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Abstract

We develop a complete description of the class of conformal rela-
tivistic dissipative fluids of divergence form, following the formalism
described in [1] and [2]. This type of theories is fully described in terms
of evolution variables whose dynamics is governed by total divergence-
type conservation laws.

Specifically, we give a characterization of the whole family of con-
formal fluids in terms of a single master scalar function defined up to
second order corrections in dissipative effects, which we explicitly find
in general form. This allows us to identify the equilibrium states of
the theory, as well as to derive constitutive relations and a Fourier-like
law for the corresponding first-order theory heat flux. Finally, we show
that among this class of theories– and near equilibrium configurations–
there exist symmetric hyperbolic ones, implying that for them one can
define well posed initial value problems.
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1 Introduction

Throughout a broad spectra of physics, relativistic fluids play a crucial role
to describe the behavior of matter and energy. In astrophysics, they arise
as a description of compact stars and accretion disks [3, 4, 5, 6]; in particle
physics they are called for describing quark-gluon plasmas produced in high
energy collisions ([7, 8] and [9] for a nice review); and in cosmology they
play a crucial role in describing the radiation–dominated epoch in the early
universe (see the book [10] and references therein). The understanding of
its mathematical structure dates back to the early works of Lichnerowicz
[11, 12], who first proposed a relativistic theory of fluids in the late 60’s,
providing some results of existence and uniqueness of relevant solutions.

Physically, fluid dynamics can be derived as an effective description of in-
teracting quantum fields when considering fluctuations that are of sufficiently
long wavelength. This scheme requires a kinetic theory approach, providing
the corresponding precise definitions and relations among thermodynamic
variables [13, 14, 15, 16, 17]. The resulting equations govern the behavior of
macroscopic properties of fluids in terms of a piecewise continuous density,
velocity, and pressure, as well as relationships among them.

From a mathematical point of view, fluids are generally described by
different families of evolution equations, depending on the type of phenom-
ena one is interested in 1. In the non-relativistic regime, for instance, per-
fect/(incompressible viscous) fluids are described by the so called Euler/(Navier–
Stokes) equations respectively. While a relativistic version of Euler’s equation
is readily obtained, the inclusion of dissipative effects in relativistic regimes2

is non trivial, and introduces several subtleties already at the formal level.
The basic reason for this is that a Galilean description of fluids –that yields
the Navier–Stokes equations, results in parabolic equations, as the diffusion
equation. Its nature accounts for perturbations propagating at infinite speeds
and thus cannot be accommodated into the causal structure imposed by rel-
ativity [19, 20, 21]. This is evident, for instance, in the early attempts of
relativistic fluids due to Eckart and Landau-Lifschitz [22], in which they con-
sidered as basic dynamical variables the four-velocity of the fluid, as well
as some thermodynamical quantities. It became clear that a substantial en-
largement of the system was needed in order to resolve the tension between
phenomenological behavior –which favors a description à la Navier-Stokes–

1Such evolution equations could be or not of “conservation laws”. While this type of
equations are useful for describing shocks during evolution, there may exist more general
causal theories of dissipative relativistic fluids (see [18]).

2And, more generally, the issue of finding globally regular solutions of the corresponding
evolution equations.

3



and causality –which requires finite propagation speeds and so hyperbolic
systems [23].

As mentioned, a relativistic generalization of the hydrodynamic equa-
tions is not straightforward. There have been several proposals for suitable
attempts, and all of them require accounting for new parameters beyond
those encountered in the Navier–Stokes setting. In many cases, those pa-
rameters are difficult to estimate from available experiments, but also are
thought to be mostly irrelevant in describing much of the phenomenology of
interest. In particular, some attempts extend the set of dynamical variables
to be the total stress-energy tensor of the fluid and the associated conserved
particle number current. One of them, proposed by Liu, Müller and Ruggeri
[24], contemplates total divergence-type equations, which render the issues
of hyperbolicity and causality more transparent, and was extended later on
[25]. A few years later, Geroch and Lindblom [1] adopted this approach,
but relaxing previously imposed symmetries (adopted without clear physical
motivations, see [18] and [26]).

In this work we extend this approach in order to characterize and analyze
the initial value problem of the general class of relativistic conformal fluids.
The description shall be centered in the determination of a generating func-
tion, i.e., a scalar field defined on the whole spacetime, that contains all the
information of the fluid, considering dissipative effects up to second order.
This generating function will be determined by imposing conformal invari-
ance to the corresponding dynamical equations, and in particular, the second
order contribution will be crucial in order to guarantee well posedness of the
theory near equilibrium states.

1.1 Conformal fluids

As previously stated, one of the fundamental properties of relativistic fluid
theories is that they represent the low energy limit of almost any quantum
field theory. In particular, conformal field theories lead to conformal fluid
theories at low energies [27]. This sort of fluids has the particular charac-
teristic that they are conformally invariant ; i.e., dynamical equations are
invariant under conformal transformations of the spacetime metric (some-
times known as Weyl transformations). Though certainly the assumption of
conformal symmetry restricts the type of fluids under consideration, it has
been pointed out that in non–conformal fluids such symmetry might emerge
in suitable regimes [28].

Moreover, beyond the intrinsic importance of understanding the behav-
ior of conformal fluids (and their message to non–conformal ones), they have
recently been linked to an a priori separate branch of physics geometry. In-
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deed, the fluid/gravity correspondence [29, 30, 31, 32, 33] elucidated a direct
relation between a class of (perturbed) black holes in asymptotically Anti
de Sitter spacetimes in d + 1 dimensions and conformal relativistic hydro-
dynamics in d dimensions. For instance, for any solution to the conformal
fluid equations, it is possible to construct a black-brane solution in one more
dimension, allowing thus to explore a wide range of aspects of black hole
structure and their stability in terms of the corresponding fluid dual theory
–and vicerversa.

1.2 Overview, conventions and a notation list

This work is organized as follows. In section 2 we state some generalities
regarding divergence–type fluid theories, as well as particularize to the case
of conformal theories. This shall be the theoretical set up in which the work
is framed. Section 3 is devoted to review conformal invariance, as well as in-
troduce the notion of conformal weights. The next three sections contain one
of the main results of the paper: a full characterization of conformal fluids
in terms of a single scalar function including dissipative effects. In section 4
we discuss conformal perfect fluids and derive the equilibrium states of the
theory, as well as sections 5 and 6 are dedicated to discuss in detail the con-
tributions to the theory at first and second order in dissipation, respectively.
In section 7 we study the initial value problem of the full theory (that is,
up to second order in dissipation), using the algebraic tools for hyperbolic-
ity provided by Friedrichs, Lax and Geroch. We state and show the main
theorem about near equilibirum symmetric hyperbolicity of the full theory,
which constitute the second main result of this work. Final comments and a
general conclusion is displayed in section 8.

Throughout this work, we consider a time-oriented background spacetime
M with arbitrary dimension, d. We will adopt the signature (−,+,+,+, · · · )
and denote spacetime indices with Latin lowercase letters a, b, · · · . Latin
uppercase indices A,B, · · · and Greek lowercase indices α, β, · · · will be re-
spectively reserved for the equations and dynamic fields vector spaces within
Geroch’s covariant formalism [34]. Finally, natural units G = c = kB = 1
will be assumed, where G is Newton’s universal constant, c is the speed of
light in vacuum and kB the Boltzmann’s constant.

1.2.1 Definitions and notation

We present here a short list with some of the notation and definitions we shall
use throughout this work (see Table 1). Of course, the same definitions shall
be explicitly stated on each one of the sections in which they are used. Here
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we collect them in a unique list of definitions in terms of a pair or variables
(ξa, ξab) that will be adequately introduced in section 2. Finally, indicies of
all tensor fields on M are raised and lowered using the background metric.

Quantity Definition

gab background metric
d spacetime dimension

Dj
d
2
+ j, j = 0, 1, 2, · · ·

µ ξcξc
D ∇cξ

c

ν ξabξaξb
ψ1 ξabξab
ψ2 ξabξbξacξ

c

ψ3 ν2

µ̇ ξa∇aµ
ν̇ ξa∇aν

uc ξc√−µ

ℓa ξabξb
ℓ̇a ξc∇cℓ

a

rc ℓc − ν
µ
ξc

ξ̇c ξa∇aξ
c

ac ua∇au
c

ξ̇ab ξc∇cξ
ab

Table 1: List of definitions and notation.

2 Divergence–type conformal theories

In this section we give a brief review about divergence– type fluid theories
within the framework of General Relativity. We follow closely the work by
Geroch and Lindblom [1], also referring to [18, 26, 23, 35, 36] where needed.
We focus our analysis in the conformal case, for which we introduce further
concepts and notation that simplify arriving at our main results.

One of the simplest but physically consistent theories of dissipative rela-
tivistic fluids that may have a well posed initial value formulation are those
of divergence type, in which dynamical equations can be written as total
divergence equations. The simplicity of those theories lies in the fact that
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they can be constructed from a single generating function (that is, a suffi-
ciently smooth scalar field) and a dissipation–source tensor, both depending
on the corresponding fluid variables. This sort of theories facilitates the un-
derstanding on how to describe dissipative fluids in the framework of General
Relativity.

Let us consider a d-dimensional time-oriented background spacetime (M, gab).
The starting point is the assumption that any fluid theory is made up by the
following characteristics [1]:

(i) The dynamical variables of the theory are the energy–momentum ten-
sor T ab [a (2,0) symmetric tensor field], and a four–vector field Na

representing the particle number current density of the flow;

(ii) The evolution of these variables is governed by the set of first order
partial differential equations:

∇aN
a = 0 (2.1)

∇aT
ab = 0 (2.2)

∇aA
abc = Ibc. (2.3)

Here, the (3, 0) tensor field Aabc defined overM is symmetric and trace–
free in the last two indices, and it is an algebraic function on the fluid
variables. The tensor Iab is also symmetric and trace-free, and depends
algebraically on the fluid variables as well.

(iii) There exists a vector field Sa –also a local, algebraic function of the
fluid variables–, and as a consequence of equations (2.1), (2.2) and
(2.3), it satisfies the following inequality:

∇aS
a ≥ 0. (2.4)

The first two equations (2.1) and (2.2) are respectively the familiar par-
ticle number and energy–momentum conservation laws for relativistic fluids.
The third equation furnishes a description of the dissipative properties of the
fluid, and provides “constitutive relations” for the theory. Notice that the
symmetries of the dissipative tensor Aabc implies that the number of equa-
tions equals the number of variables. Last, the inequality (2.4) suggests that
Sa has the meaning of entropy density of the fluid. In fact, by integrating
both sides of inequality (2.4) over the volume V (Σ,Σ′) limited by the space-
like hypersurfaces Σ, Σ′ ⊂ M with Σ′ in the future of Σ and applying Stokes
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theorem one gets

0 ≤
∫

V

(∇aS
a)

√−g d4x

=

∫

Σ′

Sa dΣ′
a −

∫

Σ

Sa dΣa,

from which the quantity

Sa(Σ) :=

∫

Σ

Sa dΣa (2.5)

is non–decreasing.
Throughout this work, we shall concentrate on conformally invariant flu-

ids, for which there is no particle number conservation. From a thermody-
namical point of view, one may think that, as in the case of a photon gas,
the chemical potential is zero, since the process of creating photons does not
cost energy (see [37] for a detailed discussion). In fact, one should take the
limit of the chemical potential tending to zero in order to connect a particle
gas to a photon gas. On the other hand, recall that in the ultra-relativistic
limit, particle rest energy density becomes irrelevant, and particles move at
an energy scale much higher that the one they have at rest (thus, getting
closer to photon dynamics). Henceforth, as custommary in this regime, we
shall discard the conservation equation (2.1) and consider just (2.2) and (2.3)
as dynamical equations of the fluid.

A key observation within this framework is the following: condition (iii)
does not hold for all Na and T ab, but only for those that represent a thermo-
dynamic process, that is, for those that satisfy the conservation equations.
Thus, requiring the existence of such an entropy law, together with the sym-
metry of the energy–momentum tensor, implies the existence of new variables
{ξa, ξab}3 and a generating function, χ(ξa, ξab) such that,

T ab ≡ ∂2χ

∂ξa∂ξb
, (2.6)

Aabc ≡ ∂2χ

∂ξa∂ξbc
. (2.7)

The existence of these variables come out as Lagrange multipliers of the
equations of motion [1, 2]. Therefore, a single scalar function of the variables

3When particle conservation is included, it is normal to consider ξab to be trace–free,
for this is the freedom remaining in the energy– momentum tensor. Alternatively, one can
think that the trace scalar freedom can be taken care with a scalar variable arising in this
formalism from particle number conservation (that is, the associated Lagrange multiplier).
Here we do not require it, but nonetheless we shall see it will appear as a requirement.
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χ(ξa, ξab) suffices to formally describe the behavior of the fluid. We shall see
that the tensor field ξab is associated with (and actually encodes) departures
from a perfect fluid description. This is because when considering only perfect
fluids, the dissipative equation (2.3) does not appear, so there is no associated
Lagrange multiplier, namely ξab. It is natural then to consider the generating
function χ as an expansion in terms of the dissipative scalar–type variables
(i.e. scalar fields defined in terms of ξab).

The most general function (up to second order in dissipative variables)
that may be constructed in this scheme can be expressed as

χ(µ, ν, ψ) = χ0(µ) + χ1(µ)ν +

3
∑

i=0

χ2
i (µ)ψ

i , (2.8)

where µ := ξcξc is the square of the norm of ξc, ν := ξabξaξb, and the second
order scalars

ψ1 := ξabξab, ψ2 := ξabξbξacξ
c, ψ3 := ν2. (2.9)

The entropy current in this framework is determined by the generating func-
tion χ as [1]

Sa =
∂χ

∂ξa
− ξbT

ab − ξbcA
abc , (2.10)

and it satisfies
∇aS

a = −ξabIab . (2.11)

Consequently, entropy production in this framework is governed by the di-
vergence of Aabc and ξab. The latter also justifies our prior statement that ξab
can be regarded as an intrinsically “dissipative” variable. In what follows, we
will work order by order and construct the generating function χ as a linear
combination of those order–contributions. We shall see that the requirement
of conformal invariance has a significant effect in determining the possible
different contributions. Before we present our findings, we discuss general
consequences of conformal symmetry which will be useful throughout this
work.

3 Conformal Invariance

In this section we review conformal transformations, and derive some alge-
braic properties for the dynamical variables that guarantee conformal invari-
ance of the evolution equations. After a discussion of the general structure of
some conformally invariant tensor fields we shall make use of, we introduce
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the notion of conformal weights, and scaling of some quantities of interest
with the conformal factor.
Recall that under a conformal transformation

ĝab = Ω2gab, (3.1)

the connection ∇c changes as [38]

∇̂aX
b = ∇aX

b + Cb
acX

c, (3.2)

when acting over a vector field Xc. Here,

Ca
bc = gad

(

2n̂(bgc)d − n̂dgbc
)

, (3.3)

with

n̂c :=
1

Ω
∇cΩ, (3.4)

over the points of M in which Ω 6= 0. We recall as well the identity Ca
ac =

dn̂c.
Conformal invariance of the fluid equations imply the existence of two

constants α, β such that they remain unaltered after a conformal transfor-
mation, i.e.,

T̂ ab = Ωα T ab ; Âabc = Ωβ Aabc (3.5)

with
∇̂aT̂

ab = 0 ; ∇̂aÂ
abc = Îbc. (3.6)

Thus, for the energy–momentum tensor, a conformal transformation implies

∇̂aT̂
ab = ∇aT̂

ab + Ca
acT̂

cb + Cb
adT̂

ad

= Ωα
[

∇aT
ab + (α + d+ 2) n̂aT

ab − n̂bT acgac
]

for all n̂a. Conformal invariance implies the last two terms of the right hand
side must vanish, i.e.,

(α + d+ 2) n̂aT
ab − n̂bT acgac = 0. (3.7)

Contracting with n̂b and requiring the above equation holds for any n̂a we
get that both terms must cancel separately, yielding

α = −(d + 2), gabT
ab = 0. (3.8)

Therefore, any trace-free energy momentum tensor transforming like

T̂ ab = Ω−(d+2) T ab (3.9)

10



under conformal transformations will have a conformal invariant conservation
law.

Let us turn now our attention to the constitutive relation tensor, Aabc. A
conformal transformation for its divergence implies,

∇̂aÂ
abc = ∇aÂ

abc + Ca
adÂ

dbc + 2C(b
adÂ

|a|c)d

= ∇aÂ
abc + dn̂aÂ

abc + gdb(2n̂(agm)d − n̂dgam)Â
acm

+gdc(2n̂(agm)d − n̂dgam)Â
abm

= ∇aÂ
abc + dn̂aÂ

abc + gdb(n̂agmd + n̂mgad − n̂dgam)Â
acm

+gdc(n̂agmd + n̂mgad − n̂dgam)Â
abm

= ∇aÂ
abc + dn̂aÂ

abc + n̂aÂ
acb + n̂dÂ

bcd − n̂bgadÂ
acd + n̂aÂ

abc

+n̂dÂ
cbd − n̂cgadÂ

abd

= ∇aÂ
abc + (d+ 2)n̂aÂ

abc + 2n̂dÂ
(bc)d − 2n̂(bgadÂ

|a|c)d

= Ωβ
[

∇aA
abc + (β + d+ 2)n̂aA

abc + 2n̂dA
(bc)d − 2n̂(bgadA

|a|c)d]

As with the previous case, the second, third and fourth terms of the right
hand side must vanish, i.e., for arbitrary n̂a,

(β + d+ 2)n̂aA
abc + 2n̂dA

(bc)d − 2n̂(bgadA
|a|c)d = 0. (3.10)

Contracting (3.10) with n̂bn̂c gives

1

2
(β + d+ 4)Aabcn̂an̂bn̂c − Abcagbcn̂a = 0 (3.11)

for all n̂a. Since Aabc is trace free in the last two indices, each term must
vanish separately. Thus, β = −(d+4), and Abcagbc = 0. Therefore, equation
(3.10) reduces to

n̂aA
abc − n̂aA

(bc)a = 0, (3.12)

for a totally trace–free tensor symmetric in the last two indices. Thus, Aabc

must transform as
Âabc = Ω−(d+4)Aabc. (3.13)

As a conclusion, we may say that under a transformation like (3.1), con-
formal invariance is guaranteed if T ab is trace–free and Aabc satisfies the
relation (3.12).

3.1 Conformal weights

Throughout this work, it will be important to keep track of the “conformal
weights” different quantities have. To this end we define the conformal weight
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CW of an arbitrary quantity X as

CW(X) := n if X̂ = Ω−nX, (3.14)

where X̂ is the conformally related quantity via the transformation (3.1).
From our previous discussion we have that CW(T ab) = d+2, and CW(Aabc) =
d+ 4.

On the other hand, for the entropy production equation (2.11) to be
conformally invariant we must have CW(Sa) = d. To see this, let γ1 and
γ2 be scalars such that Ŝa = Ωγ1Sa and σ̂ = Ωγ2σ, where σ = −ξabIab (see
equation (2.11)). By similar arguments to the ones given before, we get

∇̂aŜ
a = Ωγ (∇aS

a + (γ + d)n̂aS
a) . (3.15)

for all n̂a. Requiring the left hand side of (3.15) to be equal to σ̂, we must
have γ1 = γ2 = −d, from which we conclude that CW(Sa) = d. Now,
it is possible to use our definition of Sa (2.10) to assert that, by virtue of
the conformal weights of T ab and Aabc computed before, CW(ξa) = −2 and
CW(ξab) = −4. This, in turn, implies that CW(ξa) = CW(ξab) = 0.

Next, from the conformal weights of ξa and ξa we get CW(µ) = −2.
Likewise, notice also that as a consequence of (2.10),

d = CW
(

∂χ

∂ξa

)

= CW(χ)− CW(ξa),

from which CW(χ) = d− 2.
These relations, in particular, will help to uniquely determine the powers

of µ in the different factors that will appear order by order through our anal-
ysis. In what follows, we derive expressions for the quantities T ab, Aabc and
constitutive relations order by order with respect to dissipative contributions
[recall equation (2.8)].

4 Perfect fluid and equilibrium states

In this section we give a detailed description of the theories of conformal
fluids without dissipation. We will see that from these equations emerges
directly the familiar perfect fluid structure of the energy–momentum tensor,
with radiation equation of state. Next, following the guidelines of [1], we
shall give a first characterization of the equilibrium states of these theories,
as well as we compute the entropy as a function of the fundamental variables,
verifying that it is a conserved quantity in equilibrium.
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We begin with the zeroth order in the expansion (2.8). To this order we
get, from equation (2.6),

T ab
o = 4χo

µµξ
aξb + 2χo

µg
ab, (4.1)

where the subindex µ denotes derivative with respect to µ, and from equation
(2.7),

Aabc
o = 0. (4.2)

Next, requiring the energy momentum tensor to be trace–free, we obtain the
following condition for χo:

2dχo
µ + 4µχo

µµ = 0, (4.3)

The physically valid solution to this equation is

χo(µ) =
χo
o

µ
d

2
−1

, (4.4)

up to an irrelevant constant χo
o which, we shall see, does not contribute to

the equations.
The solution thus obtained corresponds to a perfect fluid. To see this, let

us assume that ξa is time–like and introduce the vector field

ua :=
ξa√−µ.

Next, by introducing thermodynamical variables {ρ, p} generally defined as

ρ := T abuaub , p :=
T ab (gab + uaub)

d− 1
, (4.5)

it is straightforward that the expression (4.1) is equivalent to

T ab
PF = (ρ+ p)uaub + pgab, (4.6)

via the identification

p := 2χo
µ , ρ := −4µχo

µµ − 2χo
µ. (4.7)

At this point, several observations should be pointed out.

• In order to make an identification like the one made above, it is not
strictly necessary to assume that ξa is time-like. Nevertheless, if the aim
is to describe a perfect fluid with 4–velocity ua, a natural requirement
is that it be.
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• As expected, the stress-energy tensor we have already derived corre-
sponds to a pure radiation perfect fluid, so the conformal invariance
gives to this order a unique perfect fluid. In fact, a direct consequence
of the trace–free equation (4.3) yields the corresponding state equation,
namely

p =
ρ

d− 1
, (4.8)

as it can be straightforwardly checked through (4.5).

• The positivity of the conformal density ρ is a consequence of the energy
conditions demanded from T ab

o . In fact, it is straightforward to check
that if T ab

o satisfies the dominant energy condition, and ξa is time-like,
then ρ ≥ 0.

• For each x ∈ M, the vector ξa is an eigenvector of T a
o b. Thus, if

ξa is assumed to be time–like, it spans the 1–dimensional time–like
eigenspace of T a

o b, and ua is the so–called “Landau frame” (see, for
instance, [36]).

• Introducing the quantity

T :=
1√−µ, (4.9)

so that ua = Tξa, and using the explicit solution (4.4) for the gen-
erating function, we see that both energy density and pressure scale
as T d. Also, it is straightforward that CW(T ) = 1 (see section 3.1
above). We shall identify this quantity with the temperature of the
fluid. In this context, the notion of temperature captured in (4.9) has
been extensively studied in the past, in order to characterize thermal
equilibrium states of gravitating systems. In particular, we highlight
Tolman’s work [39], wherein a expression like (4.9) is derived for static
spacetimes.

We can also derive further useful relations at this order. The conservation
equation, projected along the fluid’s velocity, ua∇bT

ab = 0, implies

∇au
a = −d − 1

d
ua∇a ln p

= −(d − 1)ua∇a lnT

=
d− 1

2
ua∇a ln (−µ) . (4.10)
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On the other hand, the projection on the orthogonal plane with respect
to the fluid velocity yields

ua∇au
b = −Db lnT

=
1

2
Db ln (−µ) , (4.11)

where Da :=
(

δa
b + uau

b
)

∇b is the derivative of the hypersurface orthogonal
to the integral lines of ua.

It is useful to also obtain related expressions in terms of ξa. In fact, taking
the divergence of the full expression (4.1), namely

∇aT
ab
o = 2χo

µµ

(

gab − d

µ
ξaξb

)

∇aµ− 2d

µ
χµ

(

Dξb + ξ̇b − µ̇

µ
ξb
)

= χo
µ

d

µ

[(

d+ 2

µ
µ̇− 2D

)

ξb −∇bµ− 2ξ̇b
]

, (4.12)

where we have defined,

D := ∇aξ
a , µ̇ := ξa∇aµ , ξ̇b := ξa∇aξ

b , (4.13)

from which it follows the identity

ξbξ̇b =
1

2
µ̇. (4.14)

Now, contracting equation (4.12) with ξb, one obtains

0 = ξb∇aT
ab
o

= dχo
µ

[

µ̇

µ
d− 2D

]

,

from which
µ̇

µ
=

2D

d
. (4.15)

Last, replacing the above relation in the conservation equation (4.12), one
gets

0 = ∇aT
ab
o

= χo
µ

2d

µ

[

µ̇

µ
ξb − 1

2
∇bµ− ξ̇b

]

, (4.16)

which implies the identity

ξ̇b =
µ̇

µ
ξb − 1

2
∇bµ. (4.17)
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4.1 Entropy density contribution

Let us compute the entropy current at this order. Following the definition
given in equation (2.10), we get

Sa
o =

∂χo

∂ξa
− ξbT

ab
o

= −4µχo
µµξ

a

=
d

d− 1
ρξa (4.18)

=
d

d− 1

ρ

T
ua. (4.19)

For the divergence we get

∇aS
a
o = 2dDχo

µ + 2dξa∇aχ
o
µ

= 2dDχo
µ + 2dχo

µµµ̇

= 2dχo
µ

(

D − dµ̇

2µ

)

= 0, (4.20)

by virtue of relation (4.15). Thus, there is no change of entropy to this
non–dissipative order, as expected.

4.2 Equilibrium states

In this section we discuss the equilibrium states of this theory. In line with
the arguments of Geroch and Lindblom [1, 18], these states must have the
same properties as those of Eckart theory; that is, a rigid flow and a constant
and stable temperature field. They refer to equilibrium states those solution
of fluid equations in which dynamics is time reversible. With simple algebraic
arguments, the authors prove that those states have the following properties:
the source tensor Iab evaluated on equilibrium states is zero; there is no
entropy production and the vector field ξa is a Killing vector field.

We now give a first argument to assert that equilibrium states for con-
formal dissipative relativistic theories are those such that ξa is a conformal
Killing vector field. Recall that, in general, Xa is a conformal Killing vector
field if there exists a scalar field α such that [38]

∇(aXb) = αgab.

If this relation holds for some α, contraction with gab over both sides of it
implies that α = ∇aX

a/d.
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To see the nature of ξa, let us compute the symmetrized derivative of
it, which is a symmetric tensor of rank (0, 2). The unique symmetric tensor
fields that can be constructed in terms of ξa and the spacetime metric are
the metric itself, and ξaξb. So it is natural to propose that

∇(aξb) = t gab + s ξaξb, (4.21)

with t, s functions of µ and the dimension, to be determined. Contraction of
(4.21) with gab gives

D = td+ sµ,

while its contraction with ξaξb yields now the relation

µ̇

2
= tµ+ sµ2.

Recalling the identities (4.14) and (4.15), the above two relations imply t =
D/d and s = 0, so ξa is a Killing vector field. Thus, equilibrium states in
these theories are those such that ξab = 0 (that trivially holds in this case)
and ξa is a conformal Killing vector field.

5 First order theory

In this section we give a description of the first order contribution, which
stems from adding linear dissipative–like terms to the dynamical variables.
This is a better approximation for describing fluids when microscopic time-
scales are comparable with the macroscopic ones, since the local thermo-
dynamic equilibrium breaks down (e.g. [36]). At this order, we shall find
the four–velocity–orthogonal heat flux, deriving a Fourier–like equation, as
well as the corresponding shear viscosity to the stress-energy tensor. We
next compute the entropy current and include a discussion about the Lan-
dau frame at this order, from which we shall see that energy dissipation and,
thus, entropy production, plays a central role.

Following the orthonormal decomposition discussed in Appendix A, it is
convenient to decompose the dissipative variable ξab as,

ξab =
ν

µ2
ξaξb +

2

µ
ξ(arb) + τab , (5.1)

where we have introduced the quantities

ra ≡ ξabξ
b − ν

µ
ξa , (5.2)

τab ≡ τ̃ab −
hab
d− 1

ν

µ
. (5.3)
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with the straightforward conditions

τabξ
b = 0 , raξ

a = gabτ̃ab = 0. (5.4)

Notice that the unique vector fields that can be constructed as algebraic
functions of the variables (ξa, ξab) and the metric gab, which are (at most)
linear in ξab are ξ

a := gabξb and ℓ
a := ξabξa. In particular, if ξa is time–like,

then ra is always spatial and orthogonal to ξa. We shall make use of this
decomposition below to uncover the constitutive relations at this order.

The contribution to the generating function at first order is

χ(1)(µ, ν) = χ1(µ)ν ,

where χ1 is an arbitrary function of µ, and ν := ξabξaξb is the unique (non
trivial) scalar which is linear in ξab and is an algebraic function of the variables
(ξa, ξab) and the metric. The corresponding contributions of the stress energy
tensor and the constitutive tensor that arise from χ(1)(µ, ν) are, respectively,

T 1
ab = 4χ1

µµνξaξb + 8χ1
µξ(aξb)cξ

c + 2χ1
µνgab + 2χ1ξab , (5.5)

Aabc
1 = χ1(2ga(bξc) − 2

d
ξagbc) + 2χ1

µξ
a(ξbξc − µ

d
gbc). (5.6)

Now, let us impose the conformal invariance requierements to those expres-
sions. Trace–free condition for (5.5) implies the following two equations,

2µχ1
µµ + (d+ 4)χ1

µ = 0 , (5.7)

gabξab = 0 . (5.8)

The second one was expected, since ξab is trace-free by construction. The
former is satisfied if and only if

χ1 = χ1
1 +

χ1
o

µ
d+2

2

, (5.9)

with real constants χ1
1 and χ1

o.
Imposing now the corresponding requirement for (5.6) [given by relation

(3.12)], one gets
2µχ1

µ + (d+ 2)χ1 = 0, (5.10)

which eliminates the constant χ1
1 in the solution (5.9). It is crucial here to

notice that relations (5.10) and (5.7) are compatible with each other, in the
sense that one is a first integral of the other. Therefore, equation (5.10)

18



allows us to express all the coefficients for T 1
ab and A

abc
1 in terms of a single

function, χ1. Indeed, we get

T ab
1 = χ1

[

(d+ 2)(d+ 4)

µ2
νξaξb − 4(d+ 2)

µ
ξ(aξb)cξc −

d+ 2

µ
νgab + 2ξab

]

.

(5.11)
and

Aabc
1 = χ1

[

2ga(bξc) + ξagbc − d+ 2

µ
ξaξbξc

]

= χ1

[

2ha(bξc) + ξa
(

gbc − d

µ
ξbξc

)]

= χ1
√
−µ
[

2ha(buc) + uahbc + (d− 1)uaubuc)
]

, (5.12)

where we have introduced, one more time, the normalized time–like vector
field

uc =
ξc√−µ, (5.13)

in the last line of the above calculation. Notice that Aabc
1 is trace–free in all

entries (recall discussion around equation (3.12)), and it can be expressed in
the form given in equation (A.7) of Appendix A by choosing V a = ξa and

Sab = gab − d+ 2

3µ
ξaξb. (5.14)

Also, by imposing (3.12) to (5.6) we obtain again the first integral (5.10).
On the other hand, we can compute explicitly the divergence of Aabc

1 , that
will be used later on. Indeed, we get

∇aA
abc
1 = − χ1(d+ 1)

2µ

[

2
√
−µ u(bDc)µ+ µ̇hbc + (d− 1)µ̇ubuc

]

+ χ1
√
−µ
[

2D(buc) + (∇au
a)hbc

+ (d+ 1)
(

(∇au
a)ubuc + 2uau(b∇au

c)
)]

. (5.15)

To find out physical quantities and constitutive fluid relations, let us now
use the decomposition (5.1) to re-express T 1

ab and Aabc
1 in order to discuss

some consequences. We begin with T 1
ab, for which we get

T 1
ab = χ1 ν

µ2

d2(d+ 1)

d− 1

[

ξaξb −
µ

d
gab

]

− 4(d+ 1)χ1

µ
ξ(arb) + 2χ1τ̃ab. (5.16)

Recalling relation (5.13), one can easily deduce that the first order “correc-
tions” to density and pressure are,

ρ1 = −d(d+ 1)χ1 ν

µ
, p1 = −χ1d(d+ 1)

d− 1

ν

µ
, (5.17)
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where the definitions (4.5) have been used and, as expected, there is no
change in the resulting equation of state, i.e.,

p =
ρ

d− 1
, (5.18)

with
ρ = ρ0 + ρ1, p = p0 + p1,

where ρ0 and p0 are the zeroth order contributions found earlier. Moreover,
from the dominant energy condition for the full T ab, ρ > 0.

5.1 Heat flux and a Fourier-like equation

In non relativistic frameworks, one usually introduces the notion of heat flux
in the corresponding co–moving frame as a spatial vector ~q that measures
the rate of energy flow per unit area at each point of the space. The cor-
responding heat equation is a consequence of the first and second law of
Thermodynamics, plus the well known Fourier equation [22]

~q = −k ~∇T, (5.19)

with k the thermal diffusivity and T the temperature. As discussed in the
introduction, a generalization of these ideas within a relativistic framework
is not straightforward for several reasons [40]. In particular, equation (5.19)
leads to the following parabolic equation for T :

∂tT = a ∇2T, (5.20)

where a is a positive constant and ∇2 is the Laplace operator. While this
equation possesses a well posed initial value problem (see a discussion in
the textbook [41]), its nature provides no bound for the speed of propaga-
tion of thermal disturbances4, thus making difficult its identification in the
relativistic regime.

Nonetheless, given a theory of relativistic fluids with energy–momentum
tensor T ab, it is possible introduce the notion of heat flux in the co–moving
frame ua, as the projection of the energy flux onto the hypersurface that is
orthogonal to ua, namely

qa := −habTbcuc,
4One can easily see that this is already the situation by solving the associated one–

dimensional initial value problem over a finite domain, with an initial profile of temperature
given by a localized heat impulse.
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which satisfies a constitutive relation of the form (see, for instance, [22])

qa ∼ −hab (∇bT + Tab) , (5.21)

where ac = ub∇bu
c, and hab the induced metric to the hypersurface orthogo-

nal to uc, namely
hab = gab + uaub.

In accordance with expression (5.16), we identify the heat flux as

qa :=
2(d+ 1)χ1

√−µ ra. (5.22)

We shall now derive a constitutive relation for (5.22) like the one in (5.21)
as a direct consequence of the constitutive equation (2.3) stated before. To
this end, and recalling the orthonormal decomposition discussed in Appendix
A, introduce the most general form for the tensor Iab that is trace-free and
positive definite when contracting with a non-zero ξab; namely,

Iab =
τ

γµ
ξaξb −

2

κ
ξ(arb) −

1

γ
τab , (5.23)

with {κ, γ} positive functions of µ to be fixed and requiring Iab to have
conformal weight d. We get

−ξabIab = −τν
γµ

+
2

κ
ℓara +

1

γ
ξabτab

=
τ 2

γ
+

2

κ
rara +

τabτab
γ

, (5.24)

which is a positive function if κ and γ are positive, since ra is space–like,
and τabτab ≥ 0 (since τab is a purely spatial tensor field). Also, we have
used that the trace of τab can be directly obtained using decomposition (5.1),
namely τ = −ν/µ. Taking into account the decomposition performed in
(5.23), equation (2.3) implies that

rd = −κ(µ)
µ

ξch
d
b∇aA

abc
1

= χ1(d+ 1)
κ(µ)

µ
hdb
(

1

2
∇bµ+ ξ̇b

)

=
χ1(d+ 1)

2

κ(µ)

µ

(

Ddµ+ 2hdbξ̇b

)

, (5.25)
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Now, notice that (5.25) can be expressed in a more suitable form. Indeed,
the identity (4.12) implies that

hcb
(

1

2
∇bµ+ ξ̇b

)

= − µ

2dχo
µ

hcb∇aT
ab
o

= − 1

χo
o

µ(d+2)/2

d(d− 2)
hcb∇aT

ab
o , (5.26)

where we have used the general solution for χo(µ) obtained in the previous
section (equation (4.4). Notice that relation (5.26) is off-shell, i.e., it is a
geometric identity that always holds, without assuming equations of motion.
With this information, equation (5.25) reads

ra = −χ
1
o

χo
o

d+ 1

d(d− 2)

κ(µ)

µ
hab∇cT

bc
o . (5.27)

The above equation has a clear physical interpretation: the departure of
these states from the equilibrium ones, carries away energy in form of “heat
flux”. In particular, equilibrium states satisfy ra = 0, but this is not the
general case.

Recalling expression (5.25) once more, it is possible to derive an analog of
the Fourier law for first order dissipative fluids. In fact, by the identification
indicated earlier, T 2 ≡ −µ−1, we see that

DaT = hab∇bT =

√−µ
2µ2

Daµ,

and equation (5.25) implies the vector field ra satisfies,

ra = −(d+ 1)χ1κ
√−µ

(

DaT +

√−µ
µ2

habξ̇b

)

,

wich implies (via (5.22)) the following equation for qa:

qa = −K
(

DaT +

√−µ
µ2

habξ̇b

)

, (5.28)

with
K := 2(d+ 1)2(χ1)2κ. (5.29)

Clearly, equation (5.28) suggests interpreting qa as a current energy den-
sity that is non-zero in general, and satisfies a Fourier–like transport equation
(for references, see [22, 42]). In particular, the variable transport coefficient
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K is always positive, due to the positivity condition for the function κ dis-
cussed in (5.24).

Finally, a comment on the second term of the right hand side of equa-
tion (5.28) that could help us to further characterize the equilibrium states.
Introducing the vector

ac := ua∇au
c,

and following the discussion of Landau and Lifshitz (chapter XV, section 126
of [22]), we have that, in equilibrium, the projection of the energy–momentum
conservation equation onto the hypersurface that is orthogonal to ua gives,

(ρ+ p)ac = −∇cp− ucu
a∇ap,

from which
(ρ+ p)hacac = −Dap. (5.30)

On the other hand, a straightforward calculation gets

hacξ̇c = −µhacac,

from which the Fourier Law (5.28) results,

qa = −K
(

DaT − T

ρ+ p
Dap

)

. (5.31)

Since in equilibrium we have qa = 0, the above equation yields

DaT − T

ρ+ p
Dap = 0. (5.32)

in complete agreement with Landau’s argument at the end of the chapter.

5.2 Entropy density contribution

According to this formalism, the first order contribution of the entropy cur-
rent density Sa is given by

Sa
1 =

∂χ(1)

∂ξa
− ξbT

ab
1 − ξbcA

abc
1 ,

where χ(1)(µ, ν) = χ1(µ)ν. Explicitly, each term is given by

∂χ(1)

∂ξa
= −(d + 1)χ1 ν

µ
ξa + 2χ1ra ,

−ξbT ab
1 = −d(d+ 1)χ1 ν

µ
ξa + 2(d+ 1)χ1ra ,

−ξbcAabc
1 = −2χ1ra + dχ1 ν

µ
ξa ,
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so the first order contribution to the entropy is

Sa
1 = − (d(d+ 1) + 1)χ1 ν

µ
ξa + 2(d+ 1)χ1ra. (5.33)

The above expression agrees with standard results, [43]. In fact, by using
our definition for heat flux presented in (5.27), and recalling the definitions

ua =
ξa√−µ, T =

1√−µ,

as well as relations (5.17) we get

Sa
1 = s1u

a +
qa

T
, (5.34)

where the entropy density s1 up to this order is given by

s1 =
d(d+ 1) + 1

d(d+ 1)

ρ1
T
. (5.35)

Note that, as expected, s1 ∼ T d−1. From equation (2.11) and expression
(5.24) the full entropy density satisfies

∇aS
a =

τ 2

γ
+

2rara
κ

+
τabτab
γ

, (5.36)

which implies the system creates entropy through shear and heat flux. This
result is in agreement with the standard results (e.g.[36]).

5.3 Shear viscosity

Returning now to expression (5.15) and recalling equation (2.3) as well as
the decomposition (5.23), we see that

τab = −γχ1
√
−µ
[

2D(aub) − (∇cu
c)hab

]

+ (d+ 1)γχ1 µ̇

2µ
hab, (5.37)

with trace

τ = habτab

= −γχ1√−µ [2Dcu
c + (d− 1)∇cu

c] + (d+ 1)(d− 1)γχ1 µ̇

2µ

= −γχ1
√
−µ(d+ 1)∇cu

c + (d+ 1)(d− 1)γχ1 µ̇

2µ

= −(d+ 1)γχ1

[√−µ∇cu
c − (d− 1)

µ̇

2µ

]

, (5.38)
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where we have used the fact that ∇au
a = Dau

a, since ub∇au
b = 0. The

traceless part of τab is thus given by

τ̃ab = τab −
τ

d− 1
hab

= −2γχ1√−µ
[

D(aub) −
1

d− 1
∇cu

c hab

]

. (5.39)

We recognize in the above expression that τ̃ab is proportional to the shear

σab := D〈aub〉

= D(aub) −
1

d− 1
∇cu

c hab (5.40)

of a dissipative fluid with velocity uc; namely,

τ̃ab = −2γχ1√−µ σab.

Now, let us check the resulting conformal weight orders of the different
terms involved. Notice the right hand side of equation (5.37) implies −τab/γ
has conformal weight (2 + d) − 1 − 1 = d, as desired. Recall also that, in a
gradient expansion sense, the first order of the stress energy tensor, i.e. in
terms of only first derivatives, is given by

T
(1)
ab = 2χ1τ̃ab = −4γ(χ1)2

√−µ σab, (5.41)

while in the standard treatment in the literature (see, for instance, [44, 45])
has this order defined as

T
(1)
ab = −2η σab.

Thus, defining

γ :=
η

2(χ1)2
√−µ ,

we arrive at the same result.

5.4 Landau frame at first order

In this section we compute the Landau frame at first order, that is, consid-
ering only terms that are up to first order in the dissipative tensor ξab. To
this order, we have:

T ab = T ab
o + T ab

1

=

(

4χo
µµ + χ1 ν

µ2

d2(d+ 1)

d− 1

)

[

ξaξb − µ

d
gab
]

− 4(d+ 1)χ1

µ
ξ(arb)

+2χ1τ̃ab

= TA
ab + TB

ab, (5.42)
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with

TA
ab :=

(

4χo
µµ + χ1 ν

µ2

d2(d+ 1)

d− 1

)

[

ξaξb − µ

d
gab
]

,

and

TB
ab := −4(d+ 1)χ1

µ
ξ(arb) + 2χ1τ̃ab.

To identify the Landau frame, we look for a time–like vector field Ua such
that UaUa = −1 and

T a
bU

b = λUa, (5.43)

for some real λ. We propose the ansatz

Ua = αξa + βra, (5.44)

with α and β some real functions to be determined. Contracting with the
two contributions to the stress energy tensor we get,

TA
abUb = α

(

d(d+ 1)χ1 ν

µ
− 2dχo

µ

)

ξa + 2βχo
µr

a + 2nd. order terms,

and
TB

abUb = −2α(d+ 1)χ1ra + 2nd. order terms,

and so, up to first order,

T abUb = α

(

d(d+ 1)χ1 ν

µ
− 2(d− 1)χo

µ

)

ξa +
(

2βχo
µ − 2α(d+ 1)χ1

)

ra

= λαξa + λβra. (5.45)

The above equality yields

λ = d(d+ 1)χ1 ν

µ
− 2(d− 1)χo

µ

= −ρ1 − ρo

= −ρ, (5.46)

as expected, since it is the eigenvalue of the unique time–like eigenvector of
the full T ab at this order. The remaining equation yields

[

2dχo
µ −

d(d+ 1)χ1ν

µ

]

β = 2(d+ 1)χ1α. (5.47)

Since Ua is time-like and unitary,

−1 = UaUa

= α2µ+ β2rara, (5.48)
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from which we get, to first order, that α = 1/
√−µ (we discard the negative

solution for α so that Ua has the same orientation as ξa). The explicit value
of β can be obtained from the relation (5.47). Thus, the heat flux defined
as the component of T a

bU
b that is orthogonal to Ua is obviously zero, but

nevertheless, the corresponding component of Sa that is orthogonal to Ua

is actually non–vanishing, for which there is always a way in which thermal
energy is going away.

6 Second order theory

In this section we tackle the second order contribution, characterizing in
a complete way the class of conformal second order dissipative fluid theo-
ries. Accounting for this order is important as it will be crucial to establish
symmetric hyperbolicity of the underlying system and thus allowing for well
posedness of relevant problems. The hyperbolicity analysis will be carried
out in the next section using the second order results derived next.

To compute the second order quantities, we make use of a number of useful
expressions detailed in appendix B. Recall that strictly at second order we
have

χ2 =

3
∑

i=1

χ2
i ψi, (6.1)

thus,

T ab
2 =

3
∑

i=1

T ab
2i , (6.2)

where, for i = 1, 2, 3,

T ab
2i = 2ψi

(

2χ2
iµµξ

aξb + χ2
iµg

ab
)

+ 2χ2
iµ

(

ξa
∂ψi

∂ξb
+ ξb

∂ψi

∂ξa

)

+ χ2
i

∂2ψi

∂ξa∂ξb
, (6.3)

with χ2
iµ := dχ2

i

dµ
. The corresponding trace is composed of three contributions,

namely

gabT2
ab =

3
∑

i=1

gabT
ab
2i , (6.4)

with

gabT
ab
2i = 4ψi

(

µχ2
iµµ +

d

2
χ2
iµ

)

+ 4χ2
iµξ

a∂ψi

∂ξa
+ χ2

i g
ab ∂2ψi

∂ξa∂ξb
(6.5)
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Since the three scalars ψi are independent, the trace-free condition pro-
vides now three independent equations, namely

µχ2
3µµ +D4χ

2
3µ = 0 (6.6)

µχ2
2µµ +D2χ

2
2µ + 2χ2

3 = 0 (6.7)

µχ2
1µµ +D0χ

2
1µ +

1

2
χ2
2 = 0 , (6.8)

where,

Dj :=
d

2
+ j , j = 0, 1, 2, · · ·

To express the constitutive tensor Aabc
2 we first write it as,

Aabc
2 =

∂2χ2

∂ξa∂ξbc

= 2χ2
iµξ

a ∂ψi

∂ξbc
+ χ2

i

∂2ψi

∂ξa∂ξbc
. (6.9)

By using the identities detailed in appendix B we arrive at,

Aabc
2 = 4ξa

[

χ2
1µξ

bc + χ2
2µ

(

ξ(bℓc) − ν

d
gbc
)

+ χ2
3µν
(

ξbξc − µ

d
gbc
)]

+ 2χ2
2

(

ga(bℓc) + ξ(bξc)a − 2

d
gbcℓa

)

+ 4χ2
3

[

ℓa
(

ξbξc − µ

d
gbc
)

+ ν

(

ga(bξc) − 1

d
ξagbc

)]

.

Now, let us assess the conditions imposed by conformal invariance. For
such analysis, we find it convenient to make use of equations (A.10, A.11,
A.12) which allow us to write the more general tensor field of rank (3, 0)
symmetric in the last two indices that depends algebraically on the metric and
the variables (ξa, ξab) up to quadratic terms in ξab. With this, we then impose
that the coefficients satisfy the conformal invariance condition. Specifically,
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we can express:

Aabc
2 = Aν

µ

(

ξagbc + 2ga(bξc) − (d+ 2)

µ
ξaξbξc

)

+B
[

ξaξbc + 2ξa(bξc) − 2

µ

(

2ξaℓ(bξc) + ℓaξbξc
)

+
4ν

µ2
ξaξbξc

]

+C
[

ℓagbc + 2ga(bℓc) − ν

µ

(

ξagbc + 2ga(bξc)
)

− (d+ 1)

µ

(

ℓaξbξc + 2ξaℓ(bξc)
)

+ 3(d+ 1)
ν

µ2
ξaξbξc

]

= (A− C) ν
µ

(

ξagbc + 2ga(bξc)
)

+ B
(

ξaξbc + 2ξa(bξc)
)

+C
(

ℓagbc + 2ga(bℓc)
)

− 2B + (d+ 1)C
µ

(

ℓaξbξc + 2ξaℓ(bξc)
)

+ [−(d+ 2)A+ 4B + 3(d+ 1)C] ν
µ2
ξaξbξc (6.10)

Inspection of equation (6.10) implies the following relations,

B = 4χ2
1µ = χ2

2

C = B = −4

d

(

χ2
2 + µχ2

3

)

A− C = −4µ

d

(

χ2
2µ + µχ2

3µ + χ2
3

)

= 2µχ2
3

2B + (1 + d)B = 4µχ2
3 = 2µχ2

2µ

−(d + 2)A+ 4B + 3(d+ 1)C = 4χ2
3µµ

2

and, in turn,

χ2
2 = 4χ2

1µ (6.11)

χ2
3 =

1

2
χ2
2µ (6.12)

µχ2
3µ +D3χ

2
3 = 0 . (6.13)

The conditions so derived are compatible with equations (6.6), (6.7) and
(6.8), which now become a decoupled system of ordinary second order equa-
tions for the unknowns χ2

i ; namely

µχ2
3µµ +D4χ

2
3µ = 0 (6.14)

µχ2
2µµ +D3χ

2
2µ = 0 (6.15)

µχ2
1µµ +D2χ

2
1µ = 0 , (6.16)
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which clearly show that one is proportional to the derivative of the previous,
i.e., χ2

i+1 ∝ χ2
iµ, i = 1, 2, in agreement with what we already found from

equations (6.6), (6.7) and (6.8). Notice also that Aabc
2 is trace–free in all

entries. Also, from the above relations we get

B = C = χ2
2 , A = −D1B.

6.1 Second order contribution to stress-energy tensor

We begin by noticing that the unique solutions to equations (6.14), (6.15) and
(6.16), subject to the conformal invariance requirements (6.11) and (6.12) are

χ2
1 = χ2

1o +
χ2
o

µD1
,

χ2
2 = −4D1

µ

(

χ2
1 − χ2

1o

)

, (6.17)

χ2
3 =

2D1D2

µ2

(

χ2
1 − χ2

1o

)

;

with χ2
1o and χ2

o real parameters to be determined. Moreover, without loss
of generality it is possible to set χ2

1o = 0. In fact, introducing the functional
X [ψ1, ψ2, ψ3] given by

X [ψ1, ψ2, ψ3] := ψ1 −
4D1

µ
ψ2 +

2D1D2

µ2
ψ3

= ξabξ
ab − 4

D1

µ
ℓaℓ

a +
2D1D2

µ2
ν2 , (6.18)

and using the solutions (6.17), a straightforward calculation shows that the
generating function (6.1) can be expressed as

χ2 = χ2
1 X + χ2

1o

[

4D1

µ
ψ2 −

2D1D2

µ2
ψ3

]

.

Thus, using these expressions it is possible to write the second order contri-
bution of the stress-energy tensor in the following form:

T ab
2 =

2D1Xχ
2
o

µD3

(

2D2ξ
aξb − µgab

)

− 4D1χ
2
o

µD2
X(aξb) +

χ2
o

µD1
Xab, (6.19)
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where

Xa ≡ ∂X

∂ξa
=

8D1

µ2

(

ℓ2ξa +D2νr
a − µξacℓc

)

; (6.20)

Xab ≡ ∂2X

∂ξa∂ξb
=

8D1

µ3

[

−µ2ξacξbc + 4µξ(aξb)cℓc + ℓ2µgab − 4ℓ2ξaξb

+ D2

(

−8νξ(aℓb) − ν2gab + 6
ν2

µ
ξaξb + 2µℓaℓb + νµξab

)]

(6.21)

and ℓ2 := gabℓ
aℓb. So that nothing depends on the additive constant χ2

1o, and
thus we can set it to zero. With these definitions, it is straightforward to
verify that

Xaξa = 0, Xabξa = −Xb, gabX
ab = −8D1

µ
X,

which, as expected, imply that

gabT2
ab = 0 .

Let us now inspect what information this second order contribution of
the energy–momentum tensor can give us. For that, let us express it in a
more suitable form. First, it is possible to decompose the tensor Xab in the
form

Xab = −2

µ
X(aξb) + Y ab , (6.22)

with Y ab = Y (ab) and Y abξa = 0. In fact, we get

Y ab =
8D1

µ3

[

2µℓcξ
c(aξb) +

(

4ν2

µ
D2 − 2ℓ2

)

ξaξb − 6D2νℓ
(aξb)

− µ2ξacξbc +
(

µℓ2 −D2ν
)

gab + 2D2µℓ
aℓb +D2µνξ

ab
]

. (6.23)

With a relation like (6.22), we get

T ab
2 =

χ2
1X

µ2

d(d+ 2)(d+ 3)

d− 1

[

ξaξb − µ

d
gab
]

− 2(d+ 3)χ2
1

µ
X(aξb) + χ2

1Ỹ
ab,

(6.24)
where, as before, we have denoted by Ỹ ab the traceless part of Y ab. In a
similar way to the previous orders, we get the second order contributions of
density and presure of the fluid, namely,

ρ2 := −(d+ 2)(d+ 3)
χ2
1X

µ
, p2 := −(d+ 2)(d+ 3)

d− 1

χ2
1X

µ
, (6.25)

which clearly satify the conformal equation of state ρ2 = (d− 1)p2.
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6.2 Constitutive relations up to second order

We now present the most general constitutive equation that arises from (2.3)
at second order. This equation may be used to derive constitutive relations
like the one found in (5.28). Nevertheless, and for future usage, we shall
only write down the corresponding contribution at this order, as well as for a
complete presentation of the theory considering second order contributions.

Using the conformally invariant solutions (6.17), the second order contri-
bution to the constitutive tensor Aabc

2 in equation (6.10) reads

Aabc
2 =

4D1χ
2
1

µ3
ξa
[

−µ2ξbc + 4D2µ
(

ξ(bℓc) − ν

d
gbc
)

− 2D2D3ν
(

ξbξc − µ

d
gbc
)]

− 8D1χ
2
1

µ

[

ga(bℓc) + ξ(bξc)a − 2

d
gbcℓa

]

+
8D1D2χ

2
1

µ2

[

ℓa
(

ξbξc − µ

d
gbc
)

+ ν

(

ga(bξc) − 1

d
ξagbc

)]

. (6.26)

After a tedious but rather straightforward calculation, the covariant deriva-
tive of Aabc is

∇aA
abc
2 =

8D1D2D3χ
2
1G

µ4

(

ξbξc − µ

d
gbc
)

+
4D1χ

2
1

µ2
(D2µ̇− µD) ξbc

+
16D1D2χ

2
1

µ3
(µD − µ̇D3)

(

ξ(bℓc) − ν

d
gbc
)

− 4D1χ
2
1

µ
ξ̇bc

+
16D1D2χ

2
1

µ2

(

ξ̇(bℓc) + ξ(bℓ̇c) − ν̇

d
gbc
)

− 8D1D2D3χ
2
1

µ3
ν

(

2ξ̇(bξc) − µ̇

d
gbc
)

+
8D1D2χ

2
1

µ2

(

ℓ(b∇c)µ+ ξ(bξc)a∇aµ− 2ℓa∇aµ

d
gbc
)

− 8D1χ
2
1

µ

[

∇(bℓc) + ξa(b∇aξ
c) + ξ(b∇aξ

c)a − 2∇aℓ
a

d
gbc
]

− 8D1D2D3χ
2
1

µ3
ν

[

ξ(b∇c)µ− µ̇

d
gbc
]

+
8D1D2χ

2
1

µ2
Gbc , (6.27)

where ξ̇ab := ξc∇cξ
ab, ξ̇c := ξa∇aξ

c, and G and Gbc are given by

G := ν (D4µ̇−Dµ)− µ

(

ν̇ − µ

D3
∇aℓ

a + ℓa∇aµ

)

;

Gbc := 2ℓaξ(b∇aξ
c) + ξ(b∇c)ν + ν∇(bξc) − 1

d
(ℓa∇aµ+ ν̇ +Dν) gbc.
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In complete analogy with the way we proceeded to first order, contraction
with ξc and projection onto the perpendicular space in the remainding index
leads to the identity

hdbξc∇aA
abc
2 = −2(d2 + 4d+ 8)D1χ

2
1ν

µ2
hdbξ̇

b +
4(d+ 1)D1χ

2
1

µ
hdbṙ

b

+
4D1χ

2
1

µ

(

D3µ̇

µ
−D

)

rd +
4D1χ

2
1

µ
τdcξ̇c −

4D1D
2
2χ

2
1ν

µ2
Ddν

+
4D2

1χ
2
1

µ
τdcDcµ+

8D2
1χ

2
1

µ
hdbr

a∇aξ
b +

4D1D2χ
2
1

µ
Ddν

− 4D1χ
2
1

µ
hdbξc∇bℓc − 4D1χ

2
1h

d
b∇aτ

ab. (6.28)

In this case, the constitutive relations should follow by proposing the most
general source tensor Ibc up to second order in dissipative variables, which
may be constructed only as an algebraic function of the fields ξa, ra, τab and
gab. In fact, referring once again to the discussion presented in Appendix A,
it can be easily shown that such a tensor has the following form:

Ibc = Ioξ
bξc+ I1ξ

(brc)+ I2ξ
(bτ c)ara+ I3h

bc+ I4r
brc+ I5τ

bc + I6τ
bdτ cd. (6.29)

It is important to remark that (6.29) is already the full and more general
source tensor for the (full) constitutive equation, that reads

∇a

(

Aabc
1 + Aabc

2

)

= Ibc, (6.30)

without further assumptions of form. The functions Ij (j = 0, 1, · · · , 6)
should be fixed in such a way that Ibc is trace–free and the entropy pro-
duction σ = −ξabIab satisfies the inequality σ ≥ 0. Also, and in complete
analogy with the first order theory, there is an additional requirement for
the coefficients, which is related to the global conformal weight of the full
constitutive equation (2.3). Since each one of the contribution terms appear-
ing in (6.29) must have the same conformal weight, as well as it must be
equal to the conformal weight of the left hand side terms of (2.3), the full
constitutive equation (6.30) with Ibc given by (6.29) is sensible in so far that
the functions Ij have the appropriate conformal weights. This implies that
in order to obtain plausible constitutive relations, one should make sure that
each one of the terms has the same conformal weight, and thus, each Ij might
have different conformal weights a priori so that, upon multiplication with
the corresponding factors, give the right (and same) conformal weight.

The issue of finding which transport coefficients emerge from this theory
is not direct a priori, since it requires a detailed analysis of each one of
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the terms that contributes to the divergence of Aabc. Unlike the first order
theory –in which it was possible to obtain the shear transport coefficient
just by comparing the shear tensor with the transverse traceless part of the
energy-momentum tensor–, a quite different strategy at second order seems
to be needed. The coefficients obtained may be compared, for instance,
with the ones already derived from the gravity side, via the fluid/gravity
correspondence (for references, see [29, 44]). Obtaining specific expressions
for these contributions is however outside the scope of the present work.

6.3 Entropy density contribution

In analogy with the zeroth and first order contributions of the theory, it is
possible to compute the second order correction of the total entropy density.
We have

Sa
2 =

∂χ2

∂ξa
− ξbT

ab
2 − ξbcA

abc
2 . (6.31)

Let us compute each of the terms that contribute to Sa
2 . At this point, it is

convenient to introduce the functional

G[ψ1, ψ2, ψ3] := ψ1 −
4D2

µ
ψ2 +

2D2D3

µ2
ψ3,

and the vector field

Ga := Gξa − 2(d+ 4)ν

µ
ℓa + 4ξabℓb .

Using relations (6.1), (6.17), (6.24) and (6.26), we get simple expressions for
the desired contributions, namely

∂χ2

∂ξa
= −(d+ 2)χ2

1

µ
Ga, ξbT

ab
2 =

(d+ 2)(d+ 3)χ2
1

µ
Ga,

and

ξbcA
abc
2 = −2(d+ 2)χ2

1

µ
Ga.

Finally, the second order contribution to the total entropy density is given
by

Sa
2 = −(d+ 2)2χ2

1

µ
Ga. (6.32)
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It is possible to compare the above expression with the results found by
Hiscock and Lindblom [43]. In fact, recalling the orthonormal trace–free
decomposition for ξab given in (A.6), and relations (6.17) one gets

Sa
2 = −(d + 2)2χ2

o

µD2

(

d2(d+ 1)

2(d− 1)

ν2

µ2
− 2(d+ 1)rcrc + τ̃ bcτ̃bc

)

ξa

+
4(d+ 2)2χ2

o

µD3

d(d+ 1)

2(d− 1)
νra − 4(d+ 2)2χ2

o

µD2
τ̃abrb, (6.33)

which can be written as

Sa
2 = −(βoΠ

2 + β1q
cqc + β2π

bcπbc)
ua

2T
+ αo

Πqa

T
+ α1

πabqb
T

, (6.34)

with the straightforward identifications

ua =
ξa√−µ, T =

1√−µ, Π ≡ p1, πab ≡ 2χ1τ̃ab,

in which relations and definitions (5.17), (5.9) and (5.22) were used for p1, χ
1

and qa respectively. Moreover, the coefficients βo, β1, β2 and αo, α1 emerge
by comparing (6.33) and (6.34), yielding

βo =
(−1)d/2(d+ 2)2(d− 1)χ2

o

(χ1
o)

2

1

T d
, (6.35)

and

β1 =
µ

d2 − 1
βo, β2 =

βo
2(d− 1)

, αo = α1 =
βo

1− d2
. (6.36)

These coefficients essentially model all dissipative contributions to the en-
tropy at this order (scalar, vector and tensor ones), as well as couplings
between viscosity effects and heat fluxes [36]. We find it important to stress
out that, as a consequence of the conformal invariance requirement, they are
not independent.

7 Well posedness of the full second order the-

ory

The issue of stability and causality in relativistic fluid theories is a crucial
aspect that has been the subject of intense scrutiny in the past (e.g. [1, 18, 46,
47, 15]). It is well known that the Landau–Eckart theories have an ill–posed
initial value formulation, as well as that thermal fluctuations propagate in an
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non-causal way (more specifically, the linearized modes grow linearly with the
frequency). Generally, the concepts of stability, causality and hyperbolicity
are independent (for instance, Navier–Stokes equations are stable, but non-
causal), and there may be weakly hyperbolic systems that are causal, but
not stable.

Here we study the hyperbolicity of the full theory developed along this
work; i.e., considering second order contributions of dissipative effects5. We
start by briefly reviewing symmetric hyperbolic systems, introducing defi-
nitions and some key results we shall make use of. We follow the works
[48, 49, 34, 26, 18]. After that, we show it is possible to choose the arbitrary
constant χ2

1o in the generating function at second order, χ2, to ensure the
system results hyperbolic, and we prove that the full theory up to second
order is symmetric hyperbolic near equilibrium states. This implies that the
corresponding initial value problem is locally well posed.

7.1 Hyperbolicity

As discussed in the previous sections, dissipative relativistic fluids are com-
pletely determined by giving a single scalar function χ that depends smoothly
on the variables (ξa, ξab), and a dissipation-source tensor field Iab which is
an algebraic function of those variables and the spacetime metric, and stores
the net entropy production of the system. In order to see more clearly the
structure of the dynamical equations, it is useful to introduce a collective
abstract variable in the following way. Let V be the linear space of all fields
of the form

XA = (V a, Sab), (7.1)

where V a and Sab are, respectively, a vector field and a symmetric and trace-
less tensor field, both defined onM. Here, capital indices stand for the whole
set of tensor indices within this collection. Within this abstract vector space
we shall study the hyperbolicity of the theory. Let us start with the following

Definition 7.1 A vector ξC ∈ V is called a fluid state if ξC := (ξa, ξab),
where ξa and ξab are solutions to the conservation equations (2.2) and (2.3).
We shall denote by VF the set of all fluids states.

This is a concept that has already appeared in section 4. From this, it is
possible to re–express the set of dynamical equations (2.2) and (2.3) as the

5Second-order theory is highly successful when confronting experimental results. Con-
sidering higher orders in dissipation would induce a greater number of parameters for
which there are no experimental estimates. Thus, our theory would be applied only when
the neglected higher order terms are small, so that the fluid is near equilibrium.
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first order system given by

Ka
AB∇aξ

B = JA, (7.2)

where

Ka
AB :=

∂3χ

∂ξa∂ξA∂ξB
, (7.3)

and JA := (0, Iab). At this point, let us observe that, by the symmetries of ξa

and ξab, system (7.2) has d+ d(d+1)
2

−1 unknowns, which already coincides with
the number of equations. Thus, both spaces have the same dimension. On the
other hand, recall that, by construction, the principal partKa

AB is symmetric
in the capital indices; i.e., Ka

AB = Ka
(AB), since partial derivatives commute.

Definition 7.2 System (7.2) is symmetric hyperbolic at ξC if there exists
a covector ta such that taK

a
AB(ξ

C) is positive definite.

Recall that a general quadratic form hAB(t) is positive definite if the
contraction hAB(t)X

AXB is positive for any XA ∈ V (that is, not only for
fluid states). The hyperbolicity condition guarantees that (7.2) has a well
posed initial value formulation [48].

7.2 Symmetric hyperbolicity of the conformal fluid the-

ories

In this section we prove a fundamental theorem about well posedness for
these type of conformal fluids, which is one of the main results of this work.
Specifically, we show that there exists a symmetrizer for the full theory, and it
turns out that it is positive definite in an open subset of fluid states around an
equilibrium one. Following Friedrichs–Lax argument regarding hyperbolicity
of first order systems [49, 48], we conclude that there exists a well posed
initial value problem for these theories around equilibrium states. We now
state the main theorem:

Theorem 7.1 Symmetric hyperbolicity of the full theory. Let (M, gab)
be a time-oriented spacetime of arbitrary dimension d, and ξa be an equilib-
rium state of the theory. Then, there always exists an open set O around ξa
such that system (7.2) is hyperbolic within the whole O.

Proof. Following Definition 7.2, it is enough to consider ta to be in the
direction of ξa and evaluate the quadratic form

hAB(ξ) := ξaK
a
AB
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at equilibrium states, that is, on perfect fluid solutions. The key idea is the
following: if one manages to show that hAB(ξ) is positive definite, there will
be an open set of fluid states O around it, such that hAB(t) > 0 for all ta ∈ O.
Thus, we shall look for the conditions for hAB(ξ) to be positive definite.

In fact, evaluating Ka
AB at equilibrium states, we straightforwardly get

o

Ka
AB =

(

∂3χo

∂ξa∂ξb∂ξc
∂3χ1

∂ξa∂ξb∂ξcd

∂3χ1

∂ξa∂ξb∂ξcd
∂3χ2

∂ξa∂ξbc∂ξde

)

, (7.4)

where the symbol o over Ka
AB denotes evaluation at equilibrium states, after

taking the corresponding derivatives. Now, let us consider the quadratic form

o

hAB(ξ) := ξa
o

Ka
AB .

We first assert that the upper diagonal block of
o

hAB is positive, since it is
the expression of the corresponding hyperbolizer of the perfect fluid theory,
which is a symmetric–hyperbolic theory, stable and causal. This is so because
the corresponding equation of state is that of a pure radiation fluid, which
already satisfies the requirements for the system to be symmetric hyperbolic
(see, for instance, [34]). Thus, if we find that the lower diagonal block is
positive as well, then we can make the whole matrix to be positive definite,
just by choosing χ2

1o large enough and with the appropriate sign, where χ2
1o

is the free parameter in the solutions (6.17). It is important to stress here
the inclusion of second order dissipative effects; otherwise the lower diagonal
block would be zero and it would be rather impossible to satisfy the sought-
after condition. Let us study, therefore, the lower diagonal block6.

We find it useful to introduce the second order weighted scalars

ψ̃i :=
ψi

µi−1
, (7.5)

where ψi are the three main scalars introduced in the second order theory.
These scalars do not depend on the norm of ξa, namely µ, from which they
satisfy

ξa
∂ψ̃i

∂ξa
= 0. (7.6)

With those scalars, the second order generating function (6.1) can be re-
expressed as

χ2 = χ2
1ψ̃1 + µχ2

2ψ̃2 + µ2χ2
3ψ̃3. (7.7)

6Interestingly, a first order formulation which is well posed in a weaker sense has been
presented in [50], and contemplates an entropy current that is not unique (as it depends
on the initial data for the higher order dissipative contributions).
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Thus,

ξa
∂χ2

∂ξa
= 2µ

[

χ2
1µψ̃1 +

(

µχ2
2

)

µ
ψ̃2 +

(

µ2χ2
3

)

µ
ψ̃3

]

,

recalling property (7.6). Now, using the relation between the second order
contributions χ2

j found in (6.11), (6.14), (6.16) and (6.17), we can express
everything in terms of χ2

1 and get

ξa
∂χ2

∂ξa
= −2D1χ

2
1o

µD1

[

ψ̃1 − 4

(

d

2
+ 1

)

ψ̃2 + 2

(

d

2
+ 1

)(

d

2
+ 2

)

ψ̃3

]

. (7.8)

Notice that the lower diagonal block we need it to be positive definite is
indeed the Hessian matrix of

ξa
∂χ2

∂ξa
.

Thus, symmetric hyperbolicity would follow if we could show this function
has a definite sign, so that it Hessian has definite sign as well. This convexity
condition already appeared in a very nice work by Lax and Friedrichs [49],
in which they show that general conservation laws which admit a convex
extension are symmetric hyperbolic. Here we shall prove that this is already
the case, by showing that the functional

F [ψ̃1, ψ̃2, ψ̃3] := ψ̃1 − 4

(

d

2
+ 1

)

ψ̃2 + 2

(

d

2
+ 1

)(

d

2
+ 2

)

ψ̃3

is positive definite for all values of ξab. As mentioned, choosing a large enough
value for the constant χ2

1o (with the appropriate sign) one ensures the desired
positivity condition is satisfied. In order to see that F [ψ̃1, ψ̃2, ψ̃3] is positive
definite, we consider the decomposition of ξab given in (A.13), and express any
linear combination of the scalars ψ̃i as a real linear combination of quadratic
(and therefore positive) quantities, namely that the equality

αψ̃1 + βψ̃2 + γψ̃3 = (α + β + γ)
ν2

µ2
+

2α+ β

µ
rar

a + ατabτ
ab, (7.9)

holds for all α, β, γ. In particular, by choosing the linear combination that
defines the functional F ; i.e.,

α = 1, β = −2(d+ 2), γ = 2

(

d

2
+ 1

)(

d

2
+ 2

)

,

equation (7.9) gets

ψ̃1 − 4

(

d

2
+ 1

)

ψ̃2 + 2

(

d

2
+ 1

)(

d

2
+ 2

)

ψ̃3 =
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(

1 + d+
d2

2

)

ν2

µ2
− 2(d+ 1)

µ
rar

a + τabτ
ab, (7.10)

which is always positive. This concludes the proof.

�

8 Concluding remarks

In this work we fully characterized the class of conformal dissipative relativis-
tic fluids in arbitrary dimensions, considering dissipative effects up to second
order. The dynamical variable is the energy–momentum tensor associated
with the fluid, and no conservation of particle numer density is required.
We followed the formalism of divergence-type theories due to R. Geroch,
L. Lindblom and Pennisi [1, 2] from which it is possible to characterize a
fluid theory solely by prescribing a generating scalar function and the corre-
sponding dissipation source. Of course, one may wonder what happens if the
divergence-type nature of the dynamical equations is relaxed, and instead
of that, allow for more general equations; namely, equations which do not
represent conservations laws. Certainly this can be done, and perhaps there
would be many more available theories with intriguing properties. Never-
theless, one drawback of such enterprise is the difficulty to describe shocks
effects, i.e., solutions which starting with smooth initial data produce dis-
continuities at finite evolution time. Unfortunately we can only make sense
of this solutions when their equations represent conservations laws, that is
divergence-type theories [18].

In the present case of conformal dissipative fluids up to second order, we
found a unique three-parameter family of scalar functions that generate the
whole class. We studied the equilibrium states of these theories, and showed
that they are in one-to-one correspondence with the conformal Killing vector
fields of the background metric.

At first order in dissipation, we recovered the standard expressions. With-
out assuming any preferred frame (e.g. the Landau or Eckart ones), we found
both heat flux (interpreted it as the failure of a fluid solution to be in equi-
librium) and shear tensor to be non-vanishing. Moreover, even if they start
vanishing at the initial time, they are in general generated during evolution.
We derived a Fourier-like equation for the heat flux, as a consequence of im-
posing the constitutive equations at the corresponding order. Additionally,
We also found the expected relation between the part of the energy momen-
tum tensor that is completely perpendicular to the four-velocity of the fluid
and the corresponding shear.
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Finally, we studied the initial value problem of these theories and the
issue of hyperbolicity. Given that the second order contribution to the the-
ory is fixed up to a constant parameter, it is by no means trivial that the
theory would end up being hyperbolic. We found however that by chosing
it large enough, the theory does turn out to be symmetric-hyperbolic near
equilibrium solutions, which directly implies that it has a locally well-posed
initial value problem.

Looking ahead, there certainly remain some aspects to develop further.
One of them is related to the understanding on how the different trans-
port coefficients at second order emerge from the corresponding constitutive
equation in these theories, without assuming any preferred frame. One other
point, which is most intriguing, arises through the fluid/gravity correspon-
dence. Since there is a one- to-one correspondence between conformal fluids
and particular geometries –which are solutions to Einstein’s field equations–
and that we have seen conformal fluids can be characterized by a single
generating scalar function, to what extent can geometries admit a scalar
characterization?
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A On symmetric traceless tensor decomposi-

tions

In this appendix we discuss some properties and decomposition of second and
third rank tensor fields with the symmetries of T ab and Aabc used to describe
fluid theories. In particular, we show the orthonormal decomposition of
second rank symmetric traceless tensor fields we use throughout this work.
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A.1 Second rank tensor fields

We start with second rank tensor fields. Let Sab be a symmetric traceless
tensor field, and V a a vector field with V cVc 6= 0. Then, there always exist a
scalar function α, a vector field Ra and a symmetric tensor field P ab satisfying

RaVa = 0, P abVb = 0, P abgab = 0 (A.1)

such that

Sab = α

(

V aV b − V cVc
d

gab
)

+
2

V cVc
V (aRb) + P ab. (A.2)

In fact, contracting (A.2) with VaVb we get

SabVaVb =
d− 1

d
α (V cVc)

2,

from which

α =
d

d− 1

SabVaVb
(V cVc)2

. (A.3)

Now, contracting (A.2) with Vb we obtain

SabVb =
d− 1

d
α V cVc V

a +Ra,

from which we directly get

Ra = SabVb −
ScdVcVd
V cVc

V a.

Notice that RaVa = 0 as assumed. Finally, the desired tensor P ab is given by

P ab = Sab − d

d− 1

ScdVcVd
(V cVc)2

(

V aV b − V cVc
d

gab
)

− 2

V cVc
V (aRb).

Indeed, it is straightforward that P abVb = 0 and P abgab = 0 since Sab is
traceless by hypothesis. Decomposition (A.2) is used along this work, by
choosing Sab = ξab and Va = ξa, namely

ξab =
ν

µ2
ξaξb +

2

µ
ξ(arb) + τab. (A.4)

Introducing the traceless part of τab as

τ̃ab := τab +
ν

µ(d− 1)
hab, (A.5)

expression (A.4) becomes

ξab =
d

d− 1

ν

µ2

(

ξaξb −
µ

d
gab

)

+
2

µ
ξ(arb) + τ̃ab. (A.6)
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A.2 Third rank tensor fields

Let Sab be any symmetric tensor field, and V a a vector field. After some
inspection, it is possible to assert that the most general tensor Aabc with the
requiring properties for it to be a constitutive tensor field for a fluid theory
(i.e., satisfying condition (3.12)) must be of the form

Aabc = V aSbc + 2Sa(bV c), (A.7)

if and only if Sab and V a satisfy the condition

2SabVa + SacgacV
b = 0. (A.8)

In the context of this work, since we make use of some relevant variables
(ξa, ξab), tensors V

a and Sab are to be expressed as algebraic functions of
them, at each order. Let us inspect the possibilities that arise at each order.
Since at non-dissipative orders ξab = 0, we can only construct such tensors
in terms of ξa and gab, namely,

V a = ξa, Sab = So

(

gab − d+ 2

3µ
ξaξb

)

, (A.9)

where So is a constant that should be fixed depending on the dissipation
order. Indeed, for perfect fluids one should take So = 0, while for first order
theories, So = 1 as pointed out in equation (5.14) of section 5.

For the next order piece, there are three possible terms which are at most
linear en the dissipative variables ξab. In fact, and recalling the dissipative
vector ℓa := ξabξb introduced before, those terms are found to be

V a := ξa, Sab := S1
o

ν

µ

(

gab − d+ 2

3µ
ξaξb

)

, (A.10)

V a := ξa, Sab := S2
o

(

ξab − 2

µ
r(aξb) +

ν

µ2
ξaξb +

ν

µ(d− 1)
hab
)

, (A.11)

V a := ra, Sab := S3
o

(

gab − d+ 1

µ
ξaξb

)

, (A.12)

where ra = ℓa − ν
µ
ξa, h

a
b = δab − 1

µ
ξaξb is the projector onto the orthogonal

surfaces of ξa, as before, and (S1
o , S

2
o , S

3
o) real constants to determine. Finally,

we found it useful to rename the traceless ξa-completely orthogonal part of
ξab as

τ̃ab := ξab − 2

µ
r(aξb) +

ν

µ2
ξaξb +

ν

µ(d− 1)
hab, (A.13)

which already coincides with (A.5), as expected.
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B Useful expressions for...

In this appendix we state the main identities needed to do the calculations for
the different tensor fields to second order in dissipation. We recall that, when
taking derivatives to symmetric and traceless tensor fields, we substract the
trace of the corresponding result, obtaining by this way just the symmetric
and traceless part of the corresponding derivative field.

B.1 ... second order T ab

∂ξab

∂ξcd
= ga(cgd)b − gabgcd

d
;

∂ψ1

∂ξab
= 2ξab;

∂ν

∂ξab
= ξaξb − µ

d
gab ;

∂ℓa

∂ξbc
= ga(bξc) − ξagbc

d
;

∂2(ℓ · ℓ)
∂ξab

= ga(cξd)ξb + gb(cξd)ξa − 2

d

(

ξcξdgab + ξaξbgcd
)

+
2µ

d
gabgcd ;

ξa
∂ψ2

∂ξa
= 2ψ2 ; gab

∂2ψ2

∂ξa∂ξb
= 2ψ1 ;

ξa
∂ψ3

∂ξa
= 4ψ3 ; gab

∂2ψ3

∂ξa∂ξb
= 8ψ2.

B.2 ... second order Aabc

∂ψ1

∂ξab
= 2ξab ;

∂ψ2

∂ξab
= 2

(

ξ(aℓb) − ν

d
gab
)

;
∂ψ3

∂ξab
= 2ν

(

ξaξb − µ

d
gab
)

;

∂2ψ1

∂ξa∂ξbc
= 0 ;

∂2ψ2

∂ξa∂ξbc
= 2

(

ga(bℓc) + ξ(bξc)a − 2

d
ℓagbc

)

;

∂2ψ3

∂ξa∂ξbc
= 4ν

(

ga(bξc) − 1

d
ξagbc

)

+ 4ℓa
(

ξbξc − µ

d
gbc
)

.
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