2 μl of 5X Green GoTaq Reaction Buffer (pH 8.5), 0.2mM of each 

dNTP, 2.5 units of GoTaq DNA polymerase (Promega), and 1 μM of each primer pair. 

Primer sequence for NGF and TrkA transcripts are displayed in table 2. 

The optimized cycling conditions for β-NGF were as follows: denaturation at 94°C for 

5 min; 35 cycles of 94°C for 15 s, 58°C for 25 s, and 72°C for 20 s; followed by a final 

step at 72°C for 5 min. The amplification of TrKA was under the following condition: 

94°C for 5 min; 40 cycles of 94°C for 15 s, 60°C for 25 s, and 72°C for 20 s with a 

final extension at 72°C for 5 min. PCR products were separated on 1.5% agarose gels 

containing SYBR Safe (Invitrogen, Carlsbad, CA). 

For semi-quantitative expression analysis, gel images were captured with an Optio M 

90 Pentax digital camera, and the optical densities of PCR products were quantified 

using ImageJ 1.42q software (NIH, Bethesda, MD). The relative abundance of the β-
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NGF and TrKA transcripts were normalized against that of ACTB (reference gene, 

Table 2). 

4.1.d Histology and Immunohistochemistry  

Testis, epididymis (head, body and tail), bulbourethral gland and prostate tissues fixed 

with 10% formaldehyde were dehydrated in a graded series ethanol, cleared in 

chloroform and embedded in paraffin blocks. Serial sections (5 μm) were mounted on 

positively-charged slides (HDA microscope slides, Cat. No. HDAS001A,Yancheng 

Huida Medical Instruments Co., Ltd., China). 

After deparaffinization with xylene and rehydration, the tissue sections were incubated 

at 37°C for 20 min with Proteinase K solution (10 μg/μl in TE Buffer, pH 8.0) (Sigma) 

for antigen retrieval, followed by incubation in TE Buffer (50 mMTris Base, 1 mM 

EDTA, 0.5% Tritón X-100, pH 8.0) at room temperature for 10 min. The slides were 

then blocked with 1% Bovine Serum Albumin (BSA) in PBS at room temperature for 

30 min. Then, they were incubated at 37°C for 1h with polyclonal antibodies against β-

NGF (dilution 1:1500, sc-548) or TrKA (dilution 1:100, sc-118) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA). After incubation with specific antibodies, 

sections were incubated for 20 min with a 1:200 dilution of the biotinylated anti-rabbit 

IgG antibody (B8895, Sigma). Following three washes with 0.02% Tween in PBS, 

slides were incubated with a 1:500 dilution of ExtraAvidin-Alkaline Phosphatase 

Conjugates (Sigma) for 30 min. and then incubated with SigmaFast substrate 

(BCIP/NBT, B5655, Sigma) until color development. Sections were counterstained 
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with Nuclear Fast Red (N3020, Sigma), dehydrated and mounted. The controls 

sections were processed by replacing primary antibody with blocking buffer.  

Slides were observed using a Leica DM 500 light microscope and images were 

captured with a Leica ICC50 HD camera using LASZ Leica Inc. Software. Staining 

and image acquisition were performed in parallel for the entire set. Identical image 

acquisition settings and exposure times were applied. 

4.2 Experiment 2. Presence of β-NGF and TrKA in sperm cells 

4.2.a Animals 

Five llama males between 6 and 10 years old from the Institute of Research and 

Technology for Animal Reproduction of the Faculty of Veterinary Sciences at the 

University of Buenos Aires (Buenos Aires, Argentina) localized at 34° 36′ latitude and 

58° 26′ longitude on the sea level were used for this experiment. Animals were kept on 

natural pasture (supplemented with bales of alfalfa), and water was provided ad 

libitum. Semen was collected during the spring of 2017. Epididymal sperm were 

obtained from 3 male llamas between 3 and 4 years old from a local abattoir (Bella 

Vista, Tucumán, Argentina). 

4.2.b Semen collection 

Semen collections were carried out using electroejaculation (EE) under general 

anesthesia with 0.2 mg/kg of xylazine IV (Xilazina®, Vetec, Argentina) and 1.5 mg/kg 

of ketamine IV (Ketamina®, ClínicaEquina, PRO-SER, Argentina), according to the 

technique described by Director et al. (2007). As EE requires general anesthesia, 
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collection was performed every 15 days on individual randomly selected males. All 

procedures (protocol 2014/16) were approved by the Committee for the Use and Care 

of Laboratory Animals (CICUAL) of the Faculty of Veterinary Sciences at the 

University of Buenos Aires.  

4.2.c Sperm isolation from semen samples  

Semen samples (n = 7) were diluted with saline solution (SS) and centrifuged at 800g 

for 10 min at room temperature to remove the seminal plasma. This procedure was 

repeated three times.  

Sperm smears were prepared on a positively-charged slide, and air-dried slides were 

then fixed with Carnoy’s solution (methanol/acetic acid 3:1) for 2 h at room 

temperature. 

To induce the AR, an aliquot of washed sperm from each ejaculated was incubated 

with TALP–BSA (6 mg/ml) for 3 h at 38°C with 5% CO2 and 100% humidity and was 

then incubated under the same conditions for 1 h using 5 μM calcium ionophore 

(A23187) according to Carretero et al. (2015). Finally, sperm were centrifuged (800g 

for 8 min) and washed twice with SS and then suspended in this medium. Sperm 

smears were fixed on positively-charged slides as previously described. Some of them 

were used to control AR by the FITC-PNA/PI (Fluorescein isothiocyanate - 

Arachishypogaea agglutinin/ Propidium iodide) staining technique (Carretero et al., 

2015).Therefore, two sperm populations (acrosome and non-acrosome reacted) were 

used from semen samples for immunofluorescences studies. 
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4.2.d Epididymal sperm 

Epididymis (n = 3) obtained post-mortem were excised to obtain sperm cells, which 

were suspended in 5 ml of SS and centrifuged at 1,000g for 10 min at room 

temperature. The supernatant was removed, and the sperm were suspended in 200 μl of 

SS. The smears were performed as described above. 

4.2.e Immunofluorescence 

Slides containing the epididymal, AR and non-AR sperm were washed with PBS and 

treated with Proteinase K solution (10 μg/μl inTE Buffer, pH 8.0) for antigen retrieval. 

Followed by incubation in Buffer TE at room temperature for 10 min, the slides were 

treated with 0.3% Triton X-100 (Sigma) for 5 min at room temperature. They were 

then blocked with BSA (1%) in PBS at room temperature for 30 min and incubated 

with the primary antibody solutions (anti- β-NGF or anti-TrKA, as appropriate) at 

37°C for 1 h. Following three washes with 0.02% Tween in PBS, slides were 

incubated for 20 min with a 1:200 dilution of the biotinylated anti-rabbit IgG antibody. 

Slides were exposed to streptavidin conjugated with fluorescein isothiocyanate (FITC, 

1:2000; Sigma) for 30 min at room temperature in a dark chamber, and then washed 

with 0.02% Tween in PBS. For negative controls, slides were incubated with BSA 

diluted with PBS instead of primary antibody. Photomicrographs were taken using a 

confocal microscope (Olympus FV300). 
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4.3. Experiment 3. Detection of β-NGF in sperm-adsorbed proteins  

4.3.a Animals 

Fertile male llamas (Lama glama) between 3 and 8 years old were used in this 

experiment (n = 9). The animals were kept at the experimental farm of Instituto 

Nacional de Tecnología Agropecuaria (INTA) in Abra Pampa (Jujuy, Argentina), 

located in the high Andean Plateau of northwest Argentina at 3484 m above sea level 

(22° 49′S latitude and 65° 47′W longitude). 

4.3.b Semen collection 

Semen was obtained by using a modified bovine artificial vagina (20 cm in length and 

filled with water at 39°C) after 5 days of sexual abstinence, according to Giuliano et 

al. (2008). Semen was collected using a long plastic sleeve sealed at one end, and 

inserted within the latex inner lining of the artificial vagina. A teaser female was used 

for the collections. Duration of each collection was 20–25 min. 

4.3.c Sperm-adsorbed protein extraction 

Sperm-adsorbed proteins were obtained as previously described by Zampini, Sequeira, 

Argañaraz, & Apichela (2017). Briefly, pools of three semen samples were diluted 

five-fold and washed three times with HBSS (25 mM Hepes, 130 mM NaCl, 5 mM 

KCl, 0.36 mM NaH2PO4, 0.49 mM MgCl2, and 2.4 mM CaCl2; pH 7.4, 290 mOsm/kg) 

to remove seminal plasma. Washed sperm were re-suspended in HBSS with 1X 

protease inhibitor cocktail (Sigma). An equal volume of 1M KCl in HBSS was added, 

and sperm proteins were extracted by gentle mixing on a rotary shaker for 1 h at 4°C. 
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Spermatozoa were then removed by centrifugation at 6,000g for 10 min, and 

discarded. Extracts were clarified by filtration (0.2-μm cellulose acetate). A series of 

centrifugations in 3kDa cellulose filters (Amicon, Lexington, MA) were performed at 

9,000g for 5 min at 4°C, re-diluting in HBSS every centrifugation to reduce the salts 

and to concentrate the sample. Protein content was determined using a Micro BCA 

protein assay kit (Thermo Fisher Scientific, Rockford, IL) with a bovine serum 

albumin standard. Aliquots of clarified seminal plasma were stored at -70°C until 

needed. 

4.3.d Polyacrylamide gel electrophoresis 

SAP samples were separated by denaturing polyacrylamide gel electrophoresis, 

according to Gevaert &Vandekerckhove (2000). Briefly, 30 μg of total protein was 

diluted (v/v) with sample buffer (0.1M Tris-HCl, pH 6.8, 2% sodium dodecyl sulfate, 

1% β–Mercaptoethanol, 30% glycerol, and 0.05% bromophenol blue), and loaded onto 

a 15% polyacrylamide resolving gel with a 4% stacker. Molecular masses were 

determined by running protein markers (Page Ruler Unstained Broad Range Protein 

Ladder, Thermo Fisher Scientific, Rockford, IL) covering the range of 5–250 kDa. 

Gels were run in a PROTEAN II xi Cell (Bio-Rad, Hercules, CA) at 150 V for 1.5 h at 

room temperature. The separated proteins were stained with colloidal Coomassie Blue 

G-250 (Sigma) (Neuhoff et al., 1990). Coomassie Blue Gel images were obtained 

using a Pentax Optio M 90 camera (Pentax, Milan, Italy). GelAnalyzer, version 2010a, 

was used to determine the molecular weight of the detected bands on the digitized 

images. 
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4.3.e Western blot 

Sixteen μg of SAP, obtained as indicated before, was subjected to 15% SDS-PAGE 

along with 100 ng of recombinant human β-NGF (R&D Systems, Minnesota, USA). 

Then, proteins were transferred onto PVDF membranes (Immobilon-P, Merck KGaA, 

Darmstadt, Alemania). Semidry electroblotting was carried out on a Trans-Blot SD 

semi-dry transfer cell (Bio-Rad; Richmond, CA) and run at 20 V for 30 min. The 

membranes were blocked in 5% BSA in HBS-T (130 mM NaCl, 5 mM KCl, 1.36 mM 

Na2HPO4, 2.4 mMCaCl2, 25 mM HEPES, 0.49 mMMgCl2, 0.1% Tween 20) for 30 

min at 37°C and then overnight at 4°C. Afterwards membranes were incubated with 

polyclonal antibody against β-NGF (dilution 1:2000, sc-548) (Santa Cruz 

Biotechnology) for 2 h at 37ºC, followed by incubation with the secondary antibody 

for1 h at 37°C (1:1000) (biotinylated anti-rabbit IgG antibody, B8895, Sigma). Finally, 

membranes were incubated for 30 min with alkaline phosphatase-linked ExtrAvidin 

(1:5,000, Sigma) and protein bands were developed using the SigmaFast substrate 

(BCIP/NBT, Sigma). Membrane digital images were obtained with an Olympus C5060 

Wide Zoom color digital camera (Olympus). Molecular weight marker proteins (Page 

Ruler Unstained Broad Range Protein Ladder, Thermo Fisher Scientific, Rockford, IL) 

were run on a separate lane to determine the molecular weights of the immunostained 

bands. The primary antibody omitted from the staining reaction was used as the 

control. 
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4.3.f Mass spectrometry 

Bands immunostained for β-NGF were excised from a colloidal Coomassie Blue 

stained polyacrylamide gel for characterization using matrix-assisted laser desorption-

ionization mass spectrometry (MALDI-MS), performed on an Ultraflex II TOF/TOF 

(Bruker Daltonics, Bremen, Germany) mass spectrometer at the CEQUIBIEM mass 

spectrometry facility (Facultad de Ciencias Exactas y Naturales, Universidad de 

Buenos Aires, Argentina). Proteins were identified by peptide-mass fingerprinting with 

MASCOT v. 2.2.03. Fragmentation was carried out with the most intense peaks 

(MS/MS). When possible, MS and MS/MS data were combined for one or more 

peptide searches. De novo sequencing was inferred from BLAST results when peak 

fragmentation was allowed. The percentage of protein coverage was determined for 

each band using the MASCOT search. 
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FIGURES 

Figure 1. Semi-quantitative analysis of (a) TrKA and (b) β-NGF transcription in testis 
(T), prostate (P), bulbourethral gland (BG) and epididymis (head [HE], body [EB], and 
tail [ET]). Relative mRNA expression, normalized to ACTB mRNA levels, is shown 
(mean ± standard error; n = 3). Significant differences are indicated with different 
letters (p< .05).  

 

Figure 2. Localization of β-NGF in llama male reproductive organs by 
immunohistochemistry. No mark was observed in testis, epididymis (head, body, and 
tail) and bulbourethral gland (a-e). Strong immunoreaction was observed in the 
cytoplasm of the prostate gland cells (f). Scale bar, 50 μm. 
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Figure 3. Immunohistochemical reactivity for TrKA in llama male reproductive 
organs. Positive signals are localized in testis (a), epididymis head (b), body (c) and 
tail (d); bulbourethral gland (e) and prostate (f). Scale bar, 50 μm. 

 

Figure 4. Immunolocalization of TrKA (a-c) and β-NGF (d-f) in llama sperm by 
confocal microscopy. TrkA was localized in the middle piece of (a) ejaculated non-
acrosome reacted (AR), (b) AR induced and (c) epididymal sperm. β-NGF was 
localized in middle piece of (d) non-AR and (e)AR ejaculated sperm. No signal was 
detected in (f) epididymal sperm. Negative controls consisted of sperm incubated with 
BSA (g-i). Insets correspond to bright field microscopy. Scale bar, 10 μm. 
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Figure 5. (a) Western blotting of β-NGF protein in sperm-adsorbed protein (SAP). As 
positive control, 100 ng of recombinant human β-NGF (RH- β-NGF) was run. (b) For 
negative control primary antibody was replaced by BSA in HBS-T.  

 

 

Table 1. Identity of SAP bands. 

Identity Accession Nº Species EPMW 
kDa 

TPMW 
kDa 

Coverage 
(%) 

MP S/SL E 

Beta-nerve 
growth factor 

precursor 

EPY74508.1 

 

Camelus 
ferus 39 27 54 18 107/75 3.6e-05 

Beta-nerve 
growth factor 

precursor 

EPY74508.1 

 

Camelus 
ferus 23 27 56 20 100/75 0.00019 

Beta-nerve 
growth factor 

precursor 

EPY74508.1 

 

Camelus 
ferus 13 27 51 16 116/75 4.6e-06 

 

EPMW: experimental protein molecular weight, TPMW: theoretical protein molecular weight, 
MP: matched peptides, S/SL: score/significance level, E: expectation value. 
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Table 2. Specific primers used in RT-PCR.  

 

Primer name Sequences 5´-3´ Product  
Length (bp) 

GenBank 
accession number 

NGF forward 

  

 

TGCTGGGAGAGGTGAACATT 

 

 

147 
 

XM_006213697.2 
 

TrKA forward 

  

 

GCTTCATCTTCACCGAGTTCCT 

 

114 

 

XM_015248158.1 

 ACTB forward 

  

 

GCGGGACCACCATGTACC 

 

183 

 

XM_006210388.1 
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