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Weak lensing in a plasma medium and gravitational deflection of massive particles
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We apply the Gauss-Bonnet theorem to the study of light rays in a plasma medium in a static and
spherically symmetric gravitational field and also to the study of timelike geodesics followed for test
massive particles in a spacetime with the same symmetries. The possibility to using the theorem
follows from a correspondence between timelike curves followed by light rays in a plasma medium
and spatial geodesics in an associated Riemannian optical metric. A similar correspondence follows
for massive particles. For some examples and applications, we compute the deflection angle in weak
gravitational fields for different plasma density profiles and gravitational fields.

PACS numbers:

I. INTRODUCTION

The study of gravitational lenses has had and continues
to have a tremendous impact on our understanding of
the components of the Universe and the distribution of
matter. From the observational point of view we can
cite many examples, in which through the study of the
curvature of light the content of matter of astrophysical
objects can be determined (see, for example Refs.[1–3]
and references therein).
On the other hand, studies of gravitational lens sys-

tems are also important inthe characterization of the cos-
mic microwave background radiation and related cosmo-
logical aspects [4–16]. At the same time, from the astro-
physical point of view, its study is also necessary because
it allows us to predict the shape (or shadow) of a black
hole or the gravitational lensing properties of more exotic
compact bodies.
In general, the expressions for the deflection angle or

the associated optical scalars are written in terms of
derivatives of the different components of the metrics.
Notwithstanding that, in Ref. [17], we presented an ex-
pression for the deflection angle in terms of the curvature
scalars, which was generalized to the cosmological con-
text in Ref. [18] and recently by us to second order in
perturbations of a flat metric[19]. Intriguingly, this is not
the only known way to write the deflection angle in terms
of curvature quantities. Recently, Gibbons and Werner
introduced an elegant new way of studying gravitational
lensing using the Gauss-Bonnet theorem and an associ-
ated optical metric [20]. In particular, they obtained a
relation between the deflection angle, the Gaussian cur-
vature of the associated optical metric and the topology
of the manifold.
Since then, many and varied applications have

emerged. In particular, in the last years this new tech-
nique has being used in order to compute gravitational
lensing quantities in a variety of spacetimes in vacuum;
electro-vacuum or with different scalar fields or effec-
tive fluids. In Refs. [21–34] we find applications of the

method to the study of a variety of different spacetimes
with spherical symmetry, and in [35] the method was
modified by Werner in order to allow the study of grav-
itational lensing in rotating and stationary spacetimes.
This new version was applied to a variety of metrics in
Refs. [36–41].

On the other hand, one expects that compact astro-
physical objects and even galaxies or clusters of galaxies
will be immersed in a plasma fluid. In general, in the
visible spectrum, the modification of the gravitational
lensing quantities due to the presence of the plasma is
negligible, because they are only significant in the radio-
wave regime. Nevertheless there exists in actuality some
radio-telescope projects that work in the frequency band-
width in which these effects could be observable [42–46].
Motivated by that, a proliferation of works dealing with
the influence of plasma media on the trajectory of light
rays in a external gravitational field associated to com-
pact bodies have resurged[47–65].

For all these reasons, it would be desirable to find new
ways to study this problem in situations in which there
exists a plasma environment. In this paper, inspired in
the powerful Gibbons-Werner method, we use an appro-
priately chosen two-dimensional optical metric to extend
the use of the Gauss-Bonnet theorem to spherically sym-
metric spacetimes in the presence of a cold nonmagne-
tized plasma. Even when we do not discuss nondisper-
sive media, a similar application of the optical metric to
that case is possible.

Moreover, there exists a correspondence between the
dynamics of light rays in an homogeneous plasma and
massive particles following the geodesic at the same
spacetime. This allows us to use the Gibbons-Werner
method also in these situations. Recently, Gibbons in-
troduced a Jacobi metric, which is basically the same we
discuss here[69]. For an example, we will use this cor-
respondence to compute the bending angle for massive
particles in a Schwarzschild solution.

This work is organized as follows. In Sec. II we briefly
review the dynamic of light rays in a cold nonmagnetized
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plasma medium, and in particular how to use the opti-
cal metric to obtain information about the orbits of light
rays through the use of the Gauss-Bonnet theorem. In
Sec. III we present a collection of known examples but
also new applications for several compact objects sur-
rounded by an homogeneous plasma. In Sec. IV, we
show how this method can also be applied to the discus-
sion of nonuniform plasma, and in particular, we show,
for weak gravitational fields and small deflection angles,
the equivalence between the deflection angle obtained in
the framework of the Gibbons-Werner method and that
which is obtained from explicit solutions of the Hamil-
ton equations as shown by Ref. [48]. In Sec. V, we dis-
cuss how to use this method to compute deflection angles
of massive particles in spherically symmetric spacetimes.
We finalize with general comments and the prospect of
future research. An Appendix with a couple of extra ex-
amples of the use of the method to nonuniform plasma
medium is also included.

II. THE OPTICAL METRIC AND THE

GAUSS-BONNET THEOREM

A. The optical metric associated to a plasma

medium in an external gravitational field

Let us consider a static spacetime (M, gαβ) filled with
a cold nonmagnetized plasma described by the refractive
index n [52, 53],

n2(x, ω(x)) = 1− ω2
e(x)

ω2(x)
, (1)

where ω(x) is the photon frequency measured by a static
observer while ωe(x) is the electron plasma frequency,

ω2
e(x) =

4πe2

me
N(x) = KeN(x), (2)

where e and me are the charge of the electron and its
mass, respectively; and N(x) is the number density of
electrons in the plasma. Note that, only light rays with
ω(x) > ωe(x) propagate through the plasma. On the
other hand, if ω(x) < ωe(x), the refractive index becomes
imaginary, and the waves with such frequencies will not
propagate through the plasma and will be evanescent.
The reason that the plasma frequency sets the physical
scale can be understood as originating in the relation be-
tween the conduction current and the displacement cur-
rent. In the first place, the conduction current always
opposes to the displacement current. On the other hand,
if the frequency of the electromagnetic wave is bigger
than the plasma frequency, then the conducting current
is smaller than the displacement current and the electro-
magnetic propagation occurs, however, for a wave with
the plasma frequency, the current density exactly can-
cels the displacement current, and for smaller frequencies,

the conducting current becomes bigger than the displace-
ment current, and the total effective current (conducting
plus displacement) has the wrong sign to allow propa-
gation. In the following, we will not consider this kind
of situations; however, we refer to Ref.[66] for a study
of propagation of electromagnetic waves in nondispersive
media with a complex refractive index in curved space-
times using an effective metric that includes absorption.
Note that, due to (1), photons in a plasma deviate from

null geodesics of the underlying spacetime in a frequency-
dependent way. Moreover, even in the presence of an
homogeneous plasma, namely with ωe(x) = constant, if
the underlying spacetime produce a nontrivial gravita-
tional redshift, that is the photon frequency ω changes
along the trajectory, it produces a nontrivial dispersion
through (1) and therefore allows again a deviation of the
light rays from the null geodesics trajectories. Of course,
this last effect is not present in a flat spacetime.
In this context, light propagation is usually described

through the Hamiltonian [52] (see also Ref.[70] for a com-
plete and detailed treatment),

H(x, p) =
1

2

(

gαβ(x)pαpβ + ω2
e(x)

)

, (3)

where light rays are solutions of Hamilton’s equation

ℓα :=
dxα

ds̃
=

∂H

∂pα
,

dpα
ds̃

= − ∂H

∂xα
; (4)

with the constraint

H(x, p) = 0, (5)

and s̃ is an curve parameter along the light curves.
From (5) we can see that, in general, light rays, instead

of following timelike or null geodesics with respect to gαβ,
describe timelike curves with the exception of a homoge-
neous plasma medium in which light rays follow timelike
geodesics of gαβ. It can be heuristically understood by
noting that, even in a flat spacetime filled with a ho-
mogeneous plasma, it follows from (1), and n = c|k|/ω,
with |k| the norm of the wave number vector, that the
dispersion relation reads ω2 = c2|k|2 + ω2

e , and there-
fore a photon behaves as if it has an effective inertial
mass meff = ~ωe. On the other hand in a gravitational
field, and using the equivalence principle, this effective
mass agrees with the gravitational mass, allowing the
photon to follow timelike geodesics. These heuristic con-
siderations were made mathematically precise by Kulsrud
and Loeb, who studied electromagnetic wave packets, in
Refs.[67]. See also Ref.[68], in which more general disper-
sion relations were studied for a wider variety of plasma
situations in a covariant way.
In the general case, even when the fact that they do

not follow geodesics does not represent any restriction for
the study of light propagation in a plasma medium, it is
usually convenient to make a metric transformation un-
der which light rays propagate as timelike geodesics (see,
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for example Refs. [54, 71] for the use of a conformal met-
ric transformation for which light rays behave as timelike
geodesics).
Note also that, defining the tensor

g̃αβ = gαβ + (1− n2(x, ω(x))uαuβ , (6)

the Hamiltonian (3) takes the form,

H(x, p) =
1

2
g̃αβ(x, ω(x))pαpβ , (7)

with inverse g̃αγ (defined as g̃αβ g̃αγ = δβγ ):

g̃αβ = gαβ +

(

1− 1

n2(x, ω(x))

)

uαuβ . (8)

In all these expressions, we use the photon frequency
measured by a static observer, which is at rest with re-
spect to the plasma medium, with normalized 4-velocity
uα with respect to gαβ given by

ω(x) = −pαu
α, (9)

and the expression (1) for the refractive index.
As explained in Ref. [72], the tensor g̃αβ is not in

general a metric tensor, due to its dependence on pα.
However, for nondispersive media, it is a indeed a metric,
and the light rays follow null geodesics with respect to
it (see Ref.[72] for more details). In such situations the
tensor (8) is known as the Gordon metric[73].
On the other hand, for the case of static spacetimes,

even considering dispersive media one can use a Fermat-
like principle[72], in which the spatial projections of the
light rays on the slices t = constant which that solve
Hamilton’s equations (4) are also spacelike geodesics of
the following Riemannian optical metric:

goptij = − n2

g00
gij . (10)

From now on, we will restrict our attention to static
and spherically symmetric metrics surrounded by a cold
nonmagnetized plasma with the same symmetries; that
is, the physical spacetime is assumed to be described by
a metric of the form

gαβdx
αdxβ = −A(r)dt2+B(r)dr2+C(r)(dϑ2+sin2 ϑdϕ2),

(11)
and with a radial dependence of the plasma frequency,
ωe = ωe(r). Of course, we could consider a suitable
coordinate system in which, instead of the three met-
ric functions A, B and C we write the metric in terms of
only two new functions; however we will retain the form
(11) because we would like to write general expressions
that remain valid for a large family of coordinate sys-
tems. Note that we are neglecting the self-gravitation of
the plasma. We also assume asymptotic flatness and that
the plasma medium is static with respect to observers fol-
lowing integral curves of the timelike Killing vector field

ξα = ( ∂
∂t )

α. Consequently, we can take uα as

uα =
δαt

√

A(r)
. (12)

Because of the gravitational redshift, the frequency of a
photon at a given radial position r is given by:

ω(r) =
ω∞
√

A(r)
, (13)

where ω∞ is the photon frequency measured by an ob-
server at infinity. This implies that the refractive index
n only has a radial dependence. Without a loss of gen-
erality we will also take ϑ = π/2. As we are interested
in the application of the Gauss-Bonnet theorem to the
determination of the bending angle, following Gibbons
and Werner[20], we will make use of the associated two-

dimensional Riemannian manifold
(

Mopt, goptij

)

with op-

tical metric (10) (restricted to the plane ϑ = π/2),

dσ2 = goptij dxidxj =
n2(r)

A(r)

(

B(r)dr2 + C(r)dϕ2

)

. (14)

This metric is conformally related to the induced metric
on the spatial section t = constant, ϑ = π/2, of the phys-
ical spacetime, and therefore of the physical spacetime,
and therefore it preserves the angles formed between two
curves at a given point.

B. Gauss-Bonnet theorem

Let us recall the Gauss-Bonnet theorem for a two-
dimensional Riemannian manifold. The Gauss-Bonnet
theorem connects the intrinsic geometry of a surface,
given by the integral of the Gaussian curvature, with its
topology described by the Euler characteristic number,
which is a topological invariant.

Precisely, this theorem can be enunciated as
follows[74]. Let D ⊂ S be a regular domain of an ori-
ented two-dimensional surface S with Riemannian met-
ric ĝij , the boundary of which, is formed by a closed,
simple, piecewise, regular and positive oriented curve
∂D : R ⊃ I → D. Then,

∫ ∫

D

KdS+

∫

∂D

κg dσ+
∑

i

ǫi = 2πχ(D), σ ∈ I; (15)

where χ(D) and K are the Euler characteristic and Gaus-
sian curvature of D, respectively; κg is the geodesic cur-
vature of ∂D and ǫi is the exterior angle defined in the
ith vertex, in the positive sense (see Fig. 1).
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FIG. 1: A region D with boundary ∂D = ∪i∂Di. In each
vertex we have defined the exterior angle ǫi in the positive
sense.

Given a smooth curve γ with tangent vector γ̇ such
that

ĝ(γ̇, γ̇) = 1, (16)

and acceleration vector γ̈, the geodesic curvature κg of γ
can be computed as,

κg = ĝ(∇γ̇ γ̇, γ̈), (17)

which is equal to zero if and only if γ is geodesic, because
γ̇ and γ̈ are orthogonal.
Following the work of Gibbons and Werner [20], we will

apply this theorem to the optical metric goptij of (14) in or-
der to calculate the deflection angle in a plasma medium.
For this, we start with the simply connected domain DR

as shown in Fig.2 with a boundary conformed by a spa-
tial geodesic γp (which codifies the information of the
light ray traveling from a source toward the observer,
with an impact parameter b), and a curve CR, defined
by r(ϕ) = R = constant. By taking the limit of the ra-
dius R of this curve going to infinity, and using the fact
that in this limit the sum of the exterior angles must
be equal to π and that in the situation under considera-
tion χ(DR) = 1, the resulting deflection angle α can be
obtained from the following expression [see Fig. (2) for
more details]:,

lim
R→∞

∫ π+α

0

[

κg
dσ

dϕ

]
∣

∣

∣

∣

CR

dϕ = π − lim
R→∞

∫ ∫

DR

KdS.

(18)
In terms of the curvature tensor associated with the

optical metric, the Gaussian curvature K can be com-
puted from

K =
Rrϕrϕ(g

opt)

det(gopt)
. (19)

Note that in general, it follows from (14) that

dσ

dϕ

∣

∣

∣

∣

CR

= n(R)

(

C(R)

A(R)

)1/2

. (20)

S

O

C�

�

��opt; g
opt
ij )

FIG. 2: ∂DR = CR ∪ γp. In this diagram, the point S rep-
resents the source, and the observer is identified with O. γp
is identified with a light ray emitted by the source and that
reaches the observer at O. b is identified with the impact
parameter. The gray region represents the presence of the
plasma, and L represents the source of the gravitational lens.
CR is a curve defined by r(ϕ) = R = constant. Note that
all this region belongs to the two-dimensional optical mani-
fold

(

Mopt, goptij

)

, and therefore the true information of the

presence of the plasma medium is already codified in goptij .

III. EXAMPLES AND APPLICATIONS TO

HOMOGENEOUS PLASMA MEDIUM

To verify this approach for calculating the bending an-
gle in the presence of a plasma medium, we will consider
some illustrative examples and applications.
Let us consider a gravitational lens surrounded by an

nongravitating homogeneous plasma of which the elec-
tron number density reads

N(r) = N0 = constant. (21)

Note that in this case, without the presence of a nonuni-
form gravitational field, the refractive index should be
constant, and therefore should not be a lensing effect.
However, because of the presence of the gravitational
field, the homogeneous plasma medium effect is not triv-
ial. In general, this effect will be dependent of the total
mass or other parameters which characterize the geome-
try.

1. Schwarzschild spacetime

For a first example, we will calculate the bending an-
gle for a spherically symmetric lens described by the
Schwarzschild metric,

A(r) = 1− 2m

r
, B(r) =

1

1− 2m
r

, C(r) = r2, (22)
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where r > 2m. The refractive index for this case reads,

n(r) =

√

1− ω2
e

ω2
∞

(

1− 2m

r

)

. (23)

Thus, the associated optical metric (14) is given by,

dσ2 =
r(ω2

∞ − ω2
e) + 2mω2

e

(r − 2m)ω2
∞

(

dr2

1− 2m
r

+ r2dϕ2

)

, (24)

with determinant gopt,

g
opt =

r3(ω2
∞r − ω2

er + 2ω2
em)2

(r − 2m)3ω4
∞

. (25)

By using (19) we get for the Gaussian curvature,

K =
ω2
∞m

r3(ω2
∞r − ω2

er + 2ω2
em)3

× [(3ω2
eω

2
∞−2ω4

∞−ω4
e)r

3+(−9ω2
∞ω2

e+3ω4
∞+6ω4

e)r
2m+(6ω2

∞ω2
e−12ω4

e)rm
2+8ω4

em
3].

(26)

Now, to compare the bending angle calculated using the
Gauss-Bonnet theorem with expressions in the literature,
we will only consider it at first order in m. So, we only
need the following expression at linear order

KdS = − 2ω2
∞ − ω2

e

r2(ω2
∞ − ω2

e)
mdrdϕ +O(m2). (27)

The geodesic curvature of CR with respect to the metric
(24) reads,

κg =
ω∞|ω2

eR
2 − ω2

∞R2 − 4Rω2
em+ 3mω2

∞R+ 4ω2
em

2|
R3/2(ω2

∞R − ω2
eR + 2ω2

em)3/2
.

(28)
On the other hand, from (20) and (24) it follows that for
this curve,

dσ

dϕ

∣

∣

∣

∣

CR

=
R

ω∞

√

R(ω2
∞ − ω2

e) + 2mω2
e

R− 2m
. (29)

Therefore, as expected for this number density profile
and physical metric (which imply that the optical metric
is asymptotically Euclidean) we corroborate that

lim
R→∞

κg
dσ

dϕ

∣

∣

∣

∣

CR

= 1. (30)

At linear order in m, it follows using (18) in the limit
R → ∞, and taking the geodesic curve γp approximated
by its flat Euclidean version parametrized as r = b/ sinϕ,
with b representing the impact parameter in the physical
spacetime that

α = − lim
R→∞

∫ π

0

∫ R

b
sinϕ

KdS. (31)

Finally, using (27) the deflection angle reads

α =
2m

b

(

1 +
1

1− (ωe/ω∞)2

)

+O(m2), (32)

which agrees with the known expression found using an-
other methods [48]. Of course, in the absence of the

plasma (ωe = 0), or in the limit at which its presence
is negligible (ωe/ω∞ → 0) this expression reduces to the
known vacuum formula α = 4m

b .

2. Schwarzschild metric pierced by a cosmic string in
presence of a global monopole

Now, we want to explore how the presence of a plasma
could modify the deflection angle in the Schwarzschild
metric with a global monopole characterized by a param-
eter η and also pierced by a cosmic string characterized
by a parameter µ. This metric, was recently analyzed by
Jusufi using the Gauss-Bonnet theorem in vacuum [21].
For this case, we have

A(r) = 1− 2m

r
, B(r) =

1

1− 2m
r

, C(r) = a2p2r2, (33)

where a2 = 1 − 8πη2 and p2 = (1 − 4µ)2 indicate the
presence of a global monopole and a cosmic string, re-
spectively.
As the 00 component of this metric is the same as the

Schwarzschild metric previously considered, the photon
frequency and the refractive index are the same.
Then, the associated optical metric (14) is given by,

dσ2 =
r(ω2

∞ − ω2
e) + 2mω2

e

(r − 2m)ω2
∞

(

dr2

1− 2m
r

+ a2 p2 r2dϕ2

)

,

(34)
with determinant gopt,

g
opt =

a2p2r3(ω2
∞r − ω2

er + 2ω2
em)2

(r − 2m)3ω4
∞

. (35)

As one expects, the Gaussian and geodesic curvatures are
the same as in the Schwarzschild case.
In way simila to the previous example, we only consider

KdS at first order in m,

KdS = −a p (2ω2
∞ − ω2

e)

r2(ω2
∞ − ω2

e)
mdrdϕ +O(m2). (36)
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On the other hand, using (20), we have

dσ

dϕ

∣

∣

∣

∣

CR

=
a pR

ω∞

√

R(ω2
∞ − ω2

e) + 2mω2
e

R− 2m
, (37)

but at difference of the previous example, we obtain

lim
R→∞

κg
dσ

dϕ

∣

∣

∣

∣

CR

= a p. (38)

At linear order in m, it follows from the use of (18) in
the limit R → ∞, and taking the geodesic curve γp ap-
proximated by its flat Euclidean version parametrized as
r = b/ sinϕ, that

lim
R→∞

∫ π+α

0

[

κg
dσ

dϕ

]
∣

∣

∣

∣

CR

dϕ = π − lim
R→∞

∫ π

0

∫ R

b
sinϕ

KdS.

(39)
Hence, the deflection angle reads

α =

(

π

a p
−π

)

+
2m

b

(

1+
1

1− (ωe/ω∞)2

)

+O(m2). (40)

This expression generalizes the result in Ref.[21] to the
case of light rays propagating in a homogeneous plasma.
In particula.r if we neglect the plasma effects, ωe/ω∞ →
0, Eq.(40) reduces to the expression of that reference.

3. Self-dual lorentzian spacetimes

In [75] a family of metrics which contains as a partic-
ular case the Schwarzschild solution was presented. This
family also contain a variety of different kind of compact
bodies as black holes, wormholes and naked singular ge-
ometries. The metric depends on three parameters ν, λ
and m,

A(r) =

(

ν + λ

√

1− 2m

r

)2

, B(r) =
1

1− 2m
r

, C(r) = r2.

(41)

Note that in this case ω(r) = ω∞

√
A(∞)√
A(r)

with A(∞) =

(ν + λ)2. Therefore, for ν 6= −λ (which is not asymptot-
ically flat and will be not discussed here), we have

n(r) =

√

√

√

√

√

1− ω2
e

ω2
∞

(

ν + λ
√

1− 2m
r

)2

(ν + λ)2
. (42)

At linear order in m the Gaussian curvature reads:

K = − (ν + λ)[(ν + 2λ)ω2
∞ − (ν + λ)ω2

e ]m

(ω2
∞ − ω2

e)r
3

; (43)

on the other hand, for the two-form KdS, we get

KdS = −
ν+2λ
ν+λ ω2

∞ − ω2
e

ω2
∞ − ω2

e

m

r2
drdϕ. (44)

The exact expression for the geodesic curvature of CR

is very cumbersome; however, at linear order in m the
behavior of κg

dσ
dϕ for large R is (as should be expected)

κg
dσ

dϕ

∣

∣

∣

∣

CR

= 1− m

R

ν+2λ
ν+λ ω2

∞ − ω2
e

ω2
∞ − ω2

e

+O(R−2). (45)

Finally, using the same arguments that allowed us to ar-
rive at Eq.(31), the deflection angle reads,

α =
2m

b

ν+2λ
ν+λ ω2

∞ − ω2
e

ω2
∞ − ω2

e

. (46)

In the absence of the plasma, this expression reduces to
α = 2m

b
ν+2λ
ν+λ , which can be checked to agree with the

expression obtained using alternative methods, as, for
example, by solving the null geodesic equation.
For the choice of the parameters of ν = 0, λ = 1, we

recover the result for a Schwarzschild metric, Eq.(32).
If ν = ν0 = constant and λ = 0, which describes the

so-called spatial Schwarzschild wormhole, the deflection
angle results in α = 2m

b ; which is independent of the
presence of the plasma. It is not unexpected, because in
this case the refractive index is constant, due to there not
being a gravitational redshift. This fact remains true for
any spacetime of which the lapse function is equal to 1,
as for example, for the Ellis wormhole.

4. Homogeneous plasma in more general alternatives to the
Schwarzschild solution

Let us consider a more general class of spherically sym-
metric metrics with the behavior in the components of
the metric [76, 77]

A(r) = 1− µ

rq
+O(r−(q+1)), (47)

B(r) = 1 +
γ

rq
+O(r−(q+1)), (48)

C(r) = r2
(

1 +
β

rq

)

+O(r−(q−1)), (49)

with µ, β and γ three parameters and q ≥ 0. As ex-
plained in Ref.[76], a coordinate transformation can be
made such that the components of the metric preserve
the form of Eqs.(47)-(49) but with β = 0 (Schwarzschild-
like coordinates) or β = γ (isotropic coordinates). At the
moment, we will keep the form (47)-(49) in order to not
restrict the coordinate freedom.
This family of metrics contains as a particular case

the asymptotic field limit of the Schwarzschild solution
(taking µ = γ = 2m, β = 0 and q = 1) and the Ellis
wormhole (taking µ = γ = 0, β = a2 and q = 2). For this
class of metrics, the refractive index for an homogeneous
plasma reads,

n(r) =

√

1− ω2
e

ω2
∞

(

1− µ

rq

)

. (50)
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Neglecting the nonlinear terms in µ, γ and β; that is,
terms of order O(r−(q+1)), the optical metric reads:

dσ2 =
ω2
∞[(ω2

∞ − ω2
e)r

q + (γ − µ)ω2
∞ − γω2

e ]

(ω2
∞ − ω2

e)
2rq

dr2

+
ω2
∞[(ω2

∞ − ω2
e)r

q + (β − µ)ω2
∞ − βω2

e ]

(ω2
∞ − ω2

e)
2rq

r2dϕ2.

(51)
with determinant gopt,

g
opt =

(rq + γ)(r2 + βr2−q)[rq(ω2
∞ − ω2

e) + µω2
e ]

2

rq(rq − µ)2ω4
∞

.

(52)

After some computations the resulting expression for
KdS linear in µ, β and γ reads:

KdS = − [(γ − β) + q(µ+ β)]ω2
∞ − [(q − 1)β + γ]ω2

e

2(ω2
∞ − ω2

e)r
q+1

drdϕ.

(53)
The asymptotic expression for κg

dσ
dϕ is

κg
dσ

dϕ

∣

∣

∣

∣

CR

= 1− qω2
∞µ

(ω2
∞ − ω2

e)R
q
− γ

2Rq
+
(1− q)β

2Rq
+O(

1

Rq+1
).

(54)
Therefore, we can use again the Eq.(31), and the final
result for the deflection angle is:

α =

√
πΓ( q2 + 1

2 )

2bqΓ(1 + q
2 )

[(q − 1)β + γ + qµ]ω2
∞ − [(q − 1)β + γ]ω2

e

ω2
∞ − ω2

e

, (55)

where

Γ(u) =

∫ ∞

0

vu−1e−vdv, (56)

is the Gamma function. This expression generalizes some
known particular formulas considered in the literature
without the presence of a plasma medium.
In isotropic coordinates (β = γ) the expression (55)

reduces to

α =

√
πΓ( q2 + 1

2 )q

2bqΓ(1 + q
2 )

(γ + µ)ω2
∞ − γω2

e

ω2
∞ − ω2

e

; (57)

and in Schwarzschild-like coordinates (β = 0), it reduces
to

α =

√
πΓ( q2 + 1

2 )

2bqΓ(1 + q
2 )

(γ + qµ)ω2
∞ − γω2

e

ω2
∞ − ω2

e

. (58)

In the absence of plasma, these expressions agree with
the relations found in Refs. [76, 77]. In particular, for
the choice of the parameters µ = γ = 2m, and q = 1,
Eqs.(57) and (58) reproduce the result of the deflection
angle for the Schwarzschild solution. For the choice µ =
γ = 0, β = a2, and q = 2, using (55) we find that

α = πa2

4b2 , which is the well-known value of the deflection

angle for the Ellis spacetime at lower order in a2 in the
weak field approximation.
Let us focus now on the expression (57) for the bend-

ing angle in isotropic coordinates. From this expression,
and due to the spherical symmetry, there exist simple
relations that allow us to compute the useful optical
quantities in weak gravitational lensing [17] in terms of
the expression for the deflection angle, namely the shear
γ̃ = −γ̃(b)e2iθ (with θ a polar angle defined in the celes-
tial sphere of the observer [17]) and the convergence κ̃.

We find in the case under study that

γ̃(b) = −∆

√
πΓ( q+3

2 )[(γ + µ)ω2
∞ − γω2

e ]

bq+1Γ( q2 )(ω
2
∞ − ω2

e)
, (59)

κ̃(b) = −∆

√
π(q − 1)Γ( q+1

2 )[(γ + µ)ω2
∞ − γω2

e ]

2bq+1Γ( q2 )(ω
2
∞ − ω2

e)
;(60)

with ∆ = dldls

ds
, a scale factor dependent on the distances

dl, dls, and ds representing the distance lens observer,
lens source and observer source respectively. Now
we consider some interested families as classified in
Refs.[76]. Note that there exists an intersection between
them. In the following, we omit writting the global
factor ∆.

Family I: Extended dust distributions:

This case is obtained by requiring that µ = γ. In such
situation, the metrics coming from Eqs.(47), (48) and
(49), can be interpreted in the framework of the Einstein
equations as coming from an effective energy-momentum
tensor of a perfect fluid with vanishing pressure [76]. For
this family, the deflection angle, the shear and the con-
vergence reduce to

α =

√
πΓ( q2 + 1

2 )qµ

2bqΓ(1 + q
2 )

2ω2
∞ − ω2

e

ω2
∞ − ω2

e

, (61)

γ̃(b) = −
√
πΓ( q+3

2 )µ

bq+1Γ( q2 )

2ω2
∞ − ω2

e

ω2
∞ − ω2

e

, (62)

κ̃(b) =

√
π(1− q)Γ( q+1

2 )µ

2bq+1Γ( q2 )

2ω2
∞ − ω2

e

ω2
∞ − ω2

e

. (63)

The Schwarzschild solution is a particular example of
this family, with q = 1 and µ = 2m. For this value
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of q, the converge is zero, independent of the presence
of the plasma. As explained by Bozza and Postiglione
[76], if 0 < q < 1 and µ > 0, the energy-density is
positive. However, if q > 1, the convergence is negative,
and it is produced by an exotic lens with an effective
energy-momentum tensor with a negative mass density.
In all this family, the correction factor due to the
presence of the homogeneous plasma is the same as in
the Schwarzschild spacetime.

Family II: Pure anisotropic pressure distribution:

This family is characterized by q = 1, and it results
in an effective energy-momentum tensor which has zero
energy density and an anisotropic pressure. The optical
scalars are:

α =
(γ + µ)ω2

∞ − γω2
e

b(ω2
∞ − ω2

e)
, (64)

γ̃(b) = − (γ + µ)ω2
∞ − γω2

e

b2(ω2
∞ − ω2

e)
, (65)

κ̃(b) = 0. (66)

If γ = µ = 2m, we recover again the Schwarzschild
solution. If µ = 0, the plasma does not influence to the
total deflection angle. The particular case µ = −γ will
be analyzed in the case V .

Family III: Constant lapse family:

This family is characterized by µ = 0, and therefore as
there is not gravitational redshift, a homogeneous plasma
does not influence in the optical scalars. Their expres-
sions read

α =

√
πΓ( q2 + 1

2 )qγ

2bqΓ(1 + q
2 )

, (67)

γ̃(b) = −
√
πΓ( q+3

2 )γ

bq+1Γ( q2 )
, (68)

κ̃(b) = −
√
π(q − 1)Γ( q+1

2 )γ

2bq+1Γ( q2 )
. (69)

Family IV: Zero lensing family (in the absence of plasma):

This family is characterized by µ = −γ. Without the
presence of a plasma, the total deflection angle is zero,
however, in the presence of a plasma, even when it is ho-
mogeneous, the deflection angle takes a non zero value.
It is due to the fact that there exists a nontrivial red-
shift that makes the refractive index dependent of the
radial coordinate r, however, the spatial components of
the metric cannot cancel this new contribution. The op-
tical scalars for this situation are

α =

√
πΓ( q2 + 1

2 )

2bqΓ(1 + q
2 )

qµω2
e

ω2
∞ − ω2

e

, (70)

γ̃(b) = −
√
πΓ( q+3

2 )µω2
e

bq+1Γ( q2 )(ω
2
∞ − ω2

e)
, (71)

κ̃(b) =

√
π(1− q)Γ( q+1

2 )µω2
e

2bq+1Γ( q2 )(ω
2
∞ − ω2

e)
. (72)

Family V: Zero spatial curvature:

This family is characterized by γ = 0. which makes
the t = constant slices be flat. Curiously, for this family,
the optical scalars take the same form as in the zero
lensing family.

Another relevant quantity that in general changes in
the presence of a plasma is the angular position of the
Einstein ring. Let us assume that the parameters µ and γ
are positive. Therefore from (57) and the weak lens equa-
tion it follows that the Einstein ring θpl in the presence
of a plasma is given by:

θpl =

(
√
πΓ( q2 + 1

2 )q

2Γ(1 + q
2 )

(γ + µ)ω2
∞ − γω2

e

ω2
∞ − ω2

e

dls
dsd

q
l

)
1

q+1

. (73)

The relative change between the Einstein ring θpl in the
presence of the plasma and its value θ0 in its absence is
given by:

∆θ0
θ0

=
θpl − θ0

θ0
=

(1− γ
γ+µ

ω2
e

ω2
∞

1− ω2
e

ω2
∞

)
1

q+1

− 1. (74)

Under the assumption that ω2
e/ω

2
∞ ≪ 1 we can approxi-

mate the above expression to

∆θ0
θ0

≈ µ

(1 + q)(µ+ γ)

ω2
e

ω2
∞
. (75)

For an example of the magnitude of the change in the
position of the Einstein ring in Fig.(3), assuming that
µ 6= 0 and δ = γ/µ are positive, we have plotted the
level curves of (75) for the quotient ωe/ω∞ = 6 × 10−3.
For this particular frequency relation, and with a value
of θ0 ≈ 1sec, the change is of the order of 1 − 10µsec.
The change in the position for a Schwarzschild metric is
a particular case of the level curve defined by δ = 1 and
it was analyzed by the same value of ωe/ω∞ in Ref.[48].
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FIG. 3: Level curves of the relative change in the position
of the Einstein rings ∆θ0/θ0 for the class of metrics given by
(47)-(49). As expected, for a fixed value of the quotient δ =
γ/µ, the relative difference becomes smaller as q grows. The
level curve that takes the value 9×10−6 (not shown) contains
the particular point (q = 1, δ = 1), corresponding to the
relative position change in the Einstein rings associated with
a Schwarzschild metric for the mentioned rate of frequencies.

IV. NONUNIFORM PLASMA MEDIUM

Now, to show how this approach to calculate the bend-
ing angle is also useful for light rays propagating in
nonuniform plasma, we will recover a general expression
for the deflection angle in the weak lensing regime ob-
tained for the first time by Bisnovatyi-Kogan and Tsupko
[48] in solving the Hamilton equations. In Appendix A,

we also show some explicit examples.
Let us consider an asymptotically flat and spherical

symmetric gravitational lens surrounded by an inhomo-
geneous plasma of wich the electron number density N(r)
is a decreasing function of the radial coordinate r and
such that its radial derivative N ′(r) is also decreasing
and smaller than N(r) . In isotropic coordinates, the
components of the metric in the physical spacetime is
codified in the following expressions;

A(r) = 1−µh00(r), B(r) = 1+ γhrr(r), C(r) = r2B(r).
(76)

The refractive index reads

n(r) =

√

1− ω2
e(1− µh00(r))

ω2
∞

. (77)

The associated optical metric is given by

dσ2 =

(

(1 + γhrr)(ω
2
∞ − ω2

e + µω2
eh00)

ω2
∞(1 − µh00)

)

(dr2 + r2dϕ2),

(78)
with determinant gopt,

g
opt =

(

(1 + γhrr)(ω
2
∞ − ω2

e + µω2
eh00)

ω2
∞(1− µh00)

)2

r2. (79)

As we are only interested in terms that are linear in γ
and µ, we write the Gaussian curvature at linear order in
these parameters, arriving at an expression of the form

K = Kpl + µKµ + γKγ , (80)

with

Kpl =
ω2
∞

2r(ω2
∞ − ω2

e)
3
×
[

Ke(rN
′)′(ω2

∞ − ω2
e) + rK2

eN
′2
]

, (81)

Kµ = − ω4
∞

2r(ω2
∞ − ω2

e)
2
×
[

(rh00
′)′ + Fµ(h00N

′, h00N
′′, h00

′N ′)

]

, (82)

Kγ = − ω2

2r(ω2
∞ − ω2

e)
×
[

(rhrr
′)′ + Fγ(hrrN

′, hrrN
′′, hrr

′N ′)

]

, (83)

and where the functions Fµ and Fγ are defined as,

Fµ(h00N
′, h00N

′′, h00
′N ′) = 2Ke(ω

2
∞ − ω2

e)[h00(rN
′)′ + rN ′h00

′] + 3h00rK
2
eN

′2, (84)

Fγ(hrrN
′, hrrN

′′, hrr
′N ′) = Kehrr[r(ω

2
∞ − ω2

e)N
′′ +N ′(ω2

∞ − ω2
e +KerN

′)]. (85)

Here, Kpl represent the plasma contribution to the Gaus- sian curvature which is also present in the case of a flat
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spacetime. Kµ and Kγ take into account the deviation
of the metric from the flat background, and therefore
they contain not only information about the pure gravi-
tational fields but also about the interaction between this
field and the plasma.
In principle, we could use this expression for the Gaus-

sian curvature in order to compute the deflection angle.
However, as in general the change in the deflection angle
due to the presence of the refractive index is smaller than
the main part due to the pure gravitational effect, we will
assume as in Ref. [48] that the deflection angle is small
and therefore as a first approximation the geodesic γp can
be taken as the straight line geodesic of the flat Euclidean
space. On the other hand, we neglect all higher-order
terms of the form O(N ′2, µN ′, µN ′′, γN ′2, γN ′′). There-
fore in the following we discard the last term in Kpl and
the terms Fµ and Fγ in the other components of the
Gaussian curvature.
Working at the mentioned order, we obtain for KdS:

KdS =
1

2

[

Ke(rN
′)′

ω2
∞ − ω2

e

− ω2
∞(rh00

′)′

ω2
∞ − ω2

e

µ− (rhrr
′)′γ

]

drdϕ.

(86)
Furthermore, we need to compute kg and dσ

dϕ along the

curve CR associated to the optical metric (78), which

gives

κg =
ω∞

2R2(ω2
∞ − ω2

e + ω2
eµh00)3(1 + γhrr)3(1 − µh00)

×
∣

∣

∣

∣

RKe(1− µh00)
2(1 + γhrr)N

′ − (1 − µh00)

(ω2
∞ − ω2

e + ω2
eµh00)(1 + γ(rhrr)

′ −Rµh00
′ω2

∞

∣

∣

∣

∣

.

(87)
On the other hand, we have that,

dσ

dϕ

∣

∣

∣

∣

CR

=
R

ω∞

√

(1 + γhrr)(ω2
∞ − ω2

e + ω2
eµh00)

1− µh00
, (88)

where all the functions in (87) and (88) are evaluated in
r = R. Hence, we can check that, due to the asymptotic
behavior of h00, hrr and N(r),

lim
R→∞

κg
dσ

dϕ

∣

∣

∣

∣

CR

= 1. (89)

Collecting all these results together we find that the de-
flection angle in this approximation is given by

α ≈ − lim
R→∞

∫ ∫

DR

KdS = −
∫ π

0

∫ ∞

b/ sinϕ

1

2

[

Ke(rN
′)′

ω2
∞ − ω2

e

− ω2
∞(rh00

′)′

ω2
∞ − ω2

e

µ− (rhrr
′)′γ

]

drdϕ. (90)

Using integration by parts in the first two terms of the
radial integral and neglecting again in the process the
terms of order O(N ′2, h00N

′), we obtain:

α ≈
∫ π

0

1

2

[

Ke(rN
′)

ω2
∞ − ω2

e

−ω2
∞(rh00

′)

ω2
∞ − ω2

e

µ−(rhrr
′)γ

]∣

∣

∣

∣

r=b/ sinϕ

dϕ.

(91)

If we transform to a new coordinate z related to r as
z =

√
r2 − b2, thus satisfying tanϕ = b/z, we can write

the expression (91) as,

α ≈ −
∫ ∞

−∞

b

2r

[

− KeN
′

ω2
∞ − ω2

e

+
ω2
∞h00

′

ω2
∞ − ω2

e

µ+ (hrr
′)γ

]∣

∣

∣

∣

r=
√
b2+z2

dz, (92)

which is in complete agreement with the expression (30)
derived by Bisnovatyi-Kogan and Tsupko in Ref. [48].
For completeness, the deflection angle for two different
electronic density profiles is calculated in Appendix A.

V. APPLICATION OF THE GAUSS-BONNET

THEOREM TO GRAVITATIONAL DEFLECTION

OF MASSIVE PARTICLES

A. Optical metric

Let us consider a static gravitational field. As was al-
ready remark by several authors in the past (see Refs.
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[48, 49] and references therein), there exists a correspon-
dence between the dynamic of light rays of frequency ω∞

in a homogeneous cold nonmagnetized plasma (with char-
acteristic frequency ωe) and the timelike geodesic motion
of a test massive particle with mass µ and energy E∞ as
measured by an asymptotic observer at the same gravi-
tational field. In particular if we make the identification
ωe → µ = constant , ω∞ → E∞, it follows that we can
use the Hamiltonian (4) to describe the geodesic motion
of massive particles.
For the same reason, given any static spacetime of the

form

gαβ = −A(xi)dt2 + gijdx
idxj , (93)

we can associate an optical metric (10) with each test
particle of mass µ and energy E∞. Noting that the local
energy E(xa) as measured by a static observer is related

to E∞ by E(xa) = E∞/
√

A(xa), it follows that the op-
tical metric reads

goptij = − n2

A(xi)
gij = −

1− µ2

E2
∞

A(xi)

g00
gij . (94)

This metric is implicit in the general work of Synge about
geometrical optics in dispersive and nondispersive media
(see the chapter XI of [72]) and also in the recent work
of Gibbons where he reintroduced (up to a constant fac-
tor E2

∞) the same metric under the name of the Jacobi
metric[69]. We refer to the last reference for an elegant
derivation and discussion of some of its properties.
Let us focus now in the geodesic motion of a massive

particle of mass µ in and static and spherically symmetric
spacetime. In particular we are interested in the descrip-
tion of the motion of the particle that leaves a source in
an asymptotically flat region, reaches the lens at a mini-
mal distance r0, and follows its trip until an asymptotic
observer. The particle is assumed leaving the asymptotic
region with a speed v as measured by an asymptotic ob-
server and therefore with an energy

E∞ =
µ√

1− v2
. (95)

In the same way let us assume that the particle has an
angular momentum J

J =
µvb√
1− v2

, (96)

with b the impact parameter. It follows that the optical
metric reads

dσ2 =
n2(r)

A(r)

(

B(r)dr2 + C(r)dϕ2

)

, (97)

with

n2(r) = 1− µ2

E2
∞
A(r) = 1− (1− v2)A(r). (98)

With all this information we can now study the spatial
geodesics of the metric (97). Note that what follows is
general for any refractive index and not only for massive
particles. In particular, the geodesic motion follows from
the Lagrangian

L =
1

2

[

n2(r)

A(r)

(

B(r)

(

dr

dσ

)2

+ C(r)

(

dϕ

dσ

)2)]

, (99)

with the on-shell constraint:

n2(r)

A(r)

[

B(r)

(

dr

dσ

)2

+ C(r)

(

dϕ

dσ

)2]

= 1. (100)

From (99) it follows that

n2C

A

dϕ

dσ
=

J

E∞
. (101)

We refer to Ref.[69] for a justification of the identification
between the constant associated to this conserve quantity
and J/E∞, where one must also take into account that
the optical metric defined in (94) is related to the metric
ds2 used by Gibbons by ds2 = E2

∞dσ2.
From this relation and the expressions (100) and (101)

it follows that

(

dr

dϕ

)2

=
C

B

(

E2
∞Cn2

J2A
− 1

)

. (102)

The last expression for the orbital equation was also re-
cently derived using the Hamiltonian approach [49, 52].
Using the metric (97) with n(r) given by (98) we can

apply the Gauss-Bonnet theorem to the study of lensing
for massive particles in any spherically symmetric gravi-
tational field. Of course, if we want to compute the de-
flection angle using the Gauss-Bonnet theorem, we only
need the flat trajectory of the particle written as usual,
r = b/ sinϕ; however the main motivation to explicitly
write (102) is that we will apply the Gibbons-Werner
method to study the deflection angle of massive particles
at second order in a Schwarzschild metric of mass m, and
for such goal we need to know the orbit at first order in
m.

B. Application: Deflection angle of massive

particles at second order in a Schwarzschild

spacetime

Here, we restrict our attention to a Schwarzschild
spacetime of mass m with A(r), B(r) and C(r) given
by (22). Using the variable u = 1/r, Eq.(102) reads

(

du

dϕ

)2

= −u2 + 2mu3 +
2m(1− v2)

b2v2
u+

1

b2
. (103)

This equation reduces to the equation of a massless par-
ticle for v = 1. We want to find solutions of this equation
describing the scattering of massive particles in the weak
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gravitational region, with the condition that the parti-
cle comes from an asymptotic region, passes through the
lens at a closer position at ϕ = π/2, and escapes to the
asymptotic region again. To solve (103), and following
the approach of Ref.[78] we assume that the solution can
be expressed in powers of m as

u =
1

b

(

sin(ϕ) +mu1(ϕ) +m2u2(ϕ)

)

+O(m3). (104)

Hence, using the mentioned conditions, we find

u(ϕ) =
sinϕ

b
+

v2 cos 2ϕ+ v2 + 2

2b2v2
m+

m2

16b3

[

(8 + 32v2 − 3v4)

v4
sinϕ+

6(4 + v2)(π − 2ϕ)

v2
cosϕ− 3 sin 3ϕ

]

+O(m3).

(105)

For v = 1, this expression reduces to the known second-
order solution of (103) for massless particles[78].
Now, we apply the Gauss-Bonnet theorem to compute

the deflection angle to second order. From the optical
metric that follows from (22), (97), and (98), we compute
the associated determinant and Gaussian curvature,

g
opt =

[2(1− v2)m+ v2r]2r3

(r − 2m)3
, (106)

K =
m[8(1− v2)2m3 + 6rm2(1− v2)(2v2 − 1)− 3v2(1− 2v2)mr2 − v2(1 + v2)r3]

[2m(1− v2) + v2r]3r3
. (107)

As we are interested in the computation at second order
of the deflection angle, we need the expression for KdS
at second order, which is given by:

KdS =

(

− 1 + v2

v2r2
m− v4 + 6v2 − 4

v4r3
m2

)

drdϕ +O(m3).

(108)
On the other hand, as was discussed for the homogeneous
plasma in Schwarzschild solution, doing the correspon-
dent identifications between frequencies and energy and
mass it follows that (30) remains valid. Consequently,
the deflection angle at second order is computed from
(31) with rγ = u−1

γ (ϕ) and uγ(ϕ) given by the first two
terms of (105). After doing the integrals, the final result
for the deflection angle reads

α =
2m

b

(

1 +
1

v2

)

+
3π

4b2

(

1 +
4

v2

)

m2 +O(m3). (109)

This expression reduces to the known result for massless
particles. For massive particles, there exist two different
expressions in the literature. The first one given by Ac-
cioly and Ragusa [79], and the second by Bhadra, Sarkar
and Nandi [80]. There is also a third work by He and Lin
[81], in which a numerical computation of the deflection
angle was made, with agreement with the result of Acci-
oly and Ragusa. Our computation also is consistent with

the results of Ref.[79]. It can also be checked conserving
the O(m2) terms of the expression (105) and applying
the method proposed in Ref.[78] to compute the bending
angle. For a final comment, let us note that by doing the

identification v2 ↔ 1 − ω2
e

ω2
∞

we can use expression (109)

in order to obtain the deflection angle at second order in
an homogeneous plasma for light rays,

α =
2m

b

(

1 +
1

1− ω2
e/ω

2
∞

)

+
3π

4b2

(

1 +
4

1− ω2
e/ω

2
∞

)

m2 +O(m3),

(110)

which generalizes at second order Eq.(32). However, be-
cause of the smallness of the plasma effects, this cor-
rection does not appear to be relevant for near-future
observations.

VI. FINAL REMARKS

In this work, we have shown how the Gauss-Bonnet
theorem can be successfully used to study plasma media
in gravitational fields. To use this theorem we have made
the following assumptions: the underlying spacetime is
static with a timelike Killing vector field ξα, and, in par-
ticular, spherically symmetric and asymptotically flat; it
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is surrounded by a cold nonmagnetized plasma that is
also assumed to be spherically symmetric and at rest with
respect to the timelike orbits of ξα; and the region un-
der study of the light rays is in the weak gravitational
regime. Then, using an appropriate Riemannian optical
metric that satisfies a Fermat-like variational principle
and that is conformal to the induced metric on the spa-
tial slices Σt of the physical metric (which are orthogonal
to ξα), it follows that the Gibbons-Werner method can
be applied.

In this way, we obtain an invariant and geometrical
expression for the deflection angle in terms of geomet-
rical and topological quantities even when in the physi-
cal spacetime the light rays do not follow in general null
geodesics. Moreover, by using a correspondence between
the motion of a massive particle and the dynamics of
light rays in a homogeneous plasma, we have success-
fully applied the Gibbons-Werner method to the study
of the deflection angle of massive particles. In particular,
we have shown several applications for the case of a ho-
mogeneous plasma and some nonhomogeneous profiles.
In the last cases, we have only computed the lower-order
correction due to the plasma. For a more complete treat-
ment, we should write the equation for the trajectory γp
in a more precise way and integrate in way similar to that
for the second order computation of the deflection angle
for massive particles.

The observational relevance of the influence of the
plasma in the bending angle and in the associate quanti-
ties has been analyzed by different authors and for several
astrophysical situations[47, 48, 71, 88, 89]. We would like
to mention here that the plasma frequency f = ωe/2π
usually takes values from few kHz to 100MHz[71]. Even
when on the surface of the Earth we are limited by the
ionosphere to observe only frequencies above 10MHz,
there exists radioastronomy projects that consider the
idea of putting in orbit 50 or more nanosatellites with
low-frequency antennas with a frequency sensitivity in
the range of 0.1-10MHz[45, 46]. As shown in Table I, for
this range of frequencies the deviation in the position of
the images (as determined by the Einstein rings), is not
negligible. The Schwarzschild metric case was analyzed
in the past for a ratio ωe/ω∞ of the order of 10−3[48, 88].
Here we also present the values for observations in a lower
range of frequencies and also for other potential exotic
objects. In the last cases, when q > 1, the influence of
the plasma is smaller than in the Schwarzschild spacetime
but still potentially detectable. In particular, we can ob-
serve that if the Einstein ring without the presence of
the plasma takes a value of the order of 1arcsec, then the
difference between the optical and the radio-frequency
images vary from micro-arcseconds to milli-arcseconds.
These differences should be detectable in the near future.

On the other hand, the Gauss-Bonnet theorem is useful
not only for describing weak gravitational lensing but also
lensing effects in the strong regime and providing finite
distance corrections. Note also that, even when we have
applied the Gauss-Bonnet theorem to static and spher-

TABLE I: Relative change in the position of the images for
three different frequency ratios ωe/ω∞ as determined by (74)
for the class of metrics discussed in Sec. III 4. Here we assume
that µ = γ with µ 6= 0. Note that the same relative change is
valid for the deflection angle and the other optical scalars.

q ωe/ω∞

∆Θ0

Θ0
=

Θpl−Θ0

Θ0

10−1 2.5× 10−3

1 10−2 2.5× 10−5

10−3 2.5× 10−7

10−1 2.0× 10−3

1.5 10−2 2.0× 10−5

10−3 2.0× 10−7

10−1 1.7× 10−3

2 10−2 1.7× 10−5

10−3 1.7× 10−7

ically symmetric gravitational fields with a dispersive
medium characterized by a refractive index n(r, ω(r)),
it can be also applied to nondispersive fluids. It follows
as a consequence that in that case the light rays with
tangent vectors ℓα must be null geodesics of the Gor-
don metric, and therefore they must satisfy the condition
gαβℓ

αℓβ = 0, that is

dt2 =
n2(r)

A(r)
(B(r)dr2 + C(r)dϕ2), (111)

which implies an optical metric as in (10).

To finalize, let us remark that recently a great inter-
est in the study of plasma environments in gravitational
fields produced by rotating sources has arisen[54, 56–
58, 82–87]. To deal with such situations, a modification
of the Gauss-Bonnet theorem approach [35–41] can be
used. In future works we will show how to apply these
techniques for the study of more general plasma environ-
ments and the gravitational lensing of massive particles
in rotating and stationary gravitational fields.
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Appendix A: Explicit computation of deflection

angle for two different non-homogeneous plasma

media

For completeness, we compute the deflection angle for
two different number density profiles. We also make the
assumption that ωe

ω∞

≪ 1.
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1. Plasma medium with N(r) = N0r
−h, h > 0 in a

Schwarzschild background

Here, we consider a gravitational lens surrounded by
an inhomogeneous plasma of which the number density
of electrons reads

N(r) = N0r
−h, h > 0, (A1)

surrounding the exterior of a spherical mass described by
the Schwarzschild metric (22). It follows that the photon
frequency has the same behavior as in the homogeneous
case; however, the refractive index changes,

n(r) =

√

1− KeN0

rhω2
∞

(

1− 2m

r

)

. (A2)

In this case, the associated optical metric is given by,

dσ2 =
r(ω2

∞ −KeN0r
−h + 2mN0Ker

−(1+h))

ω2
∞(r − 2m)

×
(

dr2

1− 2m
r

+ r2dϕ2

)

,

(A3)

with determinant gopt,

g
opt =

(rh+1ω2
∞ −KeN0r + 2mKeN0)

2r3

(r − 2m)3r2hω4
∞

, (A4)

and for the Gaussian curvature, we get

K =− 1

2

ω2
∞

r3(rh+1ω2
∞ −KeN0r + 2KeN0m)3

× {8ω2
∞m3KeN0(h− 1

2
)(h+ 3)r2h+1 − 12ω2

∞m2KeN0(
5

3
h+ h2 − 3

2
)r2h+2

+ 6ω2
∞mKeN0(h+

3

2
)(h− 2

3
)r2h+3 − r2h+4KeN0h

2ω2
∞ + 8m[

1

2
r3h+3ω4

∞ − 3

4
mr3h+2ω4

∞ + (m3rh − 3

2
m2rh+1

+
3

4
mrh+2 − 1

8
rh+3)K2

eN
2
0 (h− 2)]}.

(A5)

To compare with expressions for the bending angle cal-
culated with other methods, we only take into account
linear terms in m and N0 discarding terms proportional
to mN0,

KdS =

(

− 2m

r2
+

h2r−(h+1)KeN0

2ω2
∞

)

drdϕ

+O(m2, N2
0 ,mN0).

(A6)

Furthermore, we need to compute kg and dt
dϕ along the

curve CR associated with the optical metric (A3), which
gives

κg =
R

h−3

2 ω∞|4KeN0(h− 2)(m− R
2 )

2 + 6Rh+1ω2
∞(R3 −m)|

(2Rh+1ω2
∞ −KeN0R+ 2mKeN0)3/2

,

(A7)
and

dσ

dϕ

∣

∣

∣

∣

CR

=
R

ω∞

√

ω2
∞R−R1−hKeN0 + 2R−hKeN0m

R− 2m
.

(A8)
Hence, we can check that

lim
R→∞

κg
dσ

dϕ

∣

∣

∣

∣

CR

= 1. (A9)

Finally, using again the expression (31) the deflection

angle reads,

α =
4m

b
− KeN0

ω2
∞

√
π Γ(h2 + 1

2 )

bh Γ(h2 )
+O(m2, N2

0 ,mN0).

(A10)
The expression (A10) agrees with the formula found by
Bisnovatyi-Kogan and Tsupko in [48].

2. Plasma medium with N(r) = N0e
−r/r0 in a

Schwarzschild background

For a last example, let us consider a Schwarzschild met-
ric with a plasma medium with a charge number density
profile given by

N(r) = N0e
−r/r0. (A11)

In that case the refractive index is given by,

n(r) =

√

1− KeN0e−r/r0

ω2
∞

(

1− 2m

r

)

, (A12)

and the associated optical metric is

dσ2 =
r[ω2

∞ − ω2
e(r)] + 2mω2

e(r)

(r − 2m)ω2
∞

(

dr2

1− 2m
r

+ r2dϕ2

)

,

(A13)
where

ω2
e(r) = KeN0e

−r/r0. (A14)



15

The determinant gopt of the optical metric (A13) reads,

g
opt =

[ω2
∞r − ω2

e(r)(r − 2m)]2r3

(r − 2m)3ω4
∞

, (A15)

while the Gaussian curvature associated with this metric
is given by,

K =
ω2
∞

2r20r
3[(ω2

∞ − ω2
e(r))r + 2ω2

e(r)m]3
× {r(r − 2m)ω2

∞ω2
e(r)[r

4 − (4m+ r0)r
3 + (4m2 −mr0)r

2

+6mr0 (r0 +m) r − 6m2r0
2]− r0[ω

4
e(r)(r − 2m)3(m(2r0 + r)− r2) + 2ω4

∞mr0r
2(2r − 3m)]};

(A16)

which in the case of N0 = 0 reduces to the expression for
the Gaussian curvature of the optical metric associated
to the Schwarzschild. At linear order in m, we find

KdS =

(

− 2m

r2
+

ω2
e(r)[ω

2
∞(r − r0) + r0ω

2
e(r)]

2r20(ω
2
∞ − ω2

e(r))
2

)

drdϕ

+O(m2, N0m).
(A17)

The geodesic curvature of CR reads:

κg =

√

(R − 2R0)(R − 2m)2w2
e(R) + 2ω2

∞r0R(R− 3m)

2ω−1
∞ r0R3/2[(ω2

∞ − ω2
e(R))R + 2mw2

e(R)]3/2
.

(A18)
For this metric we also have

dσ

dϕ

∣

∣

∣

∣

CR

=
R

ω∞

{

[ω2
∞ − ω2

e(R)]R + 2mω2
e(R)

R− 2m

}1/2

,

(A19)

and therefore we check again that

lim
R→∞

κg
dσ

dϕ

∣

∣

∣

∣

CR

= 1. (A20)

Finally, the deflection angle follows

α =
4m

b
− bKeN0

r0ω2
∞

K0(
b

r0
) +O(m2, N2

0 ,mN0); (A21)

with K0 the modified zero Bessel function of the sec-
ond kind. A similar expression obtained using another
method can be found in Ref.[88].

[1] Henk Hoekstra, Matthias Bartelmann, Haakon Dahle,
Holger Israel, Marceau Limousin, and Massimo
Meneghetti. Masses of galaxy clusters from gravitational
lensing. Space Sci. Rev., 177:75–118, 2013.

[2] R. Mandelbaum. Galaxy Halo Masses from Weak Gravi-
tational Lensing. In M. Cappellari and S. Courteau, edi-
tors, Galaxy Masses as Constraints of Formation Models,
volume 311 of IAU Symposium, 2015, Cambridge Univer-
sity Press, Cambridge.

[3] Carlo Giocoli, Massimo Meneghetti, R. Benton Metcalf,
Stefano Ettori, and Lauro Moscardini. Mass and Concen-
tration estimates from Weak and Strong Gravitational
Lensing: a Systematic Study. Mon. Not. Roy. Astron.
Soc., 440(2):1899–1915, 2014.

[4] Antony Lewis; Anthony Challinor. Weak gravitational
lensing of the CMB. Physics Reports, 429, 1 2006.

[5] Ho Nam Nguyen, Neelima Sehgal, and Mathew
Madhavacheril. Measuring the Small-Scale Matter
Power Spectrum with High-Resolution CMB Lensing.
ArXiv:1710.03747(2017).

[6] Giovanni Marozzi, Giuseppe Fanizza, Enea Di Dio, and
Ruth Durrer. Impact of Next-to-Leading Order Contri-
butions to Cosmic Microwave Background Lensing. Phys.
Rev. Lett., 118(21):211301, 2017.

[7] Julien Peloton, Marcel Schmittfull, Antony Lewis, Julien
Carron, and Oliver Zahn. Full covariance of CMB
and lensing reconstruction power spectra. Phys. Rev.,
D95(4):043508, 2017.

[8] Giulio Fabbian, Matteo Calabrese, and Carmelita Car-
bone. CMB weak-lensing beyond the Born approxima-
tion: a numerical approach. J.Cosmol.Astropart. Phys.,
02 (2018) 050.

[9] Geraint Pratten and Antony Lewis. Impact of post-Born
lensing on the CMB. JCAP, 1608(08):047, 2016.

[10] Steffen Hagstotz, Bjrn Malte Schfer, and Philipp M.
Merkel. Born-corrections to weak lensing of the cos-
mic microwave background temperature and polarization
anisotropies. Mon. Not. Roy. Astron. Soc., 454(1):831–
838, 2015.

[11] Camille Bonvin, Chris Clarkson, Ruth Durrer, Roy
Maartens, and Obinna Umeh. Do we care about the dis-
tance to the CMB? Clarifying the impact of second-order
lensing. Journal of Cosmology and Astroparticle Physics,
2015(06):050, 2015.

[12] Giovanni Marozzi, Giuseppe Fanizza, Enea Di Dio, and
Ruth Durrer. CMB-lensing beyond the Born approxima-
tion. JCAP, 1609(09):028, 2016.

[13] Andrea Petri, Zoltn Haiman, and Morgan May. On the



16

validity of the Born approximation for beyond-Gaussian
weak lensing observables. Phys. Rev. D, 95, 123503
(2017).

[14] Bjoern Malte Schaefer and Matthias Bartelmann. Weak
lensing in the second post-Newtonian approximation:
Gravitomagnetic potentials and the integrated Sachs-
Wolfe effect. Mon. Not. Roy. Astron. Soc., 369:425–440,
2006.

[15] Asantha Cooray andWayne Hu. Second order corrections
to weak lensing by large scale structure. Astrophys. J.,
574:19, 2002.

[16] Giovanni Marozzi, Giuseppe Fanizza, Enea Di Dio, and
Ruth Durrer. CMB-lensing beyond the leading or-
der: temperature and polarization anisotropies. Arxiv:
1612.07263 (2016).

[17] Emanuel Gallo and Osvaldo M. Moreschi. Gravitational
lens optical scalars in terms of energy-momentum distri-
butions. Phys. Rev. D, 83:083007, 2011.

[18] Ezequiel F Boero and Osvaldo MMoreschi. Gravitational
lens optical scalars in terms of energy-momentum distri-
butions in the cosmological framework. Mon. Not. Roy.
Astron. Soc., 475(4):4683–4703, 2018.

[19] Gabriel Crisnejo and Emanuel Gallo. Expressions for op-
tical scalars and deflection angle at second order in terms
of curvature scalars. Phys. Rev. D, 97:084010, 2018.

[20] G. W. Gibbons and M. C. Werner. Applications of the
Gauss-Bonnet theorem to gravitational lensing. Class.
Quant. Grav., 25:235009, 2008.

[21] Kimet Jusufi. Gravitational lensing by Reissner-
Nordström black holes with topological defects. Astro-
phys. Space Sci., 361(1):24, 2016.

[22] Kimet Jusufi. Light Deflection with Torsion Effects
Caused by a Spinning Cosmic String. Eur. Phys. J.,
C76(6):332, 2016.

[23] Kimet Jusufi. Quantum effects on the deflection of light
and the Gauss-Bonnet theorem. Int. J. Geom. Meth.
Mod. Phys., 14(10):1750137, 2017.

[24] Kimet Jusufi. Deflection angle of light by wormholes us-
ing the Gauss-Bonnet theorem. Int. J. Geom. Meth. Mod.
Phys., 14(12):1750179, 2017.

[25] Kimet Jusufi, Izzet Sakalli, and Ali Övgün. Effect of
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