
This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
author guidelines.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the ethical guidelines, outlined 
in our author and reviewer resource centre, still apply. In no 
event shall the Royal Society of Chemistry be held responsible 
for any errors or omissions in this Accepted Manuscript or any 
consequences arising from the use of any information it contains. 

Accepted Manuscript

rsc.li/njc

NJC
New Journal of Chemistry  A journal for new directions in chemistry
www.rsc.org/njc

ISSN 1144-0546

PAPER
Jason B. Benedict et al.
The role of atropisomers on the photo-reactivity and fatigue of 
diarylethene-based metal–organic frameworks

Volume 40 Number 1 January 2016 Pages 1–846

NJC
New Journal of Chemistry  A journal for new directions in chemistry

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  C. Villa-Pérez, J.

F. Cadavid-Vargas, A. L. Di Virgilio, G. A. Echeverría, G. E. Camí and D. B. Soria, New J. Chem., 2017, DOI:

10.1039/C7NJ03624H.

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
http://dx.doi.org/10.1039/c7nj03624h
http://pubs.rsc.org/en/journals/journal/NJ
http://crossmark.crossref.org/dialog/?doi=10.1039/C7NJ03624H&domain=pdf&date_stamp=2017-12-01


1 

 

Crystal Structure, Hirshfeld Surface Analysis, Spectroscopic and Biological Studies on 

Sulfamethazine and Sulfaquinoxaline Ternary Complexes with 2,2’-Biquinoline. 

 

C. Villa-Pérez1; J.F. Cadavid-Vargas1; A. L. Di Virgilio1; G. Echeverría2; G.E. Camí3 and D.B. 

Soria1. 

 
1CEQUINOR, CONICET, CCT La Plata, Departamento de Química, Facultad de Ciencias Exactas, 

Universidad Nacional de la Plata, 1900, La Plata, Argentina. soria@quimica.unlp.edu.ar. 
2IFLP, CONICET, CCT La Plata, Departamento de Física, Facultad de Ciencias Exactas, 

Universidad Nacional de La Plata, 1900, La Plata, Argentina. 
3Química General e Inorgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad 

Nacional de Rosario, 2000, Rosario, Argentina. 

 

ABSTRACT 

Three ternary complexes of sulfaquinoxaline (SQO - 4-Amino-N-2-

quinoxalinylbenzenesulfonamide) or sulfamethazine (SMT - 4-Amino-N-(4,6-dimethylpyrimidin-2-

yl)-benzenesulfonamide) with Cu(II) or Ni(II) and 2, 2’-biquinoline (BQ) as auxiliary ligand have 

been studied. Their structures have been determined by single-crystal X-ray crystallography as 

Ni(SQO)2(BQ)·2H2O (I), Cu(SQO)(BQ)Cl·CH3OH (II) and Cu(SMT)(BQ)Cl (III). Compounds I 

and II crystallize in the triclinic space group P-1 while complex III in the monoclinic P21/c space 

group. The crystal lattice of all complexes is stabilized by the presence of diverse intermolecular 

interactions as verified by Hirshfeld surface analysis. Besides, electronic spectroscopies have also 

been used to characterize the compounds. The thermal behavior of the complexes was investigated 

by thermogravimetric and differential thermal analyses. Furthermore, the cytotoxic effect of the 

compounds has been tested against A549 (lung cancer) and MG-63 (human osteosarcoma) cell lines 

using the MTT methodology. 

Keywords – Sulfaquinoxaline; Sulfamethazine; X-ray structure; Hirshfeld surface calculations; 

Intermolecular interactions; Cytotoxicity. 

 INTRODUCTION 

Sulfonamide compounds are recognized for their biological properties 1–6 and their different 

coordination modes 5. A wide variety of metal complexes with N-sulfonamides derivatives has also 

been studied for their polymer stabilization capacity 2, magnetic behavior 7–10, electrochemical 

properties 8,9,11 and luminescent emission 12,13. Some complexes with sulfaquinoxaline (SQO) or 

sulfamethazine (SMT) as ligands (see Scheme 1) have been reported as effective chemotherapeutic 
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agents. In the case of SQO, a polymeric Cd(II) complex 12 and some monomeric ternary Co(II) 3 

and Zn(II) 13 complexes have been described. On the other hand, some sulfamethazine complexes 

have been described as monomeric, dimeric and polymeric M(II) derivatives 5,9–11,14–16. 

The understanding of noncovalent interactions (e.g., H-bonding, π-forces) results useful in the 

design of new compounds in a wide range of fields (e.g. materials, pharmaceuticals). In the case of 

sulfonamide metal complexes, inter and intramolecular hydrogen bonding, π···π, and C—H···π 

interactions have a great influence on the crystal lattice stabilization 1,3,5,8,17. The Hirshfeld surface 

analysis is a powerful tool for visualizing and quantifying the contribution of such intermolecular 

interactions to supramolecular assemblies 18–20.  

As part of our ongoing research on the study of the structural and physicochemical properties of 

sulfonamides metal complexes 3,7,21,22, we have previously reported the study in different models of 

biological systems in a ternary cobalt complex with sulfaquinoxaline and 2,2`-Bypirimidine as 

ligand3. Our goal herein is to extend these studies to other auxiliary ligands and metals with 

eventual biological properties. We report the synthesis of three ternary complexes of Ni(II) (I) and 

Cu(II) (II and III),  using sulfaquinoxaline or sulfamethazine as primary ligands and 2,2’-

biquinoline as a coligand. They have been characterized by thermogravimetry, and by single-crystal 

X-ray diffraction, Fourier Transform Infrared, UV-Vis and fluorescence spectroscopies. Hirshfeld 

surface analysis has been applied to visualize the presence of different intermolecular interactions. 

Furthermore, MTT assays have been performed for the complexes, the free ligands and the 

corresponding M(II) salts to explore their cytotoxic capacity. 

 

      

Scheme 1. Structural formulae for sulfamethazine (SMT) and sulfaquinoxaline (SQO) sodium salts. 

 

1. EXPERIMENTAL 

 

1.1. Synthesis of the complexes 

All the reagents were obtained from Sigma Chemical Company (St. Louis, MO, USA) and used 

without further purification.  

Synthesis of Ni(SQO)2BQ·2H2O (I):  
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A hot methanolic solution containing 2,2’-biquinoline (0.2 mmol, 51.3 mg) and NaSQO (0.4 mmol, 

128.9 mg - sulfaquinoxaline sodium salt) was added dropwise under continuous stirring to a 

methanolic solution of NiCl2·6H2O (0.2 mmol, 47.5 mg). A lime green powder was obtained, 

centrifuged and washed several times with methanol. After a few days, well developed green 

crystals were separated from the mother liquor and subjected to X-ray diffraction studies. Both 

crystals and powder were identical as shown by their FTIR spectra. The same product was obtained 

using a different molar ratio (e.g. 1:1:1). The elemental analysis (AE [%]) for 

NiC46H34N10O4S2·2H2O gave the following results: Exp. (calc.): C: 58.38 (58.18); H: 4.17 (4.03); 

N: 14.79 (14.75); S: 6.61 (6.75) %. FTIR data (cm-1): νas (NH2) 3696, νs (NH2) 3614, ν (C=N and 

C=C) 1633 – 1492, νas (SO2) 1349, νs (SO2) 1092 cm-1. Yield: 161.2 mg (84.9 %). 

 

Synthesis of Cu(L)(BQ)Cl (L = SQO (II) or SMT (III)):  

For the compound II, a methanolic solution of CuCl2·2H2O (0.4 mmol, 68.2 mg) was added 

dropwise to a hot methanolic solution including 2,2’-biquinoline (0.4 mmol, 102.5 mg) and NaSQO 

salt (0.4 mmol, 128.9 mg).  Complex III was prepared following the same synthesis procedure, but 

using NaSMT (0.4 mmol, 120.1 mg - sulfamethazine sodium salt) instead of NaSQO. The reactions 

were refluxed for 2 h affording purple solutions which were filtered. After a few days, brownish 

crystals suitable for X-ray analysis were obtained. II: AE (%) for CuC32H23N6O2SCl·CH3OH: Exp. 

(calc.): C: 57.21 (57.72); H: 3.76 (3.96); N: 12.79 (12.24); S: 4.82 (4.67) %. FTIR data (cm-1): νas 

(NH2) 3696, νs (NH2) 3358 ν (C=N and C=C) 1630 – 1493, νas (SO2) 1351, νs (SO2) 1088. Yield: 

133.1 mg (48.5%). III: AE (%) for CuC30H25N6O2SCl: Exp. (calc.): C: 56.58 (56.96); H: 3.87 

(3.98); N: 13.67 (13.28); S: 5.03 (5.07) %. FTIR: νas (NH2) 3501, νs (NH2) 3455, ν (C=N and C=C) 

1630 – 1491, νas (SO2) 1213, νs (SO2) 1083. Yield: 164.0 mg (64.3%). 

 

1.2. Instrumentation 

FTIR spectra were recorded using a Bruker EQUINOX 55 FTIR (Billerica, MA, USA) 

spectrophotometer using the KBr pellet technique with a resolution of 4 cm-1 in the 4000 – 400 cm-1 

spectral range. The UV-Vis spectra were recorded in DMSO solution in 10 mm quartz cuvettes, and 

the diffuse reflectance UV-Vis (V-DR) spectra were measured by using BaSO4 as a reference and 

employing a Shimadzu UV-2600 Spectrophotometer (Kyoto, Japan). The fluorescence spectra were 

recorded on a Shimadzu RF-6000 spectrofluorometer in 10 mm quartz cuvette. TG and DT analyses 

were performed by using Shimadzu TG-50 and DT-50 units from room temperature up to 800 ºC at 

a heating rate of 5 ºC min-1 and oxygen or nitrogen flow of 50 mL min-1.  
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1.2.1. X-ray data collection and Structure refinement 

The data for the complexes were collected on an Agilent Gemini Diffractometer with an EOS CCD 

detector equipped with a graphite-monochromated Mo Kα (λ = 0.71073 Å) and Cu Kα (λ = 1.54184 

Å) radiation. X-ray diffraction intensities were collected (ω scans with θ and κ-offsets), integrated 

and scaled with CRYSALISPRO 23 suite of programs. The unit cell parameters were obtained by least-

squares refinement (based on the angular settings for all collected reflections with intensities larger 

than seven times the standard deviation of measurement errors). Data were corrected empirically for 

absorption employing the multi-scan method implemented in CRYSALISPRO (Agilent Technologies 

Ltd., Yarnton, Oxfordshire, UK). The structures were solved by direct methods with SHELXS-97 

(Göttingen, Lower Saxony, Germany) 24 and the molecular models refined by the full-matrix least-

squares procedure on F² with SHELXL-97 25,26. All hydrogen atoms were located stereochemically 

except for those of the amino groups which were positioned from a difference Fourier map and 

refined riding on the bound atom with isotropic displacement parameters. Crystal data and 

refinement results are summarized in Table 1. CIF files with details of the crystal structures 

reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, under 

deposition numbers CCDC 1560251 - 1560253. 

 

Table 1 

Crystal data and structure refinement for the complexes. 

Compound  I  II  III 

Empiric formula NiC46H34N10O4S2·2H2O
(b) CuC32H23N6O2SCl·CH3OH CuC30H25N6O2SCl 

Formula weight 949.68 686.67 632.62 
Temperature [K] 293(2) 293(2) 293 (2) 
Wavelength [Å] 0.71073 (MoKα) 1.54184 (CuKα) 1.54184 (CuKα) 
Crystal system Triclinic Triclinic Monoclinic 
Space group P-1 P-1 P21/c 

Unit Cell dimensions [Å, °] 
a 

b 

c 

α 

β 

γ 

 
11.9807(9)  
12.207(1)  
17.381(1)   
84.14(1) 
73.892(9) 
67.836(9) 

 
10.0919(9)  
10.1848(6)  
17.013(1)  
81.383(5) 
75.712(7) 
63.935(7) 

 
10.0254(7) 
16.525(1) 
17.0838(8) 
 
95.697(6) 
 

Volume [Å3] 2261.7(4) 1520.5(2) 2816.4(3) 
Z, Density (calculated) [g cm-3] 2, 1.389 2, 1.4976 4, 1.492 
Absorption coefficient [mm-1] 2.843 2.894 2.988 
F(000) 916.0 706 1300 
Crystal Size [mm] 0.095 × 0.145 × 0.204 0.019 × 0.108 × 0.216 0.026 × 0.072 ×  0.263 
θ range for data collection [º] 3.029 - 29.543 4.839 - 72.407 4.43 - 72.76 
Index ranges -15 ≤ h ≤ 16 

-11 ≤ k ≤ 16 
-22 ≤ l ≤ 23 

-12 ≤ h ≤ 12 
-10 ≤ k ≤ 12 
-20 ≤ l ≤ 19 

-12 ≤ h ≤ 10 
-20 ≤ k ≤ 20 
-14 ≤ l ≤ 20 

Reflections collected/Unique 20532 / 10504 11418 / 5930 21058 / 5529 
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[R(int) = 0.0575] [R(int) =0.0423] [R(int) =0.0909] 
Completeness to θ  0.997 (θ = 25.242º) 0.982 (θ = 67.684º)  0.999 (θ =67.684°) 
Absorption correction Semi-empirical Semi-empirical Semi-empirical 
Max. and min. transmission 1.00000 and 0.83504 1.00000 and 0.92779 1.00000 and 0.87984 
Refinement method FMLS(c) on F2 FMLS(c) on F2 FMLS(c) on F2 
Data/restraints/parameters 10504 / 6 / 597 5930 / 0 / 408 5529 / 0 / 370 
Goodness-of-fit on F2 1.028 1.028 1.023 
Final R indices [I > 2σ(I)]a R1= 0.0685 wR2=0.1715 R1= 0.0446 wR2=0.1054 R1= 0.0640 wR2=0.1612 
R indices (all data)a R1= 0.1435 wR2=0.2210 R1= 0.0635 wR2=0.1198 R1= 0.1051 wR2=0.1912 
Largest diff. peak and hole [e.Å-3] 0.879 and -0.401 0.420 and -0.303 1.070 and -0.358 
aR1=Σ||Fo|-|Fc||/Σ|Fo|, wR2= [Σw(|Fo|

2-|Fc|
2)2/Σw(|Fo|

2)2]1/2; b 
One hydration water molecule is disorder on two 

general positions, c Full-matrix least-squares. 

 

1.2.2. Computational details  

The quantum computational study of the complexes was performed using the density functional 

theory (DFT) method implemented in the Gaussian 03 package 27. The three complexes were 

subjected to unrestrained energy minimizations using the B3LYP 28 functional with the 6-31+G** 

basis set 29 for non-metal atoms and the Los Alamos effective core potentials LANL2DZ 30–32 for 

the metal. Based on the second derivatives, the vibrational modes have been calculated, and the 

most relevant of them have been assigned (See synthesis section).  

 

1.2.3. Hirshfeld surface computational method. 

Hirshfeld surfaces and their respective 2D fingerprint plots for all the complexes were calculated 

with the aid of the CRYSTALEXPLORER 3.1 software 18–20. Hirshfeld surfaces and 2D fingerprint 

plots are useful to quantify the nature of the intermolecular interactions in the crystal lattice. The 

dnorm is a function of distances to the surface from nuclei (atoms) inside (di) and outside (de) the 

Hirshfeld surface, compared with their respective van der Waals radii. The 3D dnorm surfaces are 

plotted over a fixed color scale of -0.25 au (red) – 0.95 au (blue). The 2D fingerprint plots were 

displayed in the 0.5 - 2.8 Å range, and including reciprocal contacts. Shape index plots were 

mapped in the color range -1.0 au (concave) to 1.0 au (convex), and the curvedness in the range of -

4.0 au (flat) – 0.4 au (singular).  

 

1.3. Biological Studies 

Materials 

Tissue culture materials were purchased from Corning (Princeton, NJ, USA) and APBiotech 

(Buenos Aires, Argentina); Dulbecco’s Modified Eagle Medium (DMEM), TrypLE™ from Gibco 

(Gaithersburg, MD, USA); and fetal bovine serum (FBS) from Internegocios SA (Buenos Aires, 

Argentina). MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) from Invitrogen 
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Corporation (Buenos Aires, Argentina) and, MG-63 and A549 cell lines were obtained from 

American Type Culture Collection (ATCC®). 

  

Cell Culture 

Cell lines MG-63 (human osteosarcoma) and A549 (human lung carcinoma) were cultured in 

DMEM, supplemented with 10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin. They 

were kept in an incubator with humidified atmosphere and 5 % of CO2 at 37 °C. The cells were 

seeded in a T75 flask, and when 80-90% of confluence was reached, they were subcultured using 1 

mL TrypLE™ per 75 cm2. For each experiment, cells were placed on multiwell plates and allowed 

to grow for 24 hours.  Before each experiment, the cellular monolayer was washed with PBS. 

The cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay, described by Mosmann 33. Briefly, 25000 cells were seeded in 96 wells 

plates and allowed to grow for 24 hours. Afterward, the cells were exposed to different 

concentrations of the complexes and their precursors for another 24 hours. Subsequently, the 

monolayer was washed with phosphate buffered saline, and the medium was replaced with fresh 

DMEM supplemented with 0.5 mg/mL of MTT and incubated for 3 hours under normal culture 

conditions. This assay is based on the ability of the cells to reduce the MTT to an insoluble purple 

formazan dye, which was extracted with DMSO (100 µL/well). The absorbance was recorded with 

a multi-plate reader Multiskan FC (Thermo Scientific) at 570 nm. Each assay was performed at least 

three times independently. Tukey’s and Dunnett’s multiple comparisons tests were applied with an 

alpha value of 0.05, with n=9 and the IC50 was calculated for each compound. The cell viability is 

shown graphically as the percent of the control value and was calculated according to the following 

equation. 

% ���� ���	���
� =
�	��	���� ����� ��� �� 

�	��	���� ���
��� ��� ��

 � 100 

  

 

  

2. RESULTS AND DISCUSSION 

2.1. Crystal structure analysis 

The crystal structure of complexes I, II and III consists of one neutral Ni(SQO)2BQ, 

Cu(SQO)(BQ)Cl and (Cu(SMT)(BQ)Cl) unit, respectively. In addition, complex I has two 

hydration water molecules, and one of them is structurally disordered on two general 

crystallography sites (O1w or O3w). Complex II crystallizes with a methanol molecule while III 

with none solvation molecules. 
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Both, I and II crystallize in the triclinic P-1 space group with two molecules per unit cell, while III, 

crystallizes in the monoclinic P21/c space group with four unities per unit cell. In I, the Ni(II) atom 

is coordinated by one biquinoline and two sulfaquinoxaline molecules completing a NiN6 distorted 

octahedron. On the other hand, in both Cu(II) complexes (II and III), the metallic center is 

surrounded by four Nitrogen atoms and one Chlorine atom, forming a CuN4Cl distorted square 

pyramid. In all complexes, SQO, SMT and biquinoline act as bis-chelating ligands. 

The coordination spheres of the complexes and the used labels are illustrated in Figures 1, 2 and 3.  

 

Figure 1. Coordination sphere of the complex I with the used labels; H-atoms, some labels and 

water molecules were omitted for simplicity. The intramolecular π···π stacking Cg(10) ··· Cg(12) is 

denoted with a red dashed line.  

 
Figure 2. Complex II with the used labels, the H-atoms and solvent molecules were omitted for the 
sake of clarity.  
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Figure 3. Complex III with the used labels, the H-atoms were omitted for the sake of clarity. The 
intramolecular π···π stacking Cg(8) ···Cg(9) is denoted with a red dashed line. 

 

The degree of distortion of the NiN6 and CuN4Cl coordination polyhedra with respect to ideal six 

and five vertex polyhedra was estimated using the SHAPE software 34 which considers the 

continuous shape measure theory. In I, values of 5.051 for the octahedron (OC-6) and 12.956 for 

the trigonal prism (TPR-6), indicate that the polyhedron around the Ni(II) center is better described 

by the octahedral geometry. For II and III, the coordination sphere is found between the vacant 

octahedron (vOC-5) and the square pyramid (SPY-5) geometries with values of 4.041 and 3.451 for 

II and 4.148 and 3.373 for III, respectively. These values suggest that both complexes are closer in 

shape to the square pyramid geometry. (See tables S1 and S2; see the Electronic Supporting 

Information, ESI).  The geometrical parameters, obtained from the X-ray diffraction experiments 

using the PLATON software 35 together with the computed values [B3LYP/6-31+G**] are listed in 

tables S3-S5 in the ESI, and the correlation between the calculated and the experimental data is 

presented in Figure S1.  

The calculated geometrical parameters are in good agreement with their experimental counterparts 

as can be observed in the slopes of the correlation plots (See Fig. S1) and the RMS values: 0.668, 

0.402 and 0.156 Å for I, II and III, respectively.  

 

2.2. Hirshfeld surface analysis 

By using the crystallographic data, Hirshfeld surface analysis was performed to investigate the 

nature and quantitative contributions of intermolecular interactions to the supramolecular assembly 

of the complexes which are stabilized by several kinds of interactions. The Hydrogen bonding and 

π-π interactions for the three complexes are summarized in Tables 2 and 3, respectively. 

Table 2. Hydrogen bonding for compounds I, II and III [Å, º].  
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 D—H···A D—H H···A D···A ∠ D—H···A Label (Fig. 3) 

I N121—H123···N18
i 0.88 2.17 3.0469(4) 172 1 

 O1w—H12w···O214
vi 0.85 2.25 3.0361(3) 154 2 

 O3w—H31w···O214
vi 0.85 2.11 2.9328(3) 163 3 

 N121—H122···O2w
vii 0.86 2.15 2.9709(3) 157 4 

 O2w—H22w···N121 0.85 2.38 3.2187(4) 171 5 
 O2w—H21w···N28

vi 0.85 2.22 2.8451(3) 130 6 
 O3w—H32w···O114

i 0.85 2.19 3.0331(3) 169 7 
 C19—H19···O3w

i 0.93 2.57 3.3981(4) 148 8 

 N221—H223···O1w
viii 0.86 2.21 3.0573(4) 167 9 

 C219—H219···O113
ix 0.93 2.56 3.3400(4) 142 10 

 C35—H35···O113
x 0.93 2.71 3.5268(4) 147 12 

       

II N121—H211···N18
i 0.98 2.26 3.1658(3) 154 1 

 C215—H215···O114
ii 0.93 2.50 3.3743(3) 156 2 

 C16—H16···O31
MeOH 0.93 2.46 3.3740(3) 166 3 

 C213—H213···O112
ii 0.93 2.70 3.5653(3) 156 5 

 C217—H217···C120
iii 0.93 2.85 3.7360(5) 160 6 

 C216—H216···O114
iv 0.93 2.66 3.3254(3) 130 7 

 C29—H29···Cl3
v 0.93 2.81 3.5122(3) 133 8 

 C15—H15···C120
vi 0.93 2.80 3.6470(4) 152 9 

 O31
 MeOH —H31

 MeOH ···Cl3
vi 0.82 2.51 3.2712(3) 154 10 

       

III N27—H27A···O210
xi 0.86 2.53 2.9421(2) 110 1 

 C18—H18···O29
xiii 0.93 2.44 3.3306(2) 157 2 

 C15—H15···O29
xiv 0.93 2.60 3.4485(2) 151 3 

 C19—H19···C22
xiii 0.93 2.90 3.5608(2) 129 4 

 C218—H21C···Cl2
xii 0.93 2.80 3.7089(3) 158 6 

Symmetry operations: (i) -x, 1-y, 1-z; (ii) –x, -y, 2-z; (iii) x, -1+y, z; (iv) x, 1+y, z; (v) 1-x, -y, 2-z; (vi) 1-x, -y, 1-z; 

(vii) –x, -y, 1-z; (viii) 1+x, y, -1+z; (ix) 1+x, y, z; (x) 1-x, 1-y, -z, (xi) x, ½-y, -½+z; (xii) 1-x, -½+y, ½-z; (xiii) -x, 

½+y, ½-z; (xiv) x, ½ -y, ½+z; (xvi) -x, - ½+y, ½-z; (xvi) 1-x, 1-y, 1-z. 

In compounds I and II centrosymmetric ��
��22  motifs are formed by the establishment of N—H···N 

hydrogen bonds (Table 2 and Figures 4 and S2). Figure 5 shows the dnorm surfaces of the complexes 

with the strong N—H···N hydrogen bonds as two deep-red zones labeled as 1. 
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Figure 4. ��
��22  motifs formed between complex II unities, the intermolecular interactions are 

depicted as red dashed lines. Solvation molecules were omitted for simplicity. 

 

 

Figure 5. Views of two orientations in the Hirshfeld surfaces for the three complexes. The first 

column shows the molecule orientation in the surface of column 2. The third column shows the 

surface rotated by 180o around the vertical axis of the plot; H-atoms are omitted for simplicity; 

numbered arrows are described either in Table 2 or the text. 

Another important feature of the supramolecular structure is the effect of the solvate molecules. In I 

the water molecules are involved in several strong hydrogen bonding interactions (labeled as 3 and 

6 in Figure 5). The disordered water molecule interacts with an SO2 sulfonamide group in a non-

conventional intermolecular O1w···O114 at a 2.93(1) Å distance (labeled as 11 in Figure 5). Even 
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though this type of interactions is not very common, they play an important role in some 

supramolecular assemblies 36. 

In II, the methanol molecule is involved in a strong O—H···Cl hydrogen bond interaction observed 

in the dnorm surface as an intense red spot (10) near the H31
MeOH proximity. In III, the relative 

contribution of OSO2···H interactions is lower than in I or II compounds due to the absence of 

solvation molecules (see Table 2). In all the complexes C—H···O interactions are also present 

(labeled as 8, 10 and 12, for I; 2, 3, 5 and 7, for II; 2 and 3, for III; see Figure 5). These interactions 

are established with both H-atoms from solvation molecules as well as with those belonging to the 

ligands. Furthermore, in II and III, non-classical C—H···C interactions (labels 6 and 9, for II; and 

4, 5 and 8 for III) and C—H···Cl hydrogen interactions (labeled as 8 and 10, for II; and 6, for III) 

are observed.  

 

Figure 6 shows the fingerprint plots and the relative contributions of the main intermolecular 

contacts.  The H···H interactions are the shortest contacts in I, and they are depicted as a sharp, 

centered spike (de + di ~ 1.8 Å). Besides, the C···H intermolecular interactions belong to the 

C···H—C contacts (de + di ~ 3.9 and 4.4 Å). Furthermore, the N···H interactions correspond with 

both N···H—N and N···H—Ow contacts (de + di ~ 4.0 Å). Additionally, the O···H interactions are 

asymmetrically depicted as three sharp spikes (de + di ~ 2.0 and 2.45 Å). This fact could be 

explained considering the presence of different kinds of intermolecular interactions O···H—X (X = 

N, C or O. See Table 2). Finally, the C···C interactions are due to π···π contacts between the 

biquinoline rings (de + di ~ 3.6 Å). 

For complex II, the shortest distance is associated with N···H contacts. The fingerprint shows two 

sharp spikes near a (de + di) sum of 1.75 Å corresponding to the N—H···N interactions observed in 

the ��
��22  dimers, previously discussed. Dihydrogen bond interactions (H···H) are depicted as a 

centered spike with a de + di sum of ~ 2.4 Å. The O···H interaction between the methanol molecule 

and the complex is observed as two sharp spikes (de + di ~ 2.8 Å). Besides, the π···π interactions 

are observed as a light blue area on the diagonal at approximately 1.8 Å. These interactions are due 

to the C···C contacts (quinoxalinyl - biquinoline). The C···H contacts are depicted as two pairs of 

spikes indicating two different C···H interactions (de + di ~ 2.7 and 3.4 Å). Lastly, the Cl···H 

contacts are observed as two symmetrical spikes that belong to the Cl···H—C interactions (de + di 

~ 2.6 Å). 

The 2D fingerprint of III shows that the H···H interactions are the shortest (de + di ~ 2.2 Å) and the 

O···H contacts are depicted as two symmetrical spikes at de + di ~ 2.3 Å. In regard to the N···H 

interactions, the fingerprint shows two broad symmetrical zones centered at nearly de + di ~ 3.4 Å. 
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The C···H contacts are characterized by a 3 Å de + di distance, slightly shorter than that of the 

N···H interactions. Furthermore, the C···C interactions are shown as a light blue zone at de + di ~ 

3.6 Å due to the interaction between two adjacent biquinoline. Finally, the Cl···H interactions are 

represented as two sharp spikes located at de + di ~ 2.7 Å.  

Quantitative examination of 2D fingerprint plots revealed that H···H interactions play the most 

important contribution to the total Hirshfeld Surface with a contribution of 44.2, 41.0 and 44.5 %, 

for I, II and III, respectively (see Fig. 6). These interactions can also be observed in the dnorm 3D 

plot (Figure 5), for example, H212···H16 in compound II (label 4) and H21B···H21F in III (label 

7).  

The contribution of C···H interactions to the lattice is similar for the three compounds; the same 

fact occurs for the N···H interactions. However, in compound I the quantitative contribution of the 

O···H interactions is higher than in II and III. This fact can be explained due to the different 

solvation in the three complexes.  

In compound II the contribution of the C···C interactions is higher than in I and III due to the 

difference in the π···π interactions (see Figures 6 and 7). Also, there are some other interactions 

with a minor quantitative contribution to the supramolecular assemblies (e.g. O···O, Cl···O; < 3.2 

%).  

 

Figure 6. Top: 2D Fingerprint plots for the compounds. Close contacts are labeled as: (1) H···H, (2) 

C···H, (3) O···H, (4) N···H, (5) C···C and (6) Cl···H. Bottom: Relative contributions of the 
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intermolecular interactions to the Hirshfeld surface for the compounds [%]. 

In compounds, I and III intramolecular π···π interactions between the biquinoline and the aniline 

moiety of one sulfonamide ligand are observed (I: Cg(10) ··· Cg(12), III: Cg(8) ··· Cg(9) Å; see 

Figures 1 and 3). Furthermore, in all the complexes a significant contribution of intermolecular π···π 

interactions is observed.  In I and II, the quinoxalinyl segments of adjacent molecules interact at 

different distances (Cg(5) ··· Cg(9)vi and Cg(5) ··· Cg(8)vi) (See Figs. 1 and 2). In compound II two 

different BQ···BQ interactions are observed (Cg(6)···Cg(7)v and Cg(7)···Cg(11)ii) and in III 

(Cg(6) ··· Cg(6)xvi and Cg(6) ··· Cg(10)xvi) (See Fig. 3). The geometrical parameters of these π-

stacking interactions are presented in Table 3. These π ··· π interactions can be visualized in the 

complexes Shape-index and curvedness plots (Figure 7). This kind of interaction is evidenced by 

the presence of a triangles pattern and a high planarity zone in the shape-index and curvedness 

surface, respectively.  

Table 3. Geometrical parameters [Å, º] for the π-stacking interactions in I, II and III. 

Rings I-J Rc
(a) 

R1v
(b) 

R2v
(c) 

α
(d) 

β
(e) 

γ
(f) 

Compound I 

Cg (5) ··· Cg (9) vi 4.0812(5) 3.4003 3.3818 1 34.0 33.6 
Cg (10) ··· Cg (12) intra. 3.7362(4) 3.3336 3.3046 2 27.8 26.8 

Compound II 

Cg (5) ··· Cg (8) vi 3.7370(3) 3.4567 3.5309 3 19.1 22.3 
Cg (6) ··· Cg (7) v 4.0651(4) 3.3805 3.8703 18 17.8 33.7 
Cg (7) ··· Cg (11) ii 3.9069(3) 3.5626 3.5275 2 25.5 24.2 

Compound III 

Cg (8) ··· Cg (9) intra. 3.8357(3) 3.6280 3.5940 3   20.4   18.9 
Cg (6) ··· Cg (6) xvi 3.5046(2) 3.3724 3.3724 0   15.8   15.8 
Cg (6) ··· Cg (10) xvi 3.8391(3) 3.3788 3.3705 0 28.6 28.3 

(a)Centroid distance between ring I and ring J. (b)Vertical distance from ring centroid I to ring J. (c)Vertical 

distance from ring centroid J to ring I. (d)Dihedral angle between mean planes I and J. (e)Angle between centroid 

vector Cg(I) ··· Cg(J) and the normal to the plane (I). (f)The angle between the centroid vector Cg(I) ··· Cg(J) 

and the normal to the plane (J). Roman superscripts denote symmetry operations (see Table 2). 
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Figure 7. Hirshfeld surfaces mapped with shape-index and curvedness for the three complexes. 

The first column shows the orientation of the molecules in the surfaces. H-atoms were omitted for 

simplicity. Zones associated with π-π interactions are enclosed within a black oval. 

 

2.3. Electronic Spectroscopy 

UV-Vis and Diffuse Reflectance 

In all the complexes, intraligand π-π* transitions are observed at a wavelength lower than 340 nm 
37,38. The nature of the d-d metal transitions has been studied by analyzing the UV-Vis (DMSO 

solutions) and the visible diffuse reflectance spectra (BaSO4 solid matrix) of the complexes (Figure 

S3 in the ESI). For I, the V-DR spectrum shows bands at 610, 726 and 832 nm, in comparison with 

the values obtained from the UV-Vis spectrum (DMSO 40 mM solution) that displays bands at 610, 

687 and 767 nm. These bands may tentatively be assigned to 3A2g → 3T1g(P), 3A2g → 3T1g and 3A2g 

→ 3T2g transitions, respectively 39. 

In the case of II, the V-DR spectrum shows two bands 478 and 545 nm, while in the UV-Vis 

spectrum (DMSO 10mM) these features are observed at 516 and 550 nm. For III the V-DR 

spectrum displays bands at 497 and 559 nm very close to those observed in the UV-Vis spectrum 

(DMSO 10 mM) at 451 and 558 nm. In both Cu(II) complexes, the bands may be assigned to the 
2B1 → 2E and 2B1 → 2B2 transitions. The observed features are in agreement with the spin allowed 
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d-d transitions of the d8 six-coordinated Ni(II)  39 and the d9 five-coordinated Cu(II)  40 complexes 

in both, solid and solution measurements.  

 

Fluorescence Spectra 

The solution fluorescence spectra of the complexes were investigated at room temperature, and the 

result is presented in Figure S4. The SQO and BQ ligands fluorescence spectra show bands at 420 

nm (λexc= 310 nm) and 390 nm (λexc= 350 nm), respectively. Although the maximum of emission of 

the SQO ligand is observed when using excitation wavelength of 310 nm, the compound exhibits 

fluorescence at lower energy. In the SMT ligand spectrum, none transition has been observed, so in 

this ligand, the relaxation mechanism must follow a non-radiative pathway. The spectrum of 

complex I shows a band centered at 400 nm with a shoulder near 418 nm. These transitions can be 

assigned, to the BQ and the SQO intraligand fluorescence processes, respectively. The emission 

spectrum of compound II, shows two bands at 395 and 420 nm which can be assigned to the same 

processes as in I. The spectrum of complex III shows a broad band centered at 398 nm and can be 

assigned to biquinoline intraligand transitions. These assignments suggest that the compounds may 

be good candidates in blue-light-emitting materials, which may have potential applications in 

electronic devices. 

 

2.4. Thermogravimetric behavior 

TG curves of the complexes were measured in both, inert N2 and oxidant O2 atmospheres (see 

Figure S5 in the ESI). The TG curves (N2 atmosphere) for all the complexes showed the incomplete 

decomposition up to 800 ºC while in oxidant atmosphere a complete decomposition was observed. 

In all the complexes, the decomposition takes place in several overlapped steps. For that reason, it 

was not possible to determinate in detail the decomposition mechanisms nor the thermodynamic 

parameters of the steps. 

For I the dehydration process occurs in the 40 - 90 ºC range, with the weight loss of 3.913 % 

consistent with the removal of two lattice water molecules (calculated 3.723 %). The corresponding 

process is observed with three endothermic peaks in the DT curve, as expected for the inequivalent 

water molecules and considering the disorder in one of them. At 270 °C started the continuous 

decomposition of the complex without formation of thermally stable intermediates up to 800 °C. 

For II, a weight loss of 3.486 % between 15 and 80 ºC range associated with an endothermic peak 

is probably due to methanol solvation molecule (expected 4.660 %). The difference is probably 

attributed to the low temperature of the evolution of the methanol. The continuous decomposition of 

the complex occurs from 160 ºC involving exothermic processes. The anhydrous complex, III, was 
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thermally stable up to 150 °C when it started to decay involving exothermic peaks in DT curve. 

Further, the complex decomposed up to 800 °C. The DT curve for III showed a very exothermic 

peak at 640 ºC without mass loss; this fact could be explained by the intermediate formation of the 

reductant CO giving rise to Cu2O product. Afterward, probably the Cu(I) oxide disproportionates to 

yield Cu(0) + CuO (no weight loss expected) 41.  

However, TG curves measured in oxidant atmosphere showed the desolvation process and the 

complete decomposition of the complexes with a total oxidation to the metal oxides as observed in 

the FTIR spectra of the residues. Under this condition, no exothermic peak without a mass loss was 

observed in III. For all the complexes, the decomposition steps are associated with exothermic 

processes, except for the solvent loss of I and II. The remaining mass percentage for complexes I, 

II and III were 9.101, 10.252 and 11.852 %, respectively. From FTIR measurements the residues 

were identified as NiO for I and CuO for II and III. 

 

2.5. Cytotoxic Effect 

 

The bioinorganic medicinal chemistry is a constantly growing field, which it has been successful in 

offering therapeutic agents in the fight against different diseases that affect the global well-being.  

Some biological studies on ternary complexes of Cu(I), Ru(II) and Pd(II) including 2,2’-biquinoline 

(BQ) have been reported 42–44. However, the effect of the free BQ ligand has not been informed yet. 

The three complexes, the free ligands and the parent salts were screened on both cell lines, MG-63 

and A549. I was tested from 50 to 500 µM range and did not show a significant cytotoxic effect on 

the MG-63 cell line. The same effect was observed for the ligands, while the nickel chloride 

induced cell death in the upper range of concentrations (IC50 381.2 ± 9.6 µM). (see Figure 8a). 

On the other hand, on the A549 cell line, the complex showed cytotoxic activity from 100 µM 

(P<0.0001). As can be seen in the Figure 8b the biquinoline ligand exhibited a higher effect than the 

complex, but the SQO did not show any effect in the whole range. At 200-500 µM range, there was 

no statistical difference (P>0.05) among the concentrations tested, which suggested a non-dose-

related effect in this concentration range. 

The IC50 values for the A549 cell line were 51.8 ± 8.4 µM, 112.3 ± 11.7 µM and 210.6 ± 12.8 µM 

and > 500 µM for the biquinoline, complex I, the Nickel ion and Sulfaquinoxaline, respectively. 

These results indicated that Biquinoline ligand had the highest effect on this cell line.  
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Figure 8. Effect of complex I, NaSQO and NiCl2 on MG-63 human osteosarcoma cell viability 

evaluated by MTT (a). Effect of complex I, NaSQO NiCl2, and biquinoline on A549 human lung 

carcinoma cell viability assessed by MTT (b). In both cases, cells were incubated in serum-free 

DMEM alone (control) or with different concentrations of the compounds at 37 °C for 24 h. The 

results are expressed as the percentage of the basal level and represent the mean ± SEM (n = 9).  

*** significant difference in comparison with the basal level (p < 0.001), **** significant 

difference as compared with the basal level (p < 0.0001).  

 

On the other hand, complexes II and III showed a noticeable cytotoxic effect on MG-63 and A549 

cell lines, as can be observed in the IC50 values included in Table 4.  

  

Table 4. IC50 [µM] values on MG-63 and A549 cell lines for complexes I, II, III, the free ligands 

and metal salts. 

Compound IC50 MG-63 IC50 A549 

I > 500 112.3 ± 11.7 
II 1.8 ± 0.3 1.6 ± 0.2 
III 2.2 ± 0.2 1.9 ± 0.4 
NaSQO > 500 > 500 
NaSMT > 500 > 500 
Biquinoline > 10 51.8 ± 8.4 
NiCl2 381.2 ± 9.6 210.6 ± 12.8 
CuCl2 310.9 ± 4.5 > 100 

 

As can be seen in Table 4, the effective concentrations of the complexes II and III as cytotoxic 

agents were below the action range of the ligands and the copper salt. 

Complex II produced a statistically significant inhibitory effect on MG-63 cells from 1.5 µM 

(p<0.0001). This action extended to the full range of concentrations tested in a concentration related 

manner. 
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Complex III was less active in the low range of concentrations and the effect on MG-63 cells could 

be seen from 2.0 µM (p<0.0001). This compound also displayed a dose-dependent effect. (Figure 

9a) 

Likewise, complexes II and III also showed a deleterious effect on A549 lung cancer cells. 

Complex II induced cellular death at a lower concentration (1.5 µM, p<0.01) than complex III (2.0 

µM, p<0.0001). (Figure 9b). Even though there were significant differences between complexes 

with mean values of 16 and 41 % for complex II and III, respectively (p<0.01) at lower 

concentrations, the complexes did not show a differential behavior at higher concentrations 

(p>0.05). 

 

 

Figure 9. Cytotoxic effect of complex II and III on MG-63 human osteosarcoma (a) and A549 

human lung carcinoma cell lines (b), respectively evaluated by MTT. The results are expressed as 

the percentage of the basal level and represent the mean ± SEM (n = 9). ** significant difference in 

comparison with the basal level (p < 0.01), **** significant difference in relation to the basal level 

(p < 0.0001). 

 

As we previously reported 45, copper complexes with different ligands like thiosemicarbazones, 

isoflavones, flavonoids and a variety of planar N-heterocycles had demonstrated to be effective in 

both in vitro and in vivo models. It is very known that the complexation of copper with active 

pharmaceuticals as ligands have demonstrated to be a potential source of anti-cancer drugs. Reports 

of this kind of complexes on osteosarcoma cell lines showed that induced not only cell death but 

also displayed a selective deleterious effect on tumor cell lines rather than normal phenotype cells. 

These findings are in agreement with our results  46,47. 

Furthermore, it has been reported that quinoline derivatives enhance the cytotoxic effects against a 

wide range of cancer cells which includes ovarian, leukemia, breast, lung, and other cell lines 48–52. 
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In particular complexes with these ligands caused cellular death through different mechanisms such 

as induction of reactive oxygen species, DNA cleavage, cell cycle arrest and inhibition signaling 

pathways and different protein within the cell 53,54. The observed deleterious effect could be related 

to the increased delocalization of pi-electrons caused by the chelating effect, which afterwards 

enhances the liposolubility of the compounds facilitating the permeation through membranes 

disrupting the cellular metabolic processes 55. 

 

CONCLUSIONS 

This study reports the synthesis and characterization of three monomeric ternary complexes of 

Ni(II) and Cu(II) with sulfanilamide derivatives (sulfaquinoxaline and sulfamethazine) and 2,2’-

biquinoline as ligands. The spectroscopic and thermogravimetric properties resulted in good 

agreement with the X-ray crystallographic data. The stabilization of the crystal lattices due to the 

intermolecular interactions was studied using the Hirshfeld surface analysis. It was found that the 

intermolecular interactions of these compounds were dominated by Hydrogen bonds and π ··· π 

stacking interactions. All the complexes display fluorescence in the blue region of the spectrum so 

they could be widely exploited in many areas especially in light emitting devices. 

The biological studies demonstrated that the antitumoral activity improves after complexation. 

Ni(II) complex did not cause a significant decrease in the cell viability. However, a substantial 

deleterious effect on A549 and MG-63 cancerous cells was observed in both Copper complexes 

since their IC50 value is lower than that of the free ligands and the CuCl2 salt. These effects can 

trigger further in vivo experiments for studying their antineoplastic properties.  
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Three ternary complexes with Sulfaquinoxaline or Sulfamethazine have been synthesized; their 

structural, spectroscopic and biological properties have been studied. 
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