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We present formal expressions for the optical scalars in terms of the curvature scalars in the weak
gravitational lensing regime at second order in perturbations of a flat background without mentioning
the extension of the lens or their shape. Also, by considering the thin lens approximation for
static and axially symmetric configurations we obtain an expression for the second-order deflection
angle which generalizes our previous result presented in [1]. As applications of these formulas we
compute the optical scalars for some known family of metrics and we recover expressions for the
deflection angle. In contrast to other works in the subject, our formalism allows a straightforward
identification of how the different components of the curvature tensor contribute to the optical scalars
and deflection angle. We also discuss in what sense the Schwarzschild solution can be thought as a
true thin lens at second order.

PACS numbers:

I. INTRODUCTION

The phenomenon of gravitational lensing has become
an active area of research at least from the beginning of
the 1980’s when the observation of the first astrophys-
ical gravitational lens was announced[2]. Since then,
a plethora of different astrophysical and cosmological
gravitational lenses have been discovered and studied in
depth. For these reasons, even today, this subject is
still being theoretical considered due to the numerous
applications in both astrophysical and cosmological set-
tings, such as the study of CMB power spectrum[3–8], the
distance-redshift relationship[9, 10], or the estimation of
mass content of groups or clusters of galaxies[11–13], to
cite some examples.
In [1], we presented a new approach to the study

of gravitational lensing in the weak field regime, which
proved to be very useful since gives explicit gauge invari-
ant expressions not only for the optical scalars but also to
the deflection angle. These expressions can be easily im-
plemented in any gauge. In particular, in that reference
we also presented expressions for these optical quantities
in terms of the components of the energy-momentum ten-
sor instead of the usual presentation in terms of metric
potentials. Applications of the formalism can be found
in [14, 15], and its results have been recently extended to
the cosmological framework[16].
In the case of an axially symmetric lens configuration,

it was also shown that at first order the deflection an-
gle α in a weak field regime of an asymptotically flat
spacetime can be written in terms of the impact parame-
ter J , and the projected Ricci and Weyl scalars Φ̂00 and

Ψ̂0 = −ψ̂0e
2iθ (We refer to [1] for more details) in a very

compact form which we reproduce here

α(J) = J
(
Φ̂00(J) + ψ̂0(J)

)
. (1)

On the other hand, the second-order gravitational lens

theory, that is, the study of the optical scalars at sec-
ond order in perturbation of a given background metric
and its applications has been extensively covered. For
example, in [17] the weak field lens equation at second
order in ε̃ = G/c2 has been worked out in the post-
Newtonian formalism. Fritelli et al. [18] studied the
exact lens equation in Schwarzschild spacetime and, in
particular, the lens equation at second order in ε̃. The
light deflection at second order in ε̃ has been studied in
[19] for a system of two bounded point masses. In the
cosmological context we found several works concerning
the second order effect of weak lensing in the CMB power
spectrum[9, 20, 21, 27–31]. A general expression for the
convergence at second order in the Poisson gauge can be
obtained using the area distance [22–24] or alternatively
using the so-called galaxy number counts [25, 26]. In the
same gauge a general expression for the shear at second
order can be found in [37].

However, in all these works the different expressions
for the optical scalars or the deflection angle are gener-
ally written in a particular gauge or a given family of
gauges. Although all these studies are very useful and
relevant in their respective range of validity, it is our in-
tention to extend some of the results presented in [1].
In particular, we will obtain expressions for the optical
scalars in terms of curvature scalars which take into ac-
count second order perturbations of a flat metric, and
which are independent of the extending or shape of the
lens. It is also our intention to generalize (1) at second
order. .

One of the advantages of the present approach is that
allows us to recognize how the different aspects of the
curvature of the spacetime contribute to the deflection
angle and optical scalars and on the other hand they are
ready for use in any gauge.

The organization of the paper is as follows. In Sec. II
we present a short review of the main equations of weak
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gravitational lensing, including a brief discussion of the
geodesic deviation equation and we solve the geodesic de-
viation equation up to second-order in perturbation of a
flat metric and we obtain, via the amplification matrix,
general expressions for the optical scalars. In Sec. III, we
focus on the thin lens approximation and give an explicit
expression for the deflection angle for static and axially
symmetric lenses which generalizes (1). In Sec. IV, we
provide some examples, applying the formalism to the
description of the optical scalars for some known metrics
and recovering expressions for the weak lensing quanti-
ties in those spacetimes. We conclude with general re-
marks and comments in the last section. Some auxiliary
but relevant relations have been included in the four Ap-
pendixes.

II. THE GEODESIC DEVIATION EQUATION:

SECOND ORDER SOLUTION

A. Preliminaries

As is well-known, the weak lens equation relates the
angular position βa of the source (which should be the
observed angular position if there were no gravitational
lens) and the actual observed angular position θa due to
the presence of the lens,

βa = θa − λls
λs
αa; (2)

with α the deflection angle [42]. The differential of the
Eq.(2) can be written as:

δβa = Aa
b δθ

b, (3)

where Aa
b is called the amplification matrix and is given

by:

Aa
b =

(
1− κ− γ1 −γ2 − ω̂
−γ2 + ω̂ 1− κ+ γ1

)
; (4)

where κ, γ ≡ γ1 + i γ2 and ω̂ are called optical scalars :
convergence, shear and rotation, respectively.
A powerful way to study weak gravitational lensing is

through the use of the geodesic deviation equation. A
complete discussion of this equation and its use in the
description of gravitational lensing can be found in [39,
40].
Let us consider a null geodesic congruence starting at

the source position S and ending at the observer posi-
tion O. That is, a null congruence belonging to the past
null cone of O. The tangent vector to a fiducial null
geodesic of this congurence is given by ℓ = ∂

∂λ . At the
position of the observer, we can construct a null tetrad
{ℓa, na,ma, m̄a} satisfying the standard normalization
conditions, and with ma, m̄a complex null vectors which
are orthogonal to the four-velocity ua of O. The devia-
tion vector connecting two neighboring null geodesics in

the congruence can be expressed by

ζa = ζm̄a + ζ̄ma + ζℓ ℓ
a. (5)

As it is well discussed in the literature, the geodesic
deviation equation can be written as [39–41]:

ℓ(ℓ(X )) = −QX ; (6)

where

X =

(
ζ
ζ̄

)
, (7)

and

Q =

(
Φ00 Ψ0

Ψ̄0 Φ00

)
, (8)

with

Φ00 = −1

2
Rabℓ

aℓb, Ψ0 = Cabcdℓ
ambℓcmd. (9)

B. Second-order solution

Now we will solve the Eq.(6) at second order in a
perturbation of a flat spacetime following the iterative
method used in [1].
We define

X =

(
X
V

)
, V =

dX
dλ

. (10)

Therefore, Eq.(6) is reduced to a first order differential
equation given by:

ℓ(X) = AX, (11)

where

A =

(
0 1

−Q 0

)
. (12)

Following [1] we start from a seedX0, and we will perform
the integrations from the observer position λo (which can
be taken without a loss of generality to be zero ) to the
source position in λs. The beam has initially a vanishing
departure, and therefore the seed is taken as (see [1] for
details)

X0 =

(
0

V(0)

)
. (13)

Then we construct the following sequence of approximate
solutions:

X1(λs) = X0 +

∫ λs

0

A(λ′)X0dλ
′, (14)

X2(λs) = X0 +

∫ λs

0

A(λ′)X1dλ
′, (15)
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and so on. By replacing (14) into (15) we get

X2(λs) = X1 +

∫ λs

0

∫ λ′

0

A(λ′)A(λ′′)X0dλ
′′dλ′; (16)

in this way we can obtain a solution of (11) to the desired
order. We see that in the Xn step there will be n prod-
ucts of matrices A. As we are interested in second-order
solutions, we only need to compute up to X5 because
in the next step only appear cubic quantities in Q. Ac-
cordingly, by considering up to quadratic terms in Q we
get

X (λs) =

[
1λs −

∫ λs

0

∫ λ′

0

λ′′Q(λ′′)dλ′′dλ′

+

∫ λs

0

∫ λ′

0

∫ λ′′

0

∫ λ′′′

λ0

λ′′′′Q(λ′′)Q(λ′′′′)dλ′′′′dλ′′′dλ′′dλ′
]

× V(0),
(17)

On the other hand, if the metric were flat (Q = 0) then
we should have

Xs ≡ X (λs) = λsV(0) ⇒ V(0) = X (λs)

λs
. (18)

But in the presence of a gravitational lens, if an observer
sees an image of size Xo, which means Xo ≡ λsV0 then
it should be produced by a source of size Xs = X (λs), as
described by Eq.(17).
Using the following two relations obtained by integra-

tion by parts [see Appendix (A)]:

∫ λs

0

∫ λ′

0

λ′′Q(λ′′)dλ′′dλ′ =

∫ λs

0

λ(λs−λ)Q(λ)dλ, (19)

∫ λs

0

∫ λ′

0

∫ λ′′

0

λ′′′(λ′′ − λ′′′)Q(λ′′)Q(λ′′′)dλ′′′dλ′′dλ′

=

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)Q(λ)Q(λ′)dλ′dλ,

(20)
we finally obtain

Xs =

[
1− 1

λs

∫ λs

0

λ(λs − λ)Q(λ)dλ

+
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)Q(λ)Q(λ′)dλ′dλ

]
Xo;

(21)
where the deviation vector at the source position Xs and
at the observer position X0 are given by

Xs =

(
ζs
ζ̄s

)
, X0 =

(
ζo
ζ̄o

)
. (22)

By replacing (22) into (21) and using the explicit ex-

pression for the Q matrix we have:

ζs =

[
1− 1

λs

∫ λs

0

λ(λs − λ)Φ00(λ)dλ +
1

λs

∫ λs

0

∫ λ

0

λ′

(λs − λ)(λ − λ′)

(
Φ00(λ)Φ00(λ

′) + Ψ0(λ)Ψ̄0(λ
′)

)

dλ′dλ

]
ζo +

[
− 1

λs

∫ λs

0

λ(λs − λ)Ψ0(λ)dλ

+
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ00(λ)Ψ0(λ

′)

+ Ψ0(λ)Φ00(λ
′)

)
dλ′dλ

]
ζ̄o.

(23)
This is the general solution of the geodesic deviation
equation at second order. We proceed now to connect
this equation with the lens equation (3). In order to do
that, we decompose Ψ0, ζs and ζo into their real and
imaginary parts,

Ψ0 = Ψ0R + i Ψ0I , ζs = ζsR + i ζsI , ζo = ζoR + i ζoI ,
(24)

which after replacing in (23) gives the following equa-
tions:

ζsR = A ζoR +B ζoI ,

ζsI = A′ ζoR +B′ ζoI ,
(25)

where the explicit expressions for the coefficients
{A,B,A′, B′} can be found in the Appendix B.
From the linearity of the lens equation, we know that

the deviation vectors must also be related by the same
lens mapping matrix Ai

j [44],

ζis = Ai
j ζ

j
o , (26)

and where {ζis, ζio} are the spatial vector associated with
{ζs, ζo}.
Since we are not interested in the component ζℓ of ζa

along ℓa, we will consider only the projection of the de-
viation vector in the two-space spanned by {ma, m̄a},

ζa⊥ = ζm̄a + ζ̄ma. (27)

Introducing an orthonormal spatial Sachs basis {aa, ba}
at the observer position and by parallel transport of this
basis to the other points in the past null cone we can
always express ma by

ma =
1√
2
(aa + i ba). (28)

Hence, we obtain

ζa⊥ =
√
2(ζRa

a + ζIb
a). (29)

where {ζR, ζI} are the real and imaginary part of the
component ζ, respectively. Therefore, from (26) we see
that:

(
ζsR
ζsI

)
=

(
1− κ− γ1 −γ2 − ω̂
−γ2 + ω̂ 1− κ+ γ1

)(
ζoR
ζoI

)
. (30)
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Finally, by comparison with (25) we arrive to the follow-
ing expressions for the optical scalars:

κ =
1

λs

∫ λs

0

λ(λs − λ)Φ00(λ)dλ − 1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)

(λ− λ′)

(
Φ00(λ)Φ00(λ

′) + ℜ{Ψ0(λ)Ψ̄0(λ
′)}

)
dλ′dλ,

(31)

γ =
1

λs

∫ λs

0

λ(λs − λ)Ψ0(λ)dλ − 1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)

(λ− λ′)

(
Φ00(λ)Ψ0(λ

′) + Ψ0(λ)Φ00(λ
′)

)
dλ′dλ,

(32)

ω̂ =
1

λs

∫ λs

0

∫ λ

0

λ′(λs−λ)(λ−λ′)ℑ{Ψ0(λ)Ψ̄0(λ
′)}dλ′dλ;

(33)
where ℜ{·} and ℑ{·} indicate real and imaginary part,
respectively.
The way in which the different curvature scalars appear

in the expression for the convergence κ and the shear γ
is expected taking into account that they are the inte-
grated version of the well-known relations between the
local quantities ρ and σ [32]

ℓ(ρ) = (ρ2 + σσ̄) + Φ00, (34)

ℓ(σ) = (ρ+ ρ̄)σ +Ψ0. (35)

On the other hand even when the congruence is twist
free,

ω =
1

2

(
∇[alb]∇alb

)1/2
=

1

2
(ρ− ρ̄) = 0; (36)

the rotation of the image described by the scalar ω̂ could
be different from zero due to a cumulative effect of shear-
ing in different directions when the light beams pass dif-
ferent regions of lensing [33].
Now, as we are interested in expressions up to second-

order in the formalism of weak lenses, we need to address
two issues: first, we only need the curvature components
Φ00 and Ψ0 up to second-order in the flat metric pertur-
bation; that is

Φ00 = Φ
(1)
00 +Φ

(2)
00 +O(ε3),

Ψ0 = Ψ
(1)
0 +Ψ

(2)
0 +O(ε3),

(37)

where the superscript in parenthesis indicates the order
in ε of the respective quantity, with ε the parameter
which measure the perturbation of a flat metric. Con-
sequently, we need to compute the Ricci and Weyl tensor
up to second-order in ε and perform the parallel trans-
port of the null tetrad at first order also in ε. Second,
as we are working in the weak lensing regime, we can
approximate the actual path of the beam as follows:

xaactual(λ) = x(0)a(λ) + δx(1)a(λ) +O(ε2); (38)

that is, we can express the actual beam path as its path
in the background plus higher order corrections. Here,
we only need to consider corrections at first order. This
method of approximation which goes beyond of the Born
approximation is frequently used in the literature of sec-
ond order lensing [20, 21, 27–30, 37].
Therefore, we expand Φ00 and Ψ0 along the back-

ground geodesic at second-order as,

Φ00(x
a
actual(λ)) =Φ

(1)
00 (x

(0)a(λ)) + δx(1)a(λ)
∂Φ

(1)
00

∂xa

∣∣∣∣
x(0)a(λ)

+Φ
(2)
00 (x

(0)a(λ)),

Ψ0(x
a
actual(λ)) =Ψ

(1)
0 (x(0)a(λ)) + δx(1)a(λ)

∂Ψ
(1)
0

∂xa

∣∣∣∣
x(0)a(λ)

+Ψ
(2)
0 (x(0)a(λ)).

(39)
In conclusion, the final expressions for the optical scalars
are formally written in terms of the curvature scalars as

κ =
1

λs

∫ λs

0

λ(λs − λ)

(
Φ

(1)
00 (λ) + Φ

(2)
00 (λ) + δx(1)a(λ)

∂Φ
(1)
00

∂xa

∣∣∣∣
λ

)
dλ− 1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ

(1)
00 (λ)Φ

(1)
00 (λ

′) + ℜ{Ψ(1)
0 (λ)Ψ̄

(1)
0 (λ′)}

)
dλ′dλ,

(40)

γ =
1

λs

∫ λs

0

λ(λs − λ)

(
Ψ

(1)
0 (λ) + Ψ

(2)
0 (λ) + δx(1)a(λ)

∂Ψ
(1)
0

∂xa

∣∣∣∣
λ

)
dλ− 1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ

(1)
00 (λ)Ψ

(1)
0 (λ′) + Ψ

(1)
0 (λ)Φ

(1)
00 (λ

′)

)
dλ′dλ,

(41)

ω̂ =
1

λs

∫ λs

0

∫ λ

0

λ′(λs−λ)(λ−λ′)ℑ{Ψ(1)
0 (λ)Ψ̄

(1)
0 (λ′)}dλ′dλ.

(42)
Equations (40), (41) and (42) are the most general for-

mal expressions for the optical scalars which can be ob-
tained without mentioning neither the extension of the
lens nor their shape. We want to emphasize that unlike
the expressions (31), (32), (33), in these last expressions
the integrals are made over the background geodesic and
only contain quantities up to second-order. These formu-
las for the optical scalars generalize to second order the
relations found in [1] (see also[34]).

III. THE THIN LENS APPROXIMATION

A. Preliminary considerations

As is well-known, the thin lens approximation is based
on the assumption that the lens-observer and lens-source
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distances are significantly larger that the lens size [42].
In this situation, the different optical scalars can be
found by projection of the curvature scalars in the line
of sight [34, 40].
Let C or D be any of the {Φ00,Ψ0} scalars so, fol-

lowing the approach used in [1] the first order thin lens
approximation is completely contained in the following
expression

C̃(λ) ≡
∫ λ

0

C(λ′)dλ′ ∼=
{

0 ∀ λ′ < λl − δ

Ĉ ∀ λ′ ≥ λl + δ
(43)

where δ ≪ λl, δ ≪ λls, δ ≪ λs (λls ≡ λs − λl).
On the other hand, even when δ ≪ λl, δ ≪ λls implies

that (43) is a good approximation in the computation of
first order quantities, it does not mean that it remains
sufficiently precise in order to compute the second order
quadratic terms. We prove in the Appendix C 1, that if
we only consider the approximation (43) in the compu-
tation of quantities like

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)C(λ)D(λ′)dλ′dλ; (44)

then these quantities should be zero. However, even for
a point mass lens, as we will show in Sec.IV terms like
(44) make a non-negligible contribution. It should not
be seen as a surprising result, for example even in a toy
model where quantities like C(λ) are represented by step
functions centered in λl and with a width δ, integrals
like (44) make nontrivial contributions proportional to
the width δ. Unfortunately, even when in the thin lens
situation we can find more simple expressions for the in-
tegrals which depend linearly from the curvature scalars
(they can be written in terms of projected Ĉ quantities),
we can not do the same with the quadratic ones. There-
fore, in the following we only express the linear integrals
in C in terms if Ĉ and rewrite in a more compact way the
integrals which are quadratic in the curvature scalars.
In order to implement the thin lens approximation to

the optical scalars (31), (32), (33), we need to manipulate
these expressions as follows. Using (43) in (31) and (32)
we have terms of the form

∫ λs

0

λ(λs − λ)C(λ)dλ = Ĉλlλls. (45)

That is, the integrals which are linear in the curvature
scalars C can be written in a more compact way in terms
of the projected quantities Ĉ [1, 34].
On the other hand, even when we can not do the same

with the terms which are quadratic in C and D, we use
the following notation which will be useful later. The
contribution of these terms to the optical scalars will be
denoted as

[·](2)CD =− 1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

× C(λ)D(λ′)dλ′dλ;

(46)

where into the squares brackets [·] should be placed
the associated quantity to the respective optical scalar.
Therefore, we have quadratic contributions to the second

order optical scalars with terms like κ
(2)
ΦΦ , κ

(2)
ΨΨ̄, γ

(2)
ΦΨ and

γ
(2)
ΨΦ .
Multiplying each of them by the prefactor λs

λlλls
, we

define the associated scalars κ̃
(2)
ΦΦ , κ̃

(2)
ΨΨ̄, γ̃

(2)
ΦΨ and γ̃

(2)
ΨΦ by:

κ̃
(2)
ΦΦ =

λs
λlλls

κ
(2)
ΦΦ = − 1

λlλls

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

× Φ00(λ
′)Φ00(λ)dλ

′dλ;
(47)

with similar relations for the rest of the quadratic terms.
Finally, using the approximation (39) we obtain for the
convergence and shear

κ =
λlλls
λs

(
Φ̂

(1)
00 + δΦ̂

(2)
00 + Φ̂

(2)
00 + κ̃

(2)
ΦΦ + ℜ[κ̃(2)ΨΨ̄]

)
,

(48)

γ =
λlλls
λs

(
Ψ̂

(1)
0 + δΨ̂

(2)
0 + Ψ̂

(2)
0 + γ̃

(2)
ΦΨ + γ̃

(2)
ΨΦ

)
. (49)

As ω̂ does not have linear terms in the curvature, it
remains the same as in (42). Note that in the previous
expressions, the projected hat quantities are given by

Φ̂
(j)
00 =

∫ λs

0

Φ
(j)
00 dλ, j = 1, 2,

Ψ̂
(j)
0 =

∫ λs

0

Ψ
(j)
0 dλ, j = 1, 2,

δΦ̂
(2)
00 =

∫ λs

0

δx(1)a(λ)
∂Φ

(1)
00

∂xa

∣∣∣∣
x(0)(λ)

dλ,

δΨ̂
(2)
0 =

∫ λs

0

δx(1)a(λ)
∂Ψ

(1)
0

∂xa

∣∣∣∣
x(0)(λ)

dλ.

(50)

B. Axisymmetric lenses

Let us consider a static and axisymmetric gravitational
lens in the thin lens approximation where the axis of sym-
metry corresponds to the line of sight which crosses the
central region of the matter distribution from the ob-
server. We select a Cartesian coordinate system with the
origin in the lens plane and the line of sight in the neg-
ative y direction. As in [1], in the lens plane we identify
the first component with the z coordinate and the sec-
ond component with the x coordinate. In this plane, it
is convenient to work with new coordinates (J, ϑ) given
by

z = J cos(ϑ),

x = J sin(ϑ),
(51)

where J is the impact parameter and ϑ is the polar angle
measured from z.
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Since Φ00 and Ψ0 are quantities with spin weight 0
and 2 respectively, we assume that in the case of static
and axial symmetries they have the following functional
dependence[34]:

Φ00 = Φ00(y, J),

Ψ0 = −ψ0(y, J)e
2iϑ,

(52)

for some arbitrary phase in the choice of ma. Then, the
projected curvature scalars are given by

Φ̂00 = Φ̂00(J),

Ψ̂0 = −ψ̂0(J)e
2iϑ,

(53)

where

ψ̂0(J) = −e−2iϑ

∫ λs

0

Ψ0(λ)dλ. (54)

According to the expressions (52) and (53) we can write
the optical scalars (48), (49) as follows:

κ =
λlλls
λs

(
Φ̂

(1)
00 (J) + δΦ̂

(2)
00 (J) + Φ̂

(2)
00 (J)

+ κ̃
(2)
ΦΦ(J, λl, λls) + ℜ[κ̃(2)ΨΨ̄(J, λl, λls)]

)
,

(55)

γ1 =− λlλls
λs

(
ψ̂
(1)
0 (J) + δψ̂

(2)
0 (J) + ψ̂

(2)
0 (J)

+ γ̃
(2)
ΦΨ (J, λl, λls) + γ̃

(2)
ΨΦ (J, λl, λls)

)
cos(2ϑ),

(56)

γ2 =− λlλls
λs

(
ψ̂
(1)
0 (J) + δψ̂

(2)
0 (J) + ψ̂

(2)
0 (J)

+ γ̃
(2)
ΦΨ (J, λl, λls) + γ̃

(2)
ΨΦ (J, λl, λls)

)
sin(2ϑ),

(57)

where

ψ̂
(j)
0 =

∫ λs

0

ψ
(j)
0 dλ, j = 1, 2, (58)

δψ̂
(2)
0 =

∫ λs

0

δx(1)a(λ)
∂ψ

(1)
0

∂xa

∣∣∣∣
x(0)(λ)

dλ, (59)

and

γ̃
(2)
ΦΨ =− 1

λlλls

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)ψ0(λ, J)

Φ00(λ
′, J)dλ′dλ;

(60)

with a similar definition for γ̃
(2)
ΨΦ .

C. Deflection angle

Now, we want to obtain an expression for the deflection
angle in the thin lens approximation which generalizes
(1).

From the lens equation (2) we see that in this approx-
imation the amplification matrix Ai

j can be expressed
as [39, 43]

Ai
j =

dβi

dθj
= δij −

λlsλl
λs

dαi

dxj
, (61)

where we have used that in the thin lens approximation
d

dθi ≈ λl
d

dxi . We define the components of αi = (α1, α2)
as

αi = α(J, λl, λls)

(
z

J
,
x

J

)
. (62)

Hence, from (61), (62) and (4) follow that

κ− γ1 cos(2ϑ)− γ2 sin(2ϑ) =
λlsλl
λs

α

J
. (63)

Therefore, since we are interested in the deflection an-
gle in the asymptotic region, that is where λl and λls go
to infinity, from (63) and the expressions (55), (56), (57)
for the optical scalars, we finally obtain

α(J) = J

(
Φ̂

(1)
00 (J) + ψ̂

(1)
0 (J) + δΦ̂

(2)
00 (J) + δψ̂

(2)
0 (J) + Φ̂

(2)
00 (J) + ψ̂

(2)
0 (J) + κ̃

(2)
ΦΦ(J) + ℜ[κ̃(2)ΨΨ̄(J)] + γ̃

(2)
ΦΨ (J) + γ̃

(2)
ΨΦ (J)

)
;

(64)

where

κ̃
(2)
ΦΦ(J) := lim

λl,λls→∞
κ̃
(2)
ΦΦ(J, λl, λls), (65)

and with similar definitions for the other quadratic terms.
This expression generalizes our previous formula (1) to

second order. At the difference of similar relations which
are written in terms of metric components, this quantity
is explicitly gauge invariant, due to it only depends on
well-defined quantities as the impact parameter J and
curvature scalars. We will see in the examples of the next
section how using this formula to compute the deflection
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angle at second order in two different coordinate systems
yields the same result.

IV. APPLICATIONS

A. Optical scalars for a Schwarzschild metric at

second order

As a first example we will compute explicitly the opti-
cal scalars and deflection angle for a Schwarzschild point
mass lens in two different coordinate systems.
For this, we proceed as follows. First, we choose a null

tetrad such that far away from the point mass, in the
asymptotically flat region it reduces to

ℓa = (−1, 0, 1, 0), ma =
1√
2
(0, i, 0, 1),

na =
1

2
(−1, 0,−1, 0), m̄a =

1√
2
(0,−i, 0, 1).

(66)

On the other hand, we choose the origin of the coor-
dinate system in the lens’s position and parametrize the
geodesic by

(x(λ), y(λ), z(λ)) = (x, λ − λl, z), (67)

that is, λ = 0 indicates the observer’s position and λ = λs
the source’s position at λls. Without loss of generality
we can take x = J and z = 0 (and therefore ϑ = π

2 ).
In order to analyze how the different aspects of the cur-
vature contribute to the optical scalars and taking into
account the Eq.(47) we define

κ̃ :=
λs
λlsλl

κ, (68)

γ̃ :=
λs
λlsλl

γ. (69)

1. Isotropic coordinates

Let us consider a static, spherically symmetric body
acting as a gravitational lens in such a way that its
external gravitational field can be described by the
Schwarzschild metric. This metric can be expressed in
isotropic coordinates by

ds2 =

(
1− ε

4r

)2

(
1 + ε

4r

)2 dt
2−

(
1+

ε

4r

)4

(dx2+dy2+dz2), (70)

where ε = 2M and r =
√
x2 + y2 + z2.

The corresponding null tetrad, curvature scalars and
the first order correction to the geodesic are shown in the
Appendix D. The integrals needed in the computation of

the optical scalars were made with the help of MAPLE
and the GRTensor package.
The resulting leading order behavior for the optical

scalars is given by

γ̃(J) =

[
2

J2
+O(

1

λls
,
1

λl
)

]
ε+

[
45π

32J3
+O(

1

λls
,
1

λl
)

]
ε2

+O(ε3);
(71)

κ̃(J) =

[
− 15π

32J3
+O(

1

λls
,
1

λl
)

]
ε2 +O(ε3), (72)

while ω̂ = 0.
If we take the limits λl → ∞ and λls → ∞ of these

relations and using (64) [or equivalently (63)], we obtain
an expression for the deflection angle which agrees with
the familiar result for the bending angle at second-order
for the Schwarzschild metric

α(J) =
4M

J
+

15 π

4

M2

J2
. (73)

2. Quasi-Minkowskian coordinates

It is important to note that, the expressions (71), (72)
and (73) are coordinate independent because they only
depend on the impact parameter J and the total mass
M . We could make similar computations for the same
metric in a different gauge. For example, using the so-
called quasi-Minkowskian coordinate system where the
Schwarzschild metric reads[35]:

ds2 =

(
1− ε

r

)
dt2 − (dx2 + dy2 + dz2)

−
[(

1− ε

r

)−1

− 1

]
r−2(xdx + ydy + zdz)2,

(74)

where again ε = 2M and r =
√
x2 + y2 + z2, we ob-

tain the same results for the optical quantities. (For a
complete discussion and more details, see table I and Ap-
pendix D).

B. Parametrized-Post-Newtonian point mass lens

We will consider now a more general metric known
as the Parametrized-post-Newtonian (PPN) point mass
metric whose line element is given by

ds2 =

(
1−ε

r
+
βε2

2r2

)
dt2−

(
1+

µε

r
+
3νε2

8r2

)
(dx2+dy2+dz2),

(75)

where ε = 2M and r =
√
x2 + y2 + z2. For the partic-

ular choice β = µ = ν = 1, this metric reduces to the
second order approximation of the Schwarzschild metric
in isotropic coordinates. In the Appendix D are described
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the corresponding null tetrad, first order correction to the
geodesic and curvature scalars.
The leading order behavior for the optical scalars in

the PPN metric is given by

κ̃ =

[
π(−8 + 4β − 3ν − 8µ)

32J3
+O(

1

λls
,
1

λl
)

]
ε2 +O(ε3),

(76)

γ̃ =

[
(1 + µ)

J2
+O(

1

λls
,
1

λl
)

]
ε−

[
3π(−8 + 4β − 3ν − 8µ)

32J3

+O(
1

λls
,
1

λl
)

]
ε2 +O(ε3).

(77)

Again, if we take the limits λl → ∞ and λls → ∞ and
using (64) we recover the well-known result for the de-
flection angle[36]

α(J) = 2(1 + µ)
M

J
+ π(2− β + 2µ+

3

4
ν)
M2

J2
. (78)

C. Term by term contribution

Using the definitions (68), we denote the different terms in the expressions of the optical scalars as follows:

κ̃ =
1

λlsλl

[∫ λs

0

λ(λs − λ)Φ
(1)
00 (λ)dλ

︸ ︷︷ ︸
κ
†

Φ(1)

+

∫ λs

0

λ(λs − λ)Φ
(2)
00 (λ)dλ

︸ ︷︷ ︸
κ
†

Φ(2)

+

∫ λs

0

λ(λs − λ)δx(1)a(λ)
∂Φ

(1)
00

∂xa

∣∣∣∣
λ

dλ

︸ ︷︷ ︸
κ
†
δΦ

−
∫ λs

0

∫ λ

0

λ
′

(λs − λ)(λ − λ
′

)Φ
(1)
00 (λ)Φ

(1)
00 (λ

′

)dλ
′

dλ

︸ ︷︷ ︸
κ
†
ΦΦ

−
∫ λs

0

∫ λ

0

λ
′

(λs − λ)(λ − λ
′

)ℜ{Ψ(1)
0 (λ)Ψ

(1)
0 (λ

′

)}dλ′

dλ

︸ ︷︷ ︸
κ
†
ΨΨ

]
;

(79)

γ̃ =
1

λlsλl

[ ∫ λs

0

λ(λs − λ)Ψ
(1)
0 (λ)dλ

︸ ︷︷ ︸
γ
†

Ψ(1)

+

∫ λs

0

λ(λs − λ)Ψ
(2)
0 (λ)dλ

︸ ︷︷ ︸
γ
†

Ψ(2)

+

∫ λs

0

λ(λs − λ)δx(1)a(λ)
∂Ψ

(1)
0

∂xa

∣∣∣∣
λ

dλ

︸ ︷︷ ︸
γ
†
δΨ

−
∫ λs

0

∫ λ

0

λ
′

(λs − λ)(λ − λ
′

)Φ
(1)
00 (λ)Ψ

(1)
0 (λ

′

)dλ
′

dλ

︸ ︷︷ ︸
γ
†
ΦΨ

−
∫ λs

0

∫ λ

0

λ
′

(λs − λ)(λ − λ
′

)Ψ
(1)
0 (λ)Φ

(1)
00 (λ

′

)dλ
′

dλ

︸ ︷︷ ︸
γ
†
ΨΦ

]
.

(80)

Using these definitions, in Table I we show how each of
these terms contribute to the optical scalars. In the case
of the Schwarzschild metric we obtain unequal expres-
sions for γ̃Ψ(2) and γ̃δΨ when the metric is expressed in
two different coordinate systems. It is not unexpected be-
cause we are considering the same geodesic but in two dif-
ferent coordinate systems. However, their addition con-
tribute in the same way to the total shear. Note also that
at second order, the convergence is different from zero as
a consequence of the Weyl-Weyl interaction. It means,
that even when the Schwarzschild solution can be though
as a thin lens, there exist nontrivial contributions to the
convergence which comes from interactions between the
curvature components in closely but different regions.

In the case of PPN metrics the contribution to the
convergence from the term κ̃Φ(2) is different from zero,
due to the fact that the Ricci scalar Φ00 for this general
family of metrics is not zero. Despite that, in the thin
lens approximation κ̃Φ(1) = 0.

V. FINAL REMARKS

In recent years, the theoretical study of gravitational
lenses has been fundamental for the description and anal-
ysis of different astrophysical and cosmological phenom-
ena of our Universe. In this work, we have shown how
to express different optical scalars and the deflection an-
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TABLE I: Leading order contribution to the convergence and shear due to the different components of the curvature. Each of
the tilde quantities is obtained from the corresponding dagger quantities multiplying by a factor (λlλls)

−1. In the case of the
Schwarzschild solution, note that even when the contribution to γ̃ from the terms γ̃

Ψ(2) and γ̃δΨ is gauge dependent, the total
contribution in the asymptotic region, is the same.

Optical scalars Isotropica q-Minkowskianb PPNc

κ̃
Φ(1) 0 0 0

κ̃
Φ(2) 0 0 π(−13+8β−6ν+2µ+9µ2)

16
M2

J3

κ̃δΦ 0 0 −

π(−2+µ+µ2)
8

M2

J3

κ̃ΦΦ 0 0 π(1−2µ+µ2)
32

M2

J3

κ̃ΨΨ −

15π
8

M2

J3 −

15π
8

M2

J3 −

15π(1+2µ+µ2)
32

M2

J3

κ̃ (Total contribution at second order) −

15π
8

M2

J3 −

15π
8

M2

J3
π(−8+4β−3ν−8µ)

8
M2

J3

γ̃
Ψ(1)

4M
J2

4M
J2 2(1 + µ)M

J2

γ̃
Ψ(2)

3π
8

M2

J3
15π
4

M2

J3
π(45−24β+18ν+6µ−39µ2 )

16
M2

J3

γ̃δΨ
21π
4

M2

J3
15π
8

M2

J3
3π(2+7µ+5µ2)

8
M2

J3

γ̃ΦΨ 0 0 9π(µ2
−1)

32
M2

J3

γ̃ΨΦ 0 0 9π(µ2
−1)

32
M2

J3

γ̃ (Total contribution at second order) 4M
J2 + 45π

8
M2

J3
4M
J2 + 45π

8
M2

J3 2(1 + µ)M
J2 + 3π(8−4β+3ν+8µ)

8
M2

J3

aSchwarzschild in isotropic coordinates
bSchwarzschild in quasi-Minkoskian coordinates
cParametrized-post-Newtonian point mass metric

gle at second order in terms of curvature scalars. These
formulas are general, and allow us to find explicit expres-
sions for the optical quantities once the gauge is fixed.

As an example of the formalism, we have shown that
by expressing the Schwarzschild’s solution in two dif-
ferent coordinate systems, one obtains at second order
the same final expressions for the (asymptotic) optical
scalars. This is not surprising, because the evaluation of
such scalars in the asymptotic region must only depend
from the well-defined quantities as the total ADM mass
of the spacetime and the involved impact parameter of
the considered null geodesics [38].

For a thin lens situation, we also have shown that even
when at first order the lens can be thought as if the whole
distribution of matter of the lens is placed in a single
plane, when one consider second-order corrections, one
must be more careful and preserve quadratic terms that
at a first sight could be thought that they do not con-
tribute.

0.2 0.4 0.6 0.8 1.0

10−10

10−8

10−6

10−4

10−2
γ(1)

γ(2)

0.2 0.4 0.6 0.8 1.0
J [Mpc]

5e-07

1e-06

2e-06

2e-06 γ(2)/γ(1)

FIG. 1: Top: a comparative plot of the first and second order
contributions to the shear for a spherical mass distribution
with M = 1012M⊙ situated at a distance of 1500 Mpc and
with λs/λl = 2. Bottom: the quotient between the leading
and second order contribution to the shear γ.

Finally, one would like to make some comments about
how important second-order contributions to the optical
scalars could be. In order to give an example of the esti-
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mated order of magnitude involved, we consider a model
of a galaxy as a spherical mass distribution of the order
of 1012 solar masses located at a distance λl = 1500Mpc
from us. The sources are assumed to be at a distance
λs = 2λl. Of course, even when a point mass model is
a rough model and we would also take into account cos-
mological corrections, it nevertheless serves to have an
idea of the order of magnitude involved. In fact, com-
pared to more realistic matter distribution models such
as those coming from an NFW density profile, it remains
a reasonable estimator [49]. In Figure 1 we have plot-
ted the contribution that γ(2) and γ(1) make to the total
shear and also its quotient. As it can be seen in the fig-
ure, second-order contribution to the shear for this kind
of astrophysical system is of the order 10−6 of the main
contribution. A similar crude analysis follows for groups
and cluster of galaxies. For example, for the Coma clus-
ter which is placed at 100 Mpc from us, with an esti-
mated mass of MComa = 7 × 1014M⊙ at J ≈ 2 Mpc[15],
γ(2)/γ(1) ≈ 8 × 10−5. In general for a point mass, or
in the exterior region of a spherical mass the quotient
γ(2)/γ(1) is proportional to the ratio rH/J , with rH the
Schwarzschild radius.
We would also like to mention that in the literature, it

can also be found the discussion of gravitational lensing
for exotic objects [14, 45–48]. For some of these kind
of objects, the first order effect in the optical scalars
or deflection angle are of the same order of magni-
tude that the second order effects coming from a point
mass in a Schwarzschild metric. For example, it follows
from [45] that for a four-dimensional projection of a five-
dimensional Tangherlini spacetime with massM , the de-
flection angle is proportional to M2/J2, and therefore
the convergence and shear of this metric in the weak field
regime have a similar functional dependence as the sec-
ond order contribution to the optical scalars for a four-
dimensional Schwarzschild metric with the same mass.
On the other hand, the contribution of second order

weak lensing to the CMB power spectrum or in a general
cosmological context is extensively discussed in [9, 20–
31, 37]. We mention that recently in [16], Boero and
Moreschi extended the analysis of Ref.[1] to the cosmo-
logical setting. Due to the relevance of second order ef-
fects in the cosmological framework, it would be desirable
to generalize some of the results of [16] to second order.
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Appendix A

1. Proof of the identity (19)

In order to prove the identity (19) we only have to
integrate by parts the integral in λ′ in the left-hand side
taking a function

u =

∫ λ′

0

λ′′Q(λ′′)dλ′′, (A1)

and the other function v such that

dv

dλ′
= 1; (A2)

then, using the well know expression

∫
u(s)

dv

ds
ds = uv −

∫
du

ds
v(s)ds (A3)

and making the identification λ′→λ the identity is
proven.

2. Proof of the identity (20)

The identity (20) is a particular case of the following
relation:

∫ λs

0

∫ λ′

0

∫ λ′′

0

λ′′′(λ′′ − λ′′′)f(λ′′′, λ′′)dλ′′′dλ′′dλ′

=

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)f(λ′, λ)dλ′dλ.

(A4)

In order to prove the identity (A4) we have to integrate
by parts the integral in λ′ in the left-hand side taking a
function

u =

∫ λ′

0

∫ λ′′

0

λ′′′(λ′′ − λ′′′)f(λ′′′, λ′′)dλ′′′dλ′′, (A5)

and the other function such that

dv

dλ′
= 1; (A6)

then, using (A3) and making the identifications λ′′→λ′,
λ′→λ, the identity is proven.
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Appendix B

1. Explicit expressions for the coefficients A, B, A′ and B′ that appear in the solution of the geodesic

deviation equation at second order

A =1− 1

λs

∫ λs

0

λ(λs − λ)Φ00(λ)dλ +
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ00(λ)Φ00(λ

′) + Ψ0R(λ)Ψ0R(λ
′)

+ Ψ0I(λ)Ψ0I(λ
′)

)
dλ′dλ− 1

λs

∫ λs

0

λ(λs − λ)Ψ0R(λ)dλ +
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ00(λ)Ψ0R(λ

′)

+ Ψ0R(λ)Φ00(λ
′)

)
dλ′dλ,

(B1)

B =− 1

λs

∫ λs

0

λ(λs − λ)Ψ0I(λ)dλ +
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ00(λ)Ψ0I(λ

′) + Ψ0I(λ)Φ00(λ
′)

)
dλ′dλ

− 1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Ψ0I(λ)Ψ0R(λ

′)−Ψ0R(λ)Ψ0I(λ
′)

)
dλ′dλ,

(B2)

A′ =− 1

λs

∫ λs

0

λ(λs − λ)Ψ0I(λ)dλ +
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ00(λ)Ψ0I(λ

′) + Ψ0I(λ)Φ00(λ
′)

)
dλ′dλ

+
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Ψ0I(λ)Ψ0R(λ

′)−Ψ0R(λ)Ψ0I(λ
′)

)
dλ′dλ,

(B3)

B′ =1− 1

λs

∫ λs

0

λ(λs − λ)Φ00(λ)dλ +
1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ− λ′)

(
Φ00(λ)Φ00(λ

′) + Ψ0R(λ)Ψ0R(λ
′)

+ Ψ0I(λ)Ψ0I(λ
′)

)
dλ′dλ+

1

λs

∫ λs

0

λ(λs − λ)Ψ0R(λ)dλ − 1

λs

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)

(
Φ00(λ)Ψ0R(λ

′)

+ Ψ0R(λ)Φ00(λ
′)

)
dλ′dλ.

(B4)

Appendix C

1. About the contribution of the quadratic terms

in the thin lens approximation

In this Appendix, we show that if we take the naive
approximation (43) to be sufficient in the computation
of the quadratic terms, then they should be vanishing.
In (31), (32), (33) we have terms of the form

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)C(λ)D(λ′)dλ′dλ. (C1)

In order to find the contribution of this expression in the
thin lens approximation we proceed as follows. First, we
integrate by parts the integral in λ′ taking one function
as u(λ′) = λ′(λ− λ′) and the other as dv

dλ′
= D(λ′). The

expression (C1) is now reduced to

∫ λs

0

(λ− λs)G(λ)C(λ)dλ (C2)

where

G(λ) =

∫ λ

0

(λ− 2λ′)D̃(λ
′

)dλ′. (C3)

Second, we integrate by parts (C2) taking ũ(λ) = (λ −
λs)G(λ) and

dṽ
dλ = C(λ):

∫ λs

0

C̃(λ)

[ ∫ λ

0

(2λ′ + λs)D̃(λ
′

)dλ′ −
∫ λ

0

2λD̃(λ
′

)dλ′

− (λs − λ)λD̃(λ)

]
dλ

(C4)
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Finally, implementing the thin lens approximation (43)
to (C4) we obtain the anticipated result

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′)C(λ)D(λ′)dλ′dλ = 0. (C5)

Appendix D

In this Appendix we consider the second order ap-
proximation of the Scharwzschild metric in isotropic and
quasi-Minkowskian coordinate systems and also the PPN
metric.
We give the expressions of the parallel propagated

vectors {ℓa,ma} at first order, the correction to the
background geodesics and the required curvature scalars.
All these computations were done with the help of the
GRTensor package and MAPLE.
These ingredients are necessary to compute the optical

scalars and the deflection angle at second order.
As in the main text, according to (51), the spherical

symmetry allows us to set without loss of generality

x = J, z = 0. (D1)

1. Schwarzschild lens: Isotropic coordinates

In order to compute the optical scalars and the de-
flection angle for the second order approximation of the
Schwarzschild exterior metric written in isotropic coordi-
nates (70) we need to compute the parallel transport of
the vectors {ℓa,ma} at first order in ε,

ℓt =− 1 +

(
− 1√

J2 + (λ− λl)2
+

1

2
√
J2 + λ2l

)
ε

+O(ε2),

ℓx =
1

J

(
λl − λ√

J2 + (λ− λl)2
− λl√

J2 + λ2l

)
ε+O(ε2),

ℓy =1− ε

2
√
J2 + λ2l

+O(ε2),

ℓz =O(ε2);
(D2)

mt =
1

2
√
2

i

J

(
λ− λl√

J2 + (λ− λl)2
+

λl√
J2 + λ2l

)
ε+O(ε2),

mx =
i√
2
− i

2
√
2

ε√
J2 + (λ− λl)2

+O(ε2),

my =
i

2
√
2J

(
λ− λl√

J2 + (λ− λl)2
+

λl√
J2 + λ2l

)
ε+O(ε2),

mz =
1√
2
− 1

2
√
2

ε√
J2 + (λ− λl)2

+O(ε2).

(D3)
The correction to the background null geodesic, which
follows from the integration of the ℓa components at first
order is

δxt =

(
λ

2
√
J2 + λ2l

− arcsinh(
λ− λl
J

)− arcsinh(
λl
J
)

)
ε

+O(ε2),

δxx =
1

J

(√
J2 + λ2l −

√
J2 + (λ− λl)2 −

λλl√
J2 + λ2l

)
ε

+O(ε2),

δxy =− 1

2

λ√
J2 + λ2l

ε+O(ε2),

δxz =O(ε2).
(D4)

The only non-vanishing curvature scalar at second order
is Ψ0,

Ψ0(J, λ) =
3

2

J2

(J2 + (λ− λl)2)5/2
ε− 3

4

1√
J2 + λ2l (J

2 + (λ− λl)2)7/2

[√
J2 + λ2l

√
J2 + (λ− λl)2

× (J2 − 4λ2 + 8λλl − 4λ2l ) + 2J2(J2 + 3λ2l + λ2 − 4λλl) + 4λl(3λ
2λl − 3λλ2l + λ3l − λ3)

]
ε2 +O(ε3).

(D5)
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2. Schwarzschild lens: Quasi-Minkoskian coordinates

In order to compute the optical scalars and the deflection angle for the Schwarzschild point mass lens written in
quasi-Minkowskian coordinates (74) we need to compute the parallel transport of the vectors {ℓa,ma} at first order
in ε:

ℓt =− 1 +

(
− 1√

J2 + (λ− λl)2
+

1√
J2 + λ2l

)
ε

+O(ε2),

ℓx =
1

2J

(
3J2(λl − λ) + 2(λl − λ)3

(J2 + (λ − λl)2)3/2
− 3λlJ

2 + 2λ3l
(J2 + λ2l )

3/2

)
ε

+O(ε2),

ℓy =1 +
J2

2

(
1

(J2 + (λ− λl)2)3/2
− 1

(J2 + λ2l )
3/2

)
ε

+O(ε2),

ℓz = O(ε2);

(D6)

and

mt =
1

2
√
2

i

J

(
− (λl − λ)√

J2 + (λ− λl)2
+

λl√
J2 + λ2l

)
ε

+O(ε2),

mx =
i√
2
+
i J2

2
√
2

(
− 1

(J2 + (λ − λl)2)3/2

+
1

(J2 + λ2l )
3/2

)
ε+O(ε2),

my =
1

2
√
2

i

J

(
(λ− λl)

3

(J2 + (λ− λl)2)3/2
+

λ3l
(J2 + λ2l )

3/2

)
ε

+O(ε2),

mz =
i√
2
+O(ε2).

(D7)

The first order contribution to the actual path is

δxt =

(
λ√

J2 + λ2l
− arcsinh(

λ− λl
J

)− arcsinh(
λl
J
)

)
ε+O(ε2),

δxx =
1

2J
√
J2 + (λ− λl)2(J2 + λ2l )

3/2

(√
J2 + λ2l (4J

2λλl − J4 − 3J2λ2l − 2J2λ2 − 2λ2λ2l + 4λλ3l − 2λ4l )

+
√
J2 + (λ− λl)2(J

4 + 3J2λ2l − 3J2λλl + 2λ4l − 2λλ3l )

)
ε+O(ε2),

δxy =
1

2
√
J2 + (λ− λl)2(J2 + λ2l )

3/2

(√
J2 + λ2l (J

2λ+ λλ2l − J2λl − λ3l ) +
√
J2 + (λ − λl)2

)
(J2λl + λ3l − J2λ)ε

+O(ε2),

δxz =O(ε2).
(D8)

While for the curvature quantity (52) we get

Ψ0(J, λ) =
3

2

J2

(J2 + (λ− λl)2)5/2
ε+

3

2

1√
J2 + λ2l (J

2 + (λ− λl)2)7/2

(
2(λ− λl)

2
√
J2 + λ2l

√
J2 + (λ− λl)2

+ J2
√
J2 + λ2l

√
J2 + (λ− λl)2 + 4λlλJ

2 − 3λ2l J
2 + 2λl(λ− λl)

3 − J4 − λ2J2

)
ε2 +O(ε3).

(D9)
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Despite the above expression for Ψ0 is different of (D5) which is calculated in isotropic coordinates, the expressions
for the convergence, shear and deflection angle are the same in the limits λl → ∞, λls → ∞.

3. Parametrized-post-Newtonian point mass lens

For the PPN point mass metric the components of {ℓa,ma} and the contribution to the actual geodesic δxa at first
order are given by:

ℓt =− 1 +

(
− 1√

J2 + (λ− λl)2
+

1

2
√
J2 + λ2l

)
ε

+O(ε2),

ℓx =
1

2

(µ+ 1)

J

(
λl − λ√

J2 + (λ− λl)2
− λl√

J2 + λ2l

)
ε

+O(ε2),

ℓy =1− 1

2

(
(µ− 1)√

J2 + (λ− λl)2
+

1√
J2 + λ2l

)
ε+O(ε2),

ℓz =O(ε2);

(D10)

mt =
1

2
√
2

i

J

(
λ− λl√

J2 + (λ− λl)2
+

λl√
J2 + λ2l

)
ε+O(ε2),

mx =
i√
2
− i µ

2
√
2

ε√
J2 + (λ− λl)2

+O(ε2),

my =
µ

2
√
2

i

J

(
λ− λl√

J2 + (λ− λl)2
+

λl√
J2 + λ2l

)
ε+O(ε2),

mz =
1√
2
− µ

2
√
2

ε√
J2 + (λ− λl)2

+O(ε2);

(D11)

δxt =

(
λ

2
√
J2 + λ2l

− arcsinh(
λ− λl
J

)− arcsinh(
λl
J
)

)
ε

+O(ε2),

δxx =
1

2

(µ+ 1)

J

(√
J2 + λ2l −

√
J2 + (λ − λl)2

− λλl√
J2 + λ2l

)
ε+O(ε2),

δxy =
1

2

[
(1− µ)

(
arcsinh(

λ− λl
J

) + arcsinh(
λl
J
)

− λ√
J2 + λ2l

)
− µλ√

J2 + λ2l

]
ε+O(ε2),

δxz =O(ε2);

(D12)



15

and the curvature quantities {Ψ0,Φ00} at second order are given by:

Ψ0(J, λ) =
3

4

(µ+ 1)J2

(J2 + (λ− λl)2)5/2
ε+

1

8

1√
J2 + λ2l (J

2 + (λ− λl)2)7/2

[√
J2 + λ2l

√
J2 + (λ− λl)2

×
(
6(λ− λl)

2 + J2(13− 8β − 2µ− 15µ2 + 6ν) + 6µ(µλ2l + 2λ2 + λ2µ+ 2λ2l − 2λλlµ− 4λλl)

)

− 6J2(λ2l µ
2 − λλlµ

2 − 4λlλµ+ µλ2 + 3λ2l µ− 3λlλ+ λ2) + 6µ2(λlλ
3 + 3λ3l λ− 3λ2l λ

2 − λ4l )

+ 12µ(3λλ3l − 3λ2λ2l + λ3λl − λ4l −
1

2
J4)− 6(λ4l + J4 − 3λ3l λ+ 3λ2l λ

2 − λlλ
3)

]
ε2 +O(ε3);

(D13)

Φ00(J, λ) =
1

4

(µ− 1)(J2 − 2(λ− λl)
2)

(J2 + (λ− λl)2)5/2
ε+

1

8

1√
J2 + λ2l (J

2 + (λ − λl)2)7/2

[√
J2 + λ2l

√
J2 + (λ− λl)2

×
(
2(1− 2β − 3ν)(λ− λl)

2 + J2(4µ− 3µ2 + 4β − 5) + 2µ(9µλ2l − 18µλλl + 9µλ2 − 5λ2l + 10λλl

− 5λ2)

)
+ 2J2(λ2l µ− λlλ+ 3µ2λlλ+ µλ2 − λ2 + 2λ2l − 2µλlλ− 3µ2λ2l )− 6µ2(3λ2l λ

2 − 3λ3l λ− λlλ
3

+ λ4l )− 4µ(4λlλ
3 + 4λ3l λ− 6λ2l λ

2 +
1

2
J4 − λ4l − λ4)− 2(3λ2l λ

2 − J4 − λ4l + λ3l λ+ 2λ4 − 5λlλ
3)

]
ε2

+O(ε3).
(D14)
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