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We present an analytical and numerical analysis of the particle creation in a cavity ended with two
superconducting quantum interference devices, both subjected to time-dependent magnetic fields. In the linear
and lossless regime, the problem can be modeled by a free quantum field in 1 + 1 dimensions, in the presence
of boundary conditions that involve a time-dependent linear combination of the field and its spatial and time
derivatives. We consider a situation in which the boundary conditions at both ends are periodic functions of
time, focusing on interesting features as the dependence of the rate of particle creation with the characteristics
of the spectrum of the cavity, the conditions needed for parametric resonance, and interference phenomena due
to simultaneous time dependence of the boundary conditions. We point out several concrete effects that could be
tested experimentally.
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I. INTRODUCTION

In the presence of time-dependent environments, a quantum
field initially in its vacuum state evolves into an excited
state containing real particles. Particle creation due to time-
dependent external conditions can be achieved in very different
setups, and is broadly named “dynamical Casimir effect”
(DCE) [1–4].

The initial literature on this subject was focused in the study
of particle creation in the presence of “moving mirrors,” which
impose boundary conditions at their position. The acceleration
of the mirror induces nontrivial modifications to the normal
modes of the electromagnetic field, and create photons from
an initial vacuum state. However, the experimental verification
of this effect is rather difficult, because the rate of particle pro-
duction is in general extremely small. There have been several
alternative proposals more appropriate to measure the DCE in
the broad sense mentioned above, i.e., photon production in
the presence of time-dependent environments [5–9].

Some years ago, the DCE was experimentally observed
in a superconducting waveguide ended with a superconduct-
ing quantum interference device (SQUID) [10]. The time-
dependent external conditions are produced by applying a
time-dependent magnetic flux through the SQUID. This gen-
erates a time-dependent inductance, which in turn produces
a time-dependent boundary condition for the field in the
waveguide [9]. Under certain conditions, this setup mimics that
of an electromagnetic field in a waveguide ended with a moving
mirror (see, however, [11]). The DCE has also been measured
using an array of SQUIDs, that simulates a time-dependent
refraction index; see Ref. [12]. In Ref. [13], authors found,
in the context of superconducting circuits, that appropriate
adjustments of the parameters used in the SQUID experiment
reveal remarkable predictions as unexpected nonparabolic
spectral distributions and enhancement in the created particles.

A simple variant of the proposal of Ref. [9] is to consider a
superconducting cavity of finite size, that is, a waveguide ended

with two SQUIDs. In the static situation, when the SQUIDs
are subjected to constant magnetic fluxes, the boundary con-
ditions on two points at a finite distance on the waveguide
produce a discrete spectrum. Therefore, when turning on
time-dependent boundary conditions, it is possible to tune the
external frequency in order to have parametric amplification,
in the same fashion as for finite size cavities with moving
mirrors. However, the boundary conditions for the field in the
superconducting cavity ended with SQUIDs are qualitatively
different from those of the electromagnetic field in the presence
of mirrors, since they may involve second time derivatives of
the field. Therefore, both the static spectrum and the rate of
particle creation have a richer structure in this case.

In a previous paper [14], we presented an analysis of this
problem, in the particular case in which only one of the
boundary conditions is time dependent. We have shown that,
after introducing appropriate boundary conditions, the field in
the cavity can be described by a system of coupled harmonic
oscillators, with time-dependent frequencies and couplings.
We obtained the spectrum of the stationary cavity in terms of
the parameters that define these boundary conditions, and com-
puted numerically the particle creation rates, with emphasis in
their dependence with the properties of the static spectrum.

In a recent work, Svensson et al. [15] initiated the experi-
mental study of a double tunable cavity, in which both ends are
subjected to time-dependent boundary conditions. It has been
shown experimentally that the double cavity shows some of the
features predicted for the case of two moving mirrors [16], par-
ticularly the fact that there could be destructive or constructive
interference depending on the relative phase of the excitations
at both ends of the cavity. Other nonideal aspects of the
experimental results are less clear and deserve further analysis.

The theoretical aspects of the particle creation by two
moving mirrors has been originally analyzed in the context
of 1 + 1 quantum fields satisfying Dirichlet boundary condi-
tions at their positions [16]. In that case, the cavity has an

2469-9926/2018/98(2)/022512(11) 022512-1 ©2018 American Physical Society



LOMBARDO, MAZZITELLI, SOBA, AND VILLAR PHYSICAL REVIEW A 98, 022512 (2018)

equidistant spectrum, and some features of the DCE are very
different from that of a cavity with nonequidistant spectrum,
due to the fact that all modes become coupled at resonant
frequencies. A numerical analysis for Dirichlet mirrors in 1 + 1
and 3 + 1 dimensions has been reported in Ref. [17], where
it was shown that the interference effects are also present
for nonequidistant spectra. However, as already mentioned,
the waveguide with time-dependent boundary conditions has
qualitative differences with respect to the cavity with moving
mirrors. It is then worth analyzing in detail the specific case
of the double tunable cavity from a theoretical point of view.
This is the aim of the present work.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with time-
dependent boundary conditions, and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA). We pay particular attention to
the dependence of the results with the main characteristics of
the spectrum, to the existence of constructive and destructive
interference, and to the conditions under which the system
enters a regime of parametric resonance. Section IV contains
a numerical analysis of the spectrum of the static cavity. As
we will see, with appropriate choices of the parameters of the
SQUIDs, it is possible to generate equidistant or nonequidistant
spectra. Section V is devoted to the numerical calculation of
the particle creation rates. In addition to provide support to the
analytic calculations of Sec. III, we explore regimes which are
nonreachable with the lowest order MSA (like oscillations with
large amplitudes, and the very long time behavior) and regimes
that, although in principle treatable with MSA at higher orders
(like the nonleading resonances), are rather cumbersome to
implement analytically. In Sec. VI we study the dependence
of the results with the detuning of the external frequencies, an
important aspect for the eventual experimental verification of
these effects. Section VII contains the conclusions of our work.

II. DOUBLY TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting tunable resonator of
length d, with a SQUID in each end, i.e., at x = 0 and at x = d.
The idea is to have two independently controllable boundary
conditions.

For the theoretical description we extend previous results
in Refs. [14,18]. The cavity, which is assumed to have same
capacitances C0 and inductances L0 per unit length, for
both SQUIDs located at x = 0 and x = d, respectively, is
described by the superconducting phase field φ(x, t ) with the
Lagrangian,

Lcav =
(

h̄

2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

h̄

2e

)2 2CL
J

2
φ̇2

0 − EL
J cos f L(t )φ2

0

]

+
[(

h̄

2e

)2 2CR
J

2
φ̇2

d − ER
J cos f R (t )φ2

d

]

, (1)

where L and R denote the SQUID in the left x = 0 boundary
and the one on the right at x = d. In Eq. (1) we have set
v = 1/

√
L0C0 as the field propagation velocity, and φ0,d as the

value of the field at the boundaries φ(0, t ) and φ(d, t ). f L,R (t )
is the phase across the SQUIDs controlled by external magnetic
fluxes. EL,R

J and CL,R
J denote the Josephson energies and

capacitances, respectively (we will set CL
J = CR

L = CJ ). The
Lagrangian in Eq. (1) contains additional contributions propor-
tional to higher powers of φ0 and φd that will not be considered
in the rest of this paper. In what follows we will set v = 1.

As anticipated, the description of the cavity involves the
field φ(x, t ) for 0 < x < d and the additional degree of
freedom φ0,d . The dynamical equation reads

φ̈ − φ′′ = 0, (2)

and the boundary conditions are

h̄2

EC

φ̈0 + 2EL
J cos f L(t )φ0 + EL,cavdφ′

0 = 0, (3)

at x = 0 and
h̄2

EC

φ̈d + 2ER
J cos f R (t )φd + EL,cavdφ′

d = 0, (4)

at x = d. In these equations we have defined EC = (2e)2/
(2CJ ) and EL,cav = (h̄/2e)2(1/L0d ). The equations above
come from the variation of the action with respect to φ0,d ,
and can be considered as a generalized boundary condition for
the field. The presence of second time derivatives of the field
pinpoints the existence of degrees of freedom localized on the
boundary [19].

As usual, it will be useful to write the Lagrangian in terms
of eigenfunctions of the static cavity. Assuming that

f L,R (t )=f L,R
0 +θ (t )θ (tF −t )ϵL,R sin(!L,Rt+φL,R ), (5)

we can expand the field as

φ(x, t ) = 2e

h̄

√
2

C0d

∑

n

qn(t ) cos (knx + ϕn), (6)

where the eigenfrequencies kn and the phasesϕn satisfy Eqs. (3)
and (4) in the static case f L,R = f L,R

0 :

knd tan (knd + ϕn) = 2ER
J cos f R

0

EL,cav
− 2CJ

C0d
(knd )2,

knd tan ϕn = −2EL
J cos f L

0

EL,cav
+ 2CJ

C0d
(knd )2. (7)

Following previous developments for the one-SQUID tun-
able cavity [14,18], the dynamical equation for the mode n is
therefore written as

q̈n + k2
nqn = 2V R

0

d2Mn

ϵRθ (t )θ (tF − t ) sin
(
f R

0

)
sin(!Rt + φR )

× cos(knd + ϕn)
∑

m

qm(t ) cos(kmd + ϕm)

+ 2V L
0

d2Mn

ϵLθ (t )θ (tF − t ) sin
(
f L

0

)

× sin(!Lt + φL) cos ϕn

∑

m

qm(t ) cos ϕm, (8)
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where V L,R
0 = 2EL,R

J /EL,cav and we assumed that ϵL,R ≪ 1.
We have also defined

Mn = 1 + sin [2(knd + ϕn)]
2knd

− sin 2ϕn

2knd

+ 2χ0 cos2(knd + ϕn), (9)

where χ0 = 2CJ /(C0d ).
The classical description of the theory consists of a set of

coupled harmonic oscillators with time-dependent frequencies
[20,21]. The quantization of the system is straightforward.
In the Heisenberg representation, the variables qn(t ) become
quantum operators,

q̂n(t ) =
∑

m

1√
2km

[
âmϵ (m)

n (t ) + â†
mϵ (m)∗

n (t )
]
, (10)

where âm and â
†
m are the annihilation and creation operators.

The functions ϵ (m)
n (t ) are properly normalized solutions of

Eq. (8), satisfying initial conditions,

ϵ (m)
n (t = 0) = δnm,

ϵ̇ (m)
n (t = 0) = −iknδnm.

In the static regions t < 0 and t > tF these functions are
linear combinations of e±iknt . We define the in basis as the
solutions of Eq. (8) that satisfy

ϵ (m),in
n (t ) = e−ikntδnm for t < 0. (11)

The associated annihilation operators ain
n define the in vacuum

|0in⟩. The out basis ϵ (m),out
n is introduced in a similar way,

defining the behavior for t > tF . The in and out bases are
connected by a Bogoliubov transformation,

ϵ (m)
n (t ) = αnme−iknt + βnmeiknt , (12)

and the number of created particles in the mode n for t > tF is
given by [22]

Nn = ⟨0in|aout †
n aout

n |0in⟩ =
∑

m

|βnm|2. (13)

In the present paper, we shall numerically solve the dynam-
ical Eq. (8) and evaluate the number of created particles using
Eq. (13). Before doing that, we will present an analytic study
which is appropriate for resonant external frequencies.

III. ANALYTIC RESULTS: MULTIPLE SCALE ANALYSIS

In order to study analytically Eq. (8) we write them in the
form,

q̈n + ω2
n(t )qn =

∑

m̸=n

∑

j

qmS (j )
nm sin(!j t + φj ), (14)

where j = L,R, we made the redefinition qn → qn/
√

Mn, and

ω2
n(t ) = k2

n −
∑

j

α(j )
n sin(!j t + φj ),

SR
mn = 2V R

0

d2
√

MnMm

ϵR sin f R (0) cos (knd + ϕn),

× cos (kmd + ϕm)

SL
mn = 2V L

0

d2
√

MnMm

ϵL sin f L(0) cos ϕn cos ϕm,

αR
n = 2V R

0

d2Mn

ϵR sin f R (0) cos2(knd + ϕn),

αL
n = 2V L

0

d2Mn

ϵL sin f L(0) cos2(ϕn). (15)

We will assume that the amplitude of the time dependence is
small, that is, α ≪ 1. We will also set ϵR = ϵL = ϵ.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (14) in powers of ϵ breaks down
after a short amount of time. In order to find a solution valid
for longer times we use the multiple scale analysis (MSA)
technique [23,24]. We introduce a second time scale τ = ϵt ,
and write

qn(t, τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (16)

The functions An and Bn are slowly varying, and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (14) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp (±iknt ), and averaging over the fast oscillations we obtain

4kn

dAn

dt
= −Bn

∑

j

α(j )
n δ(!j − 2kn)e−iφj +

∑

m̸=n

∑

j

S (j )
mn[Am(δ(!j − km + kn)eiφj − δ(!j + km − kn)e−iφj )

−Bmδ(!j − kn − km)e−iφj ],

4kn

dBn

dt
= −An

∑

j

α(j )
n δ(!j − 2kn)eiφj −

∑

m̸=n

∑

j

S (j )
mn[Bm(δ(!j + km − kn)eiφj − δ(!j + kn − km)e−iφj )

+Amδ(!j − kn − km)eiφj ], (17)

where δ(x) should be understood as a Kronecker delta δx0.
In the above equations, the phase φj express the dephasing

between the harmonic external excitations at right and left
squids. Assuming that sin f R (0) and sin f L(0) have the same

sign, if φR − φL = 0 the SQUIDs are out of phase. We refer to
this as the breathing mode. On the contrary, when φR − φL =
π , we will find the so-called shaker modes (electromagnetic
shaker in the case of a cavity with two oscillating mirrors).
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We can see that these equations are nontrivial when the
external harmonic driving frequencies are just tuned with one
eigenvalue of the static cavity !L,R = 2kn. Moreover, other
modes will be coupled and will resonate if the conditions,

!L,R = |kn ± kj |, (18)

are satisfied. We will now describe some particular cases.

A. A single resonant mode

We assume that !L = !R = 2kn for some mode, and
that no other resonant condition is satisfied. In this case the
dynamical equations Eq. (17) reduce to

4kn

dAn

dt
= −Bn

[
αL

n + αR
n e−iφR

]
,

4kn

dBn

dt
= −An

[
αL

n + αR
n e−iφR

]
, (19)

where we have assumed that φL = 0. From these equations,
it is easy to see that the number of created particles grows
exponentially with a rate "n given by

"n = 1
4kn

√(
αR

n

)2 +
(
αL

n

)2 + 2αR
n αL

n cos φR. (20)

As expected from calculations of the DCE for mirrors, there is
constructive interference for φR = 0, and destructive for φR =
π . Note, however, that even in the case ϵR = ϵL considered
here, the interference is partial, due to the fact that in general
αR

n ̸= αL
n .

B. Two resonant modes

We now assume that the only resonant condition satisfied by
the external frequency is !L = !R = km + kn, for a couple of
modes n and m. The dynamical equations read, in this case, as

4kn

dAn

dt
= −Bm

(
SL

mn + SR
mne

−iφR
)
,

4km

dBm

dt
= −An

(
SL

mn + SR
mne

iφR
)
,

4km

dAm

dt
= −Bn

(
SL

mn + SR
mne

−iφR
)
,

4kn

dBn

dt
= −Am

(
SL

mn + SR
mne

iφR
)
. (21)

Combining these equations it is easy to show that all the
functions grow exponentially with a rate,

|"mn|
4
√

kmkn

, (22)

where

"mn = SL
mn + SR

mne
−iφR . (23)

Therefore, the number of created particles grows exponentially
in both modes, with a rate that depends on the dephasing of
the harmonic external excitation.

It is interesting to remark that the case !L = !R = km − kn

is qualitatively different (we assume km > kn). We have

4kn

dAn

dt
= Am

(
SL

mn + SR
mne

iφR
)
,

4km

dAm

dt
= −An

(
SL

mn + SR
mne

−iφR
)
, (24)

and

4kn

dBn

dt
= Bm

(
SL

mn + SR
mne

−iφR
)
,

4km

dBm

dt
= −Bn

(
SL

mn + SR
mne

iφR
)
. (25)

Note that in this case there is no mixing between the coefficients
An and Bn. Moreover, due to the relative sign in the right-hand
side of the equations, they lead to an oscillatory behavior.

C. Two different external frequencies

We will now consider cases in which !R ̸= !L, but both
still satisfying some of the resonant conditions. The simplest
choice is to tune each frequency with a different mode, that
is, !L = 2kn and !R = 2km, with m ̸= n. In this case, there
is no mode mixing, and each one resonates independently of
the other.

More interesting situations are (!L,!R ) = (2kn, km − kn)
and (!L,!R ) = (km + kn, km − kn). In both cases, the dy-
namical equations reduce to a system of four coupled differen-
tial equations (note that in the previous examples the equations
are coupled in pairs).

We first consider (!L,!R ) = (2kn, km − kn). The equa-
tions read

4kn

dAn

dt
= −Bnα

L
n e−iφL + AmSR

mne
iφR ,

4km

dAm

dt
= −BmαL

me−iφL − AnS
R
mne

−iφR ,

4kn

dBn

dt
= −Anα

L
n eiφL + BmSR

mne
−iφR ,

4km

dBm

dt
= −AmαL

meiφL − BnS
R
mne

iφR . (26)

Note that, due to the particular choice of the external frequen-
cies, the equations involve both the parameters αL

n and SR
mn.

The solutions to this system of differential equations are of the
form exp[λat] where λa (a = 1, 2, 3, 4) are the eigenvalues of
the 4×4 matrix M defined by

d

dt

⎡

⎢⎢⎣

An

Am

Bn

Bm

⎤

⎥⎥⎦ = M

⎡

⎢⎢⎣

An

Am

Bn

Bm

⎤

⎥⎥⎦. (27)

For the particular case φL = 0, these eigenvalues are of the
form,

λa = ±
√

X ±
√

X1 + X2 cos φR, (28)

where

X =
(

αL
n

4kn

)2

+
(

αL
n

4km

)2

−
(
SR

mn

)2

16kmkn

,

X1 =
[(

αL
n

4kn

)2

−
(

αL
m

4km

)2
]2

−
(
SR

mn

)2

4kmkn

×
[(

αL
n

4kn

)2

+
(

αL
m

4km

)2
]

,

X2 = −
αL

n αL
m

(
SR

mn

)2

32k2
nk

2
m

. (29)
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Whether there is an eigenvalue with positive real part or not
depends on the particular pair of frequencies considered, which
determines the full set of parameters that define X, X1, and X2.
The only case in which there are no resonant effects is when
the parameters are such that X ±

√
X1 + X2 cos φR < 0.

The case (!L,!R ) = (kn + km, km − kn) can be consid-
ered along similar lines. In this situation, the matrix M depends
on the coefficients SL

mn and SR
mn. As it is not possible to

find analytic expressions for the eigenvalues, we omit the
details. We will present a numerical example of this case in
Sec. V C, showing that parametric amplification can occur.

IV. THE CAVITY SPECTRUM

Given the strong dependence of the particle creation rate
with the spectrum of the static cavity, as can be seen from the
analysis of the previous section, it is important to analyze the
spectra that result from the generalized boundary conditions
in the tunable superconducting cavity [Eq. (7)]. The spectrum
is determined by the solution of that system of equations, that
can be rewritten in terms of the new parameters of the cavity
χ0 and b0L,R as

(knd ) tan (knd + ϕn) + χ0(knd )2 = b0R

−(knd ) tan ϕn + χ0(knd )2 = b0L, (30)

where we have set b0L,R = V L,R
0 cos f L,R

0 . The three free
parameters that determine the solutions of Eq. (30) are χ0,
b0R,L.

Before describing the numerical study of these equations, let
us discuss some general properties. Although not completely
evident from Eq. (30), the spectrum is symmetric under the
interchange b0L ↔ b0R . Indeed, one can show that if (kn,ϕn)
solves Eq. (30), then (kn,−ϕn − knd ) solves the equations with
L ↔ R. The spectrum does not change (the phases do).

An important property that influences the rate of particle
creation is whether the spectrum is equidistant or not. It is
easy to see that for large values of both bL

0 and bR
0 and not

so large values of χ0 and knd, the solutions of Eq. (30) are
knd ≈ nπ . This is because for b0L,R ≫ 1 both tan(knd + ϕn)
and tan ϕn should be large numbers.

It is also easy to find situations where the spectrum is
nonequidistant. For example, if b0R = b0L = b0 we have

knd tan
(

nπ − knd

2

)
− χ0(knd )2 = −b0,

knd + 2ϕn = nπ, (31)

without an equidistant solution unless b0 ≫ 1.
In order to obtain numerically the eigenfrequencies of the

cavity from Eq. (30) we use a single Newton-Raphson method
with a stopping error of 10−6. In the first place, we shall
study the difference between consecutive eigenfrequencies
as a function of b0L for a typical experimental value [18],
say χ0 = 0.05 and fixed b0R (b0R = 500). We can see in
Fig. 1 that the bigger the value of b0L, the more equidistant
is the spectrum for small consecutive eigenfrequencies. The
difference between any consecutive eigenvalues of the cavity
goes to a constant value of the order of π when b0L ! b0R .

|k2−k1 |

|k3−k2 |

|k4−k3 |

|k5−k4 |

|k6−k5 |

|k7−k6 |

|k8−k7 |

0 50 100 150 200 250 300
b0 L2.6

2.7

2.8

2.9

3.0

3.1

3.2
kj−ki

FIG. 1. Difference of consecutive eigenfrequencies |kj+1 − kj | as
a function of b0L for a fixed value of χ0 = 0.05 and b0R = 500 for the
first 12 eigenfrequencies.

In Fig. 2 we also show the difference of consecutive
eigenfrequencies as a function of b0L for a smaller value of
b0R = 1.

In Fig. 3 we show the values of different consecutive
eigenfrequencies as functions of b0L, for a fixed value of
b0R = 1, while in Fig. 4 we present the same eigenfrequencies
when b0R = 500 and χ0 = 0.05 in both cases. In Fig. 5, we
present the values of the phases obtained by solving Eq. (30)
for the case of b0R = 1 and χ0 = 0.05. In Fig. 6, we show
the difference of consecutive eigenfrequencies |kj+1 − kj | as
a function of b0R for a fixed value of χ0 = 1 and b0L = 1.

In summary, the results of this section show that the spec-
trum of the doubly tunable cavity can be adjusted modifying
the external (static) magnetic fluxes on the SQUIDs.

V. PHOTON GENERATION

In this section, we shall analyze different cases of photon
generation by choosing particular values of the several pa-
rameters involved in the system’s configuration. As described

|k2−k1|

|k3−k2|

|k4−k3|

|k5−k4|

|k6−k5|

|k7−k6|

|k8−k7|

50 100 150 200 250 300
b0 L2.0

2.2

2.4

2.6

2.8

3.0

3.2
kj−ki

FIG. 2. Difference of consecutive eigenfrequencies |kj+1 − kj | as
a function of b0L for a fixed value of χ0 = 0.05 and b0R = 1 in the case
of a nonequidistant situation. We show the eigenfrequencies from k1

up to k10.
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FIG. 3. Eigenfrequencies ki as a function of b0L, obtained for
b0R = 1 with a fixed value of χ0 = 0.05.

previously, the static spectrum is determined by the values of
χ0, b0L, and b0R . The mode equations depend in addition on the
static fluxes f R

0 and f L
0 . The external excitation is described

by the amplitude ϵ, the frequencies !R and !L and the phases
φR and φL.

It is appropriate to emphasize here that, in order not to vary
so many parameters of the static cavity, we are only going
to vary b0L and b0R , which give enough freedom to produce
qualitative changes in the spectrum. The other static parameters
are set to the particular values χ0 = 0.05, f R

0 = f L
0 = 0.45π

unless explicitly indicated otherwise in the text.

A. The numerical method

In terms of the functions ϵ (m)
n (which we will call ϵnm from

now on), the equation of motion in Eq. (14) can be written as

ϵ̈nm + ω2
n(t )ϵnm =

∑

j ̸=n

σnj (t )ϵjm, (32)

or, equivalently

ϵ̇nm = Unm,

U̇nm = −ω2
n(t )ϵnm −

∑

j ̸=n

σnj (t )ϵjm, (33)

k8

k1

0 20 40 60 80 100
b0 L0

5

10

15

20

25

30
ki

FIG. 4. Eigenfrequencies ki as a function of b0L, obtained for
b0R = 500 with a fixed value of χ0 = 0.05.
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!2
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b0 L0.0

0.2

0.4

0.6

0.8

1.0
!i |

FIG. 5. Phases ϕn as a function of b0L, obtained for b0R = 1 and
χ0 = 0.05.

where the explicit form of σnj (t ) can be obtained from Eqs. (14)
and (15). For each of the set of differential coupled equations
and their initial conditions, we have used a fourth-order
Runge-Kutta-Merson numerical scheme between t = 0 and a
maximum time tmax > 0. In all cases, the perturbation is turned
on for times 0 < t < tF , with tF < tmax, where the system
returns to a static configuration. For times t < 0 and t > tF ,
the cavity is a static one and we know that the unperturbed
solution can be written as in Eqs. (11) and (12).

In order to compute the total number of particles created
in a mode n, we follow the procedure of Ref. [25]. For
t ! tF the solution is of the form given in Eq. (12). We can
therefore multiply both terms of the equation by exp(−iknt )
and take the mean value in tF < t < tmax. In this way, we
are able to numerically evaluate |βnm|2 and, also the par-
ticle number in mode n as a function of time as Nn(tF )
=

∑
m |βnm(tF )|2.

The spectral modes kn are given in units of 1/d (knd is
dimensionless) and consequently time is measured in units of
d. All figures are referred to dimensionless quantities.

|k2−k1 |

|k3−k2 |

|k4−k3 |

|k5−k4 |

|k6−k5 |

|k7−k6 |

|k8−k7 |

0 20 40 60 80 100
b0 R0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

kj −ki

FIG. 6. Difference |kj − ki | between consecutive eigenfrequen-
cies as a function of b0R for a fixed value of χ0 = 1 and b0L = 1. The
spectrum presents major differences among the frequency even for
higher order of frequencies at all values of b0L,R .
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Φ=0

#t 2

Φ=π

1000 2000 3000 4000 5000
t

10000

20000

30000

40000

50000

60000
N1

FIG. 7. Number of particles created in mode n = 1, N1, for b0 =
500 and relative phase φ = 0 (red dashed line). With the dashed blue
line, we show there is no particle creation for the translational mode
with φ = π . Parameters used are ! = 2k1, ϵ = 0.01, and χ0 = 0.05.
Fit (solid black line) with the dimensionless time t2.

B. Equal driving frequencies !R = !L = !

We begin by choosing big values for b0L and b0R , for
example, b0L = b0R = b0 = 500. In this case, the particle
creation is expected to behave quadratically with time [20].
In Fig. 7, we can see the number of particles created in mode
n = 1 for this situation when φ = 0 and φ = π (we have set
φR ≡ φ the total relative phase). As expected for an equidistant
spectra, the creation of particles grows quadratically with the
time of excitation for breathing modes. On the contrary, for
φ = π , there is no photon creation (translational modes).

If we consider both values of b0L and b0R to be small and
alike, we will be looking at the nonequidistant region of the
nonperturbed cavity spectrum (Fig. 2), similar to the situation
described in Ref. [15].

We can hence get an insight of the photon creation inside
the cavity for a nonequidistant spectrum. In Fig. 8, we show
the number of particles created in field mode 1 (N1) for an
external perturbation !R = !L = 2k1. We can again note that
there is no particle creation for translational modes. In the case

Φ=0

Φ=π

100 200 300 400 500
t1

100

104

106

108

1010

1012

N1

FIG. 8. Number of particle created in mode n = 1, N1, for small
and equal values of b0 = 1, for φ = 0 and φ = π . Parameters used
are ! = 2k1, ϵ = 0.01, χ0 = 0.05.

b0L=50

b0L=125

b0L=351

500 1000 1500 2000 2500 3000 3500 4000
t

105

108

1011

1014

1017

N1

FIG. 9. Number of particles created in mode n = 1, N1, for
different values of b0L and big value of b0R . There is particle creation at
short times, even for small values ofb0L. Parameters used are! = 2k1,
ϵ = 0.01, b0R = 281, φ = 0, and χ0 = 0.05.

of the breathing modes, the particle creation is exponential in
time, as expected.

In all intermediate regions of the cavity spectrum, the
behavior will be as for a nonequidistant spectrum with different
rates of particle creation as defined by the value of b0. In
Fig. 9, we show, for example, different values of the number
of particles created in field mode 1 (N1), by setting different
values of b0L and leaving fixed b0R = 281. Therein, it is easy
to see that the particle rate is bigger for lower values of b0L

(the more nonequidistant region of the mode spectrum).
We shall now consider the number of particles created in

mode 1 (N1) for !R = !L when exciting by ! = 2k1 and
compare it to the case when the external pumping frequency
is ! = k1 as shown in Fig. 10. In this case, we are setting
small values of b0 = 1, ϵ = 0.05, and χ0 = 0.05. We can note
that particle creation begins for times t ∼ 1/ϵ ∼ 20 when
the external pumping is ! = 2k1 while the same occurs for
times t ∼ 1/ϵ2 ∼ 400 when ! = k1. It is interesting to remark
that the exponential growth for ! = k1 cannot be obtained
analytically using the leading order of the MSA.

=2k1

=k1

100 200 300 400
t0

200000

400000

600000

800000

1 × 106
N1

FIG. 10. Number of particles created in mode n = 1, N1, for small
and equal values of b0 = 1, for different external frequencies: ! = k1

and ! = 2k1. Parameters used are ϵ = 0.05, χ0 = 0.05.
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φ=0

φ=π

200 400 600 800 1000 1200 1400
t

100

104

106

108

N1

FIG. 11. Number of particles created in field mode 1 (N1), for
external frequencies !R = !L = 2k1 setting different values of f R

0 =
0.78 and f L

0 = 0.46 and V L
0 = 1.41 and V R

0 = 5.59, for φ = 0 (red
solid line) and φ = π (blue dotted line). Parameters used are ϵ = 0.01
and χ0 = 0.05.

Finally, we analyze the particle creation in mode field n = 1
by setting different initial values for f R

0 and f L
0 . By choosing

once more a nonequidistant region of the spectrum, we can set
V L

0 = 1.41, V R
0 = 5.59, f L

0 = 0.46, and f R
0 = 0.78, yielding

b0L = 1 and b0R = 5. The result is shown in Fig. 11. For these
parameters, we study the case !R = !L = 2k1 and see that
there is particle creation in both cases, for φ = 0 and φ = π
with a different rate accordingly analytical estimations. Indeed,
from Eq. (20) it is easy to see that there is no total destructive
interference because, in this case, αR

1 ̸= αL
1 . On the contrary,

in the other examples we presented along the paper, we have
used f L

0 = f R
0 = 0.45π and considered a small value for χ0.

In those cases we have αR
1 ≃ αL

1 , and this is the reason why
we have obtained complete destructive interference.

2 k1

2 k1 ,
2 k2

2 k2 ,
2 k3

100 200 300 400 500
t

1

1000

106

109

1012

1015
N1

FIG. 12. Number of particles created in field mode n = 1, N1,
for different external frequencies. !R = !L = 2k1 just for reference
(red dotted line) and in the blue dashed line the case !R = 2k1 and
!L = 2k2 (overlapped with !R = 2k2 and !L = 2k1). Finally, the
black dashed line corresponds to!R = 2k3 and!L = 2k2. Parameters
used are b0 = 1, ϵ = 0.01, and χ0 = 0.05.

2 k1 ,
2 k2

2 k2 ,
2 k3

2 k1

100 200 300 400 500
t

100

105

108

N2

FIG. 13. Number of particles created in field mode n = 2, N2,
for different external frequencies. Dashed blue line is !R = 2k1 and
!L = 2k2, overlapped with !R = 2k2 and !L = 2k1. The dashed
black line is for !R = 2k3 and !L = 2k2; while the red solid line
corresponds to the case !R = !L = 2k1. Parameters used are b0 = 1,
ϵ = 0.01, and χ0 = 0.05.

C. Different external frequencies: !R ̸= !L

In this section we shall study the photon generation when the
pumping frequencies are different, say !R ̸= !L. In Fig. 12 we
show the number of created particles in field mode n = 1, i.e.,
N1, when the external frequencies are different and given by
!R = 2k1 and !L = 2k2. In that figure we present the results
overlapped with !R = 2k2 and !L = 2k1, and added !R =
!L = 2k1 just for reference (red dotted line). In addition we
show the particle creation in mode field 1 for !R = 2k3 and
!L = 2k2 (black dashed line). We note that the field mode
is excited only when is parametrically excited at least by one
pumping frequency or one SQUID (indeed, black dashed line
in Fig. 12 shows no particle creation in mode 1 as the cavity is
excited with !R = 2k3 and !L = 2k2).

We see similar behaviors for the particle creation of field
mode 2 (N2) in Fig. 13, when the system is excited by different

R≠ L

R$ L

200 400 600 800 1000
t1

100

104

106

108

N1

FIG. 14. Number of particles created in field mode N1, for
external frequencies are !R = k2 + k1 and !L = k2 − k1. In the case
of !L = !R = k2 − k1 there is no particle creation for φ = 0 and
φ = π . Parameters used are ϵ = 0.01 and χ0 = 0.05.
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FIG. 15. Number of particles created in field mode 1 N1 for b0 =
1, for ! = 2k1 and ! = k1, at different dimensionless times, for the
case presented in Fig. 10. In this figure, the number of created particles
N1 is plotted in units of 108 for simplicity and clarity of the label.

combinations of external frequencies. We see that in this case,
there is no photon generation in modes n = 2, 3 when !R =
!L = 2k1 as expected.

We can also present the number of created particles when
the external frequencies satisfy that !R = kn ± km and !L =
kn ± km, whether they are in phase or not. In Fig. 14, we
show different combinations of external excitations. There is
an exponential growth in N1 when !R = k2 + k1 and !L =
k2 − k1, and no appreciable photon creation when !R = !L =
k2 − k1, neither when φ = 0 nor φ = π . These results were
anticipated by the analytic analysis of Sec. III.

VI. DETUNING

In this section, we shall study the relevance of detuning
in the process of particle creation. We set parameters in
the nonequidistant region of the spectrum and evaluate the
number of created particles as a function of the external driving
frequencies.

We have compared the case of an external perturbation
!L = !R = ! = 2k1 and !L = !R = ! = k1 in Fig. 10.
Therein, we have seen that they differ in the time scale for

N1

 2.46  2.48  2.5  2.52  2.54  2.56  2.58  2.6

R d

 2.46

 2.48
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 2.54

 2.56

 2.58

 2.6

L d

0.1

1

2

3

4

5

FIG. 16. Number of particles created in field mode 1, N1 for b0 =
1, ! = 2k1 at t = 80. N1 is plotted in units of 109 for simplicity and
clarity of the label.
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R d

 1.253

 1.254

 1.255

 1.256

 1.257

 1.258
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 1.26
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L d

0.1

1
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3
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FIG. 17. Number of particles created in field mode 1, N1 for b0 =
1, ! = k1 at t = 410. N1 is plotted in units of 109 for simplicity and
clarity of the label.

which the particle creation begins and in the rate of particle
creation.

In Fig. 15, we show the number of particles created for ! =
2k1 and! = k1, with ϵ = 0.05 andb0 = 1. Whenb0R = b0L =
1, the first eigenfrequency is k1 = 1.2611 and the second one
is k2 = 3.3910. As both perturbations determine different time
scales, we compare the detuning process for the same number
of particles created (obtained at different times in each case).
This number of particles for field mode 1 is obtained for t = 80
when ! = 2k1 and t = 410 when ! = k1 (see Fig. 10). It is
easy to note that the detuning is narrower in the case of a
resonance of higher order.

In Figs. 16 and 17 we show the number of created particles
as a function of both !L and !R . In particular we show the
detuning for the first eigenfrequency n = 1, when the external
driving is !L = !R = 2k1 and !L = !R = k1.

It is worth noting that one can miss a resonance of higher
order easier than the other, as the area covered is narrower.

Finally, we show that the structure of the peak response
gets narrower as the time elapses. This is shown in Fig. 18
for ! = 2k1 at different times: t = 80, t = 210, and t = 410.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  2.2  2.4  2.6  2.8  3

N1

Ω d

N1, t=410
N1, t=110

N1, t=80

FIG. 18. Number of particles created in field mode 1 N1 for b0 =
1, for ! = 2k1 at different times.
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The peaks are normalized in order to be compared at different
times.

VII. CONCLUSIONS

In this paper we presented an analytical and numerical
analysis of the particle creation in a tunable cavity ended with
two SQUIDs, both subjected to external time-dependent mag-
netic fields. We considered a situation in which the boundary
conditions at both ends are periodic functions of time.

In order to get an analytical solution beyond naive pertur-
bative calculations, in Sec. III we have studied the particle
creation using MSA. We have shown that there is para-
metric resonance when the external frequencies are of the
form !L,R = 2kn and/or !L,R = kn ± km where kn and km

are eigenfrequencies of the static cavity. Under parametric
resonance, the number of created particles grows exponen-
tially, with a rate that depends not only on the amplitudes
and frequencies of the external modulations, but also on the
parameters of the static cavity. Moreover, the relative phase
of the external modulation introduces interference effects in
the rate of growth, in the sense that the number of created
photons when two SQUIDs are externally pumped is not the
sum of the created particles by each individually pumped
SQUID.

From a numerical study of the spectrum of the tunable two
SQUIDs cavity, in Sec. IV we found that with appropriate
choices of the parameters of individual SQUIDs, it is possi-
ble to generate equidistant or nonequidistant spectra. These
different types of spectra result relevant to evaluation of the
particle creation rates.

Section V was devoted to the numerical calculation of the
particle creation rates. In addition to provide support to the
analytic calculations of Sec. III, we investigated regimes which
are nonreachable with the lowest order MSA. For equal driving
frequencies (!R = !L) and large values of parameter b0,
we showed that the particle creation rate grows quadratically
with the final time for breathing modes and that the particle
creation is suppressed in the translational modes. On the
other hand, when setting the parameters of the static cavity

in such a way that the spectrum becomes nonequidistant,
we found exponential rates for particle creation. In this case
we also found interference effects, and described situations
in which the destructive interference is total (no exponential
growth in the translational modes) and cases where it is partial
(exponential growth with different rates both in breathing
and translational modes). The amount of interference can be
tuned by adjusting the static magnetic fluxes on the SQUIDs.
We obtained similar results when the external frequencies
are different, and found exponential growth of the number
of created particles not only for the usual case in which the
frequencies are twice an eigenfrequency of the static cavity,
but also when they are given by the sum of two modes km + kn.

Finally, in Sec. VI we investigated the dependence of
the results with the tuning of the external frequencies, an
important aspect for the experimental verification of these
effects. Comparing the number of particles created in mode
n = 1, for the cases ! = 2k1 and ! = k1 (when both driving
frequencies are equal to each other), we have shown that for the
case ! = k1, the tuning of the resonance is much more critical
than in the case ! = 2k1, because its peak in frequencies
is much narrower. This effect can in principle be analyzed
analytically going beyond the leading order in the MSA, but
the calculations are rather cumbersome.

There are several interesting issues related to the present
work which deserve further analysis. The present case of a
cavity ended by two SQUIDs not only introduces interference
effects in the particle creation rate, as in the case of two moving
mirrors [16,17], but possible entanglement between pairs of
photons generated from vacuum (see Ref. [26] where it is
shown that dynamical Casimir effect may generate multipartite
quantum correlations). In relation to eventual variants of
recent experiments [10,12,15], a theoretical analysis including
nonlinearities is also due.
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