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19 Abstract

20 In contrast to other species, intracytoplasmic sperm injection (ICSI) in bovine remains 

21 inefficient, resulting in low embryo developmental rates. It is unclear whether such 

22 inefficiency is due to the poor response of bovine ooplasms to the injection stimulus, or to 

23 the inability of bull sperm to induce oocyte activation. In order to facilitate these events, 

24 two strategies were assessed: the use of high concentration of cysteamine [Cys] during 

25 IVM; and the selection of sperm attached to cumulus cells after incubation with COCs for 
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26 ICSI. First, COCs were IVM with increasing [Cys] and subjected to IVF. Zygotes from all 

27 groups were cultured under different O2 tensions and development to blastocyst was 

28 evaluated. In a second experiment, sperm were co-cultured for 3 h with COCs and 

29 acrosome reaction was studied. Afterwards, the best IVM and IVC conditions determined 

30 on Experiment 1 were used for ICSI assay. COCs were matured for 21 h with 1 (Cys 1) or 

31 0.1 mM Cys (Cys 0.1 groups, standard condition). In addition, COCs were incubated for ≥3 

32 h with 16x106 sperm/ml and only sperm attached to cumulus cells were selected for ICSI 

33 (ICSI + Co-cult groups). After chemical activation, embryos were cultured in SOF medium 

34 under low O2 tension. Cleavage and blastocyst rates were evaluated at days 2 and 7 of IVC, 

35 respectively. Finally, the relative expression of eight genes indicators of embryo quality 

36 was compared between ICSI and IVF control blastocysts by qPCR. Cleavage rates were 

37 higher for Cys 0.1 ICSI + Co-cult and Cys 1 ICSI + Co-cult groups (n=117, 92% and 

38 n=116, 79%, respectively) compared to their controls (n=132, 60% for Cys 0.1 ICSI and 

39 n=108, 52% for Cys 1 ICSI) (p≤0.05). Interestingly, the combined treatment (Cys 1 ICSI + 

40 Co-cult) showed higher blastocyst rates than all other ICSI groups (23 vs. 11, 18 and 14% 

41 for Cys 0.1 ICSI + Co-cult, Cys 1 ICSI, and Cys 0.1 ICSI, respectively) (p≤0.05). 

42 Moreover, incubation with COCs increased the rates of live acrosome reacted sperm 

43 (p≤0.05). The relative abundance of mRNAs coding for INFτ, CAT, DNMT1, OCT4, and 

44 HDAC3 did not differ between treatments (p≤0.05). SOD2, HADC1 and HADC2 expression 

45 was higher for Cys 0.1 ICSI than for IVF embryos (p≤0.05). Group Cys 1 ICSI did not 

46 differ from IVF for those three genes, neither did Cys 1 ICSI + Co-cult, except for HDAC1 

47 (p≤0.05). In conclusion, the use of 1 mM Cys during IVM and of sperm incubated with 

48 mature COCs might be a good strategy to improve ICSI outcomes in cattle. 
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50 tension, gene expression. 

51

52

53 1. Introduction

54 Since the first intracytoplasmic sperm injection (ICSI) performed in bovine [1], many 

55 efforts have been made worldwide to improve in vitro embryo development and birth rates. 

56 Despite the great advances achieved in terms of in vitro embryo production, ICSI in cattle 

57 continues being inefficient [reviewed by 2]. In this species, low embryo development 

58 would be related to abnormal levels of sperm decondensation and pronuclei formation 

59 observed after ICSI [3-6]. It is still unclear whether such inconsistencies are due to the 

60 inability of bull sperm to induce complete oocyte activation, or to the poor response of 

61 bovine ooplasms to the injection stimulus, which provokes an incorrect sperm head 

62 decondensation. For this reason, several oocyte activation protocols and sperm 

63 pretreatments have been developed, though with varying results [7-13]. The aim of this 

64 work was to evaluate treatments that better resemble physiological processes occurring to 

65 oocytes and sperm during fertilization, in order to facilitate ICSI embryo development. 

66 Upon regular fertilization, the hypercondensed sperm chromatin decondenses resulting into 

67 a male pronucleus. This complex process is mediated by the reduced glutathione (GSH), 

68 which accumulates in the ooplasm during oocyte maturation [reviewed by 14]. After 

69 fertilization, the endogenous GSH reduces the disulfide bonds of protamines from the 

70 sperm nucleus, leading to their replacement by histones and allowing sperm chromatin 
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71 decondensation [15, 16]. For in vitro embryo production, 0.1 mM cysteamine (Cys) is 

72 added to the in vitro maturation (IVM) medium as the main precursor of GSH [17]. For 

73 species with frequent fertilization failure after IVF, five fold Cys concentration has been 

74 used to increase endogenous GSH levels into the oocyte, resulting in higher rates of 

75 pronuclei formation [18, 19]. In bovine, while fertilization failure does not usually occur 

76 after IVF, it is highly frequent after ICSI [13, 20-22]. Thus, we propose the use of higher 

77 concentrations of Cys during IVM to improve fertilization rates after ICSI in cattle. To this 

78 aim, an IVF assay was initially performed to determine the highest concentration of Cys to 

79 be used for in vitro maturation of COCs. Since Cys has an anti-oxidant action [23], high 

80 and low O2 tension were tested during in vitro culture of IVF embryos until the blastocyst 

81 stage and the best combination of IVM and IVC conditions (Cys concentration and O2 

82 tension, respectively) were used for ICSI assay.

83 Prior to in vivo fertilization, mammalian spermatozoa become capacitated in the female 

84 reproductive tract, turning competent to undergo the acrosome reaction. It consists on the 

85 release of the acrosome content, which allows the sperm to penetrate the zona pellucida for 

86 further fertilization. During acrosome reaction, the complex of membranes that surrounds 

87 the sperm nucleus is removed, facilitating the entry of the sperm nucleus into the oocyte 

88 [24]. The ICSI procedure bypasses these events and introduces additional membrane 

89 barriers between sperm nucleus and ooplasm [25-27] that might be responsible for the 

90 reduced developmental competence of the resulting embryos [26, 28, 29]. Recently, it was 

91 suggested that in vitro matured bovine oocytes might be unable to decondense sperm that 

92 have not suffered in vivo capacitation and acrosome reaction [22]. In addition, sperm 

93 interaction with cumulus cells was shown to increase acrosome reaction, sperm capacitation 
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94 and subsequent in vitro fertilization rates [30, 31]. For this reason, we intended to closely 

95 mimic physiological processes that usually precede fertilization by allowing the interaction 

96 of sperm with cumulus cells in a capacitating medium. After incubation, sperm that were 

97 attached to cumulus cells were separated from COCs by aspiration with the injection 

98 pipette and immediately used for ICSI. 

99 In summary, this report intended to facilitate sperm decondensation after ICSI by means of 

100 specific treatment of oocytes and sperm, by the supplementation of the IVM medium with 

101 high Cys concentration and the incubation of sperm with COCs prior to ICSI. Results were 

102 evaluated in terms of blastocyst production and quality of the generated blastocysts, based 

103 on the relative expression of important developmental genes by qPCR.

104

105 2. Materials and Methods

106 Unless otherwise indicated, all chemicals were purchased from Sigma Chemical Company 

107 (St. Louis, MO, USA).

108

109 2.1.  Experimental design 

110 In Experiment 1, the maximum Cys concentration that could be supplemented on IVM 

111 medium with no detrimental effects over blastocysts development was determined. COCs 

112 were in vitro matured under standard conditions (with 0.1 mM Cys) or with increasing 

113 concentrations of Cys (0.5, 1 and 10 mM) and IVF was performed. Embryos from all 

114 groups were cultured under low and high O2 tension. In Experiment 2, the effect of sperm 
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115 co-culture with COCs on sperm acrosome membrane integrity was studied. In Experiment 

116 3, the best IVM and IVC conditions determined on Experiment 1 were used for ICSI assay. 

117 The effect of sperm-COCs co-culture prior to ICSI on embryo development was evaluated. 

118 In experiment 4, the quality of ICSI blastocysts was analyzed based on relative expression 

119 of INFτ, CAT, SOD2, DNMT1, OCT4, HDAC1, HDAC2 and HDAC3 genes.

120

121 2.2  Cumulus–oocyte complexes (COCs) collection and in vitro maturation (IVM)

122 COCs collection was performed as previously described by Canel et al. [32]. The 

123 maturation medium was TCM-199 with Earle's salts (11150042; Gibco, NY, USA) 

124 containing 10% v/v fetal bovine serum (FBS, Internegocios, Mercedes, Argentina), 1% v/v 

125 penicillin/streptomycin/Fungizone® (ATB/ATM, 15240-096; Gibco, NY, USA), 0.3 mM 

126 sodium pyruvate (P2256) and 2 μg/ml Follicle Stimulating Hormone (FSH, NIH-FSH-P1, 

127 Folltropin®, Bioniche, Australia). For Experiment 1, IVM medium was supplemented with 

128 0.1, 0.5, 1 or 10 mM cysteamine (Cys, M9768). For Experiment 3, IVM medium was 

129 supplemented with 0.1 or 1 mM Cys, depending on the groups.  In all cases, groups of 20-

130 22 COCs were randomly allocated in 100 μl droplets of IVM medium covered with mineral 

131 oil (M8410) and incubated at 39ºC in a humidified atmosphere of 6% CO2 and 20% O2 in 

132 air. After 20-22 h of IVM, cumulus cells were removed from COCs by vortexing for 3 min 

133 in 1 mg/ml hyaluronidase solution (H4272) and washed three times in Hepes-TALP [33]. 

134 Oocytes with an extruded first polar body (PB) were selected for ICSI or chemical 

135 activation.

136
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137 2.3 In vitro fertilization (IVF)

138 For IVF groups, COCs were matured in vitro for 21 h, washed in Hepes-TALP and 

139 immediately co-incubated with sperm. The IVF procedure was previously described by 

140 Brackett and Oliphant [34]. Briefly, frozen semen from two bulls was thawed in a 37°C 

141 water bath for 30 sec. Sperm were washed twice by centrifugation at 490 X g for 5 min 

142 with 5 ml of Brackett’s defined medium. Sperm concentration was adjusted to 15x106/mL 

143 in Brackett’s fertilization (BO) medium and co-incubated for 5 h with groups of 20-22 

144 COCs in 100 μl droplets covered with mineral oil. Afterwards, presumptive zygotes were 

145 vortexed for 30 to 60 sec and washed several times in Hepes-TALP and cultured in vitro as 

146 described below. 

147

148 2.4 Co-incubation of sperm with COCs (Co-cult) previous to ICSI

149 This procedure was performed as was explained in IVF section, with slight differences. 

150 Groups of 2-3 in vitro matured COCs were washed in TALP-H and placed in 20 μl droplets 

151 containing 15x106/mL sperm. The co-incubation of sperm and COCs (co-culture) was 

152 carried out for a minimum of 3 h. Then, COCs were placed directly into a PVP droplet, 

153 carrying the spermatozoa that were attached to the cumulus cells. These spermatozoa were 

154 aspirated with the ICSI pipette, then immobilized and finally injected into the cytoplasm of 

155 in vitro matured oocytes as explained in the following section (Figure 1).

156  

157 2.5 Intracytoplasmic sperm injection (ICSI)
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158 After 21 h of IVM, sperm injection was performed in 100 µl droplets of Hepes-TALP 

159 under mineral oil in 100 x 20 mm culture dishes (430,167; Corning, NY, USA), using 

160 hydraulic micromanipulators (Narishige, Medical Systems, Great Neck, NY, USA) 

161 mounted on a Nikon Eclipse TE-300 microscope (Nikon, Melville, NY, USA). According 

162 to the experimental group, spermatozoa or COCs previously incubated with sperm from 

163 two bulls were placed in a 2 μl droplet of 10% v/v polyvinylpyrrolidone (PVP, Irvine 

164 Scientific, Santa Ana, CA, USA) in Hepes-TALP. Each spermatozoon was immobilized by 

165 breaking its tail and aspirated tail-first into a 9 μM inner diameter injection pipette. The 

166 injection pipette was transferred to a droplet containing MII oocytes, which were held by 

167 negative pressure with a holding pipette, locating the polar body at the 6 or 12 o’clock 

168 position. Immediately, sperm injection was performed by aspiration (until the breakage of 

169 the oocyte membrane) and subsequent deposition of the spermatozoa and the previously 

170 aspirated ooplasm inside the oocyte. Sham controls were injected with the medium used for 

171 spermatozoa/COCs, but with no sperm, using a volume equivalent to that used for ICSI. A 

172 parthenogenetic group (PA) was also included as a control of in vitro development. After 

173 injection, all groups were subjected to chemical activation as described below. 

174

175 2.6  Chemical activation

176 Sperm injected oocytes were treated with 5 μM ionomycin (I24222; Invitrogen, Carlsbad, 

177 CA, USA) in Hepes-TALP for 4 min, followed by incubation for 3 h in TCM-199 medium 

178 (to allow second polar body extrusion), and finally treated with 1.9 mM 6-DMAP (D2629) 

179 diluted in TCM-199 medium for 3 h. In the case of PA control group, metaphase II oocytes 
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180 were treated with 6-DMAP immediately after ionomycin incubation to inhibit second polar 

181 body extrusion. Afterwards, oocytes were thoroughly washed in Hepes-TALP and cultured 

182 as described below.  

183

184 2.7 In vitro culture (IVC) and determination of blastocyst cell number 

185 Activated oocytes and presumptive zygotes were cultured in 50 μl droplets of SOF medium 

186 [35, 36] supplemented with 2.5% FBS, covered with mineral oil. Incubation was performed 

187 at 39ºC in a humidified atmosphere of 6% CO2 and 5% O2 in air for 7 days. For Experiment 

188 1, some groups were incubated under an atmosphere of 6% CO2 and 20% O2 in air (high 

189 oxygen tension condition). The number of cleaved embryos and blastocysts was evaluated 

190 at days 2 and 7 respectively, and 100% of the medium was replaced at days 2 and 5 of in 

191 vitro development. Total cell number of IVF blastocysts was determined at day 7 of in vitro 

192 development, by staining with 3 μg/ml of Hoechst Bisbenzimide 33342 (H33342: B-2261) 

193 for 10 min. Embryos were placed between a slide and a coverslip, and nuclei were 

194 visualized and counted under an inverted epifluorescence microscope, using an 

195 excitation/emission wavelength of 350/461 nm.

196

197 2.8 Evaluation of acrosome membrane integrity

198 Sperm previously incubated in BO medium for 3 h with COCs (Co-cult group), without 

199 COCs (BO group) or just thawed (Thawed group) were analyzed. In the case of co-cult 

200 group, sperm attached to the cumulus cells were separated from COCs using an ICSI 
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201 pipette, as was performed prior to sperm injection. All groups were resuspended in 200 µl 

202 of BO medium and incubated with 10 µg/ml of the fluorescence probe peanut agglutinin 

203 conjugated with fluorescein isothiocyanate (PNA/FITC, L7381) and 5 µg/ml propidium 

204 iodide (PI, P4170) for 15 min at 39ºC in the dark. Then, samples were washed by 

205 centrifugation at 490 X g for 5 min and the pellet was resuspended in 50 µl of BO medium 

206 for evaluation of acrosome membrane integrity. Sperm samples used as PI positive controls 

207 were treated with 0.8% (v/v) Triton X-100 (T-9284) in PBS for 15 min (Triton X group). 

208 Sperm samples used as PNA/FITC positive controls were treated with 10 µM ionomycin 

209 for 45 min in the dark (Ionomycin group). All samples were placed between a glass slide 

210 and a coverslip and observed under an epifluorescence microscope using excitation 

211 wavelengths of 488 and 544 nm.  

212

213 2.9 RNA extraction and real time PCR

214 Pools of five expanded blastocysts from IVF, ICSI Control, Cys 1 ICSI + Co-cult and Cys 

215 1 ICSI groups were kept in RNA Later® (AM 7020, Ambion, CA, USA) at -50°C until 

216 RNA extraction. Total RNA was extracted using the commercial Pico Pure Isolation kit 

217 (Arcturus, Carlsbad, CA, USA) and residual genomic DNA was removed by DNAsa I 

218 digestion with the RNase-Free DNase Set kit (Qiagen, Valencia, CA, USA). Reverse 

219 transcription was performed using the Revert Aid ™ H Minus First Strand kit (Thermo 

220 Scientific Inc., Pittsburgh, PA, USA) and quantitative real-time PCR (qPCR) using the 

221 Brilliant II SYBR Green QPCR masterbatch (Stratagene Agilent Technologies, Inc., Palo 

222 Alto, CA, USA) and the Q-PCR MX3000PTM kit (Stratagene Agilent Technologies) in a 
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223 MX3000P thermocycler (Stratagene Agilent Technologies). Genes analyzed were IFNτ, 

224 CAT, SOD2, DNMT1, OCT4, HDAC1, HDAC2 and HDAC3. A detailed table including 

225 gene accession numbers, primers and amplification products is included (Table 1). 

226 Negative controls consisted on the same mix but substituting the cDNA with water, and run 

227 in parallel with the samples. IVF blastocysts were used as calibrators and the values are 

228 shown as n times of relative difference with respect to the calibrator. Dissociation curves 

229 were performed after each PCR run to ensure that a single PCR product had been amplified. 

230 Quantification of relative mRNA expression levels was performed using the MXPro-

231 MX300P Version 4.10 program (Stratagene Agilent Technologies), based on the ΔΔCt 

232 method and using the amplification efficiency of each gene as a correction factor [37]. As a 

233 reference, the geometric average of YWHAZ and GAPDH were used, after being analyzed 

234 with the geNorm Visual Basic program (Microsoft Excel).

235

236 2.10 Statistical analysis

237 Each experiment was repeated at least three times. Fisher's nonparametric analysis was 

238 performed to compare in vitro development and sperm membrane integrity results, with a 

239 confidence interval of 95% of the data obtained using Graph Pad PRISM® software, 5.01 

240 version. The mean cell number of blastocysts and standard deviation (SD) were compared 

241 using the Kruskal-Wallis non-parametric test, with Dunn's correction for multiple 

242 comparisons. For calculations of relative quantification of mRNAs, differences between 

243 treatments in each experiment were determined by one-way ANOVA, after transforming 

244 the proportional data to its arc sine. In cases where significant differences were observed, 
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245 the Least Significant Difference (LSD) test was used to determine the magnitude of the 

246 differences. For Kruskal-Wallis non-parametric test and all other analyzes, a difference of p 

247 ≤0.01 and 0.05 were considered significant, respectively.  

248

249 3. Results

250 3.1 Experiment 1: Effect of Cys concentration during IVM followed by IVC under low or 

251 high O2 on development of IVF embryos. 

252 The effect of increasing concentrations of Cys during IVM (0.5, 1 and 10 mM vs. 0.1 mM 

253 control) on the development of IVF bovine embryos was evaluated (Figure 2). All these 

254 treatments were combined with in vitro culture of embryos until the blastocyst stage under 

255 high (20%) or low (5%) O2 tension. Total cell number of blastocysts from all groups was 

256 determined. Results are detailed in Table 2. No detrimental effect over cleavage/blastocysts 

257 rates and mean cell number of blastocysts was observed for COCs matured with 0.5 and 1 

258 mM Cys when embryos were cultured under 5% O2, nor for COCs matured with 0.5 mM 

259 Cys and embryos cultured under 20% O2 (p≤0.05). However, a decline in cleavage and 

260 blastocyst rates was observed after IVM with 10 mM Cys, using both high and low O2 

261 tension during IVC. The same effect was observed when maturation was performed with 1 

262 mM Cys and embryo culture under 20% O2 (p≤0.05). A decrease of mean cell number was 

263 observed for blastocysts subjected to IVM with 1 and 10 mM Cys and IVC under 20% O2 

264 compared to 0.1, 0.5 and 1 mM Cys groups, cultured under 5% O2 (p≤0.01). On the basis of 

265 these results, 1 mM Cys and 5% O2 were the conditions chosen for IVM and IVC of ICSI 

266 assays. 
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267

268 3.2 Experiment 2: Sperm acrosome membrane integrity after incubation with COCs 

269 The effect of sperm incubation with COCs on sperm acrosome membrane integrity was 

270 tested (Table 3, Figure 3). All treatments showed similar rates of live non-reacted and dead 

271 reacted acrosome sperm (p≤0.05). Nonetheless, incubation with COCs (Co-cult group) 

272 resulted in more live reacted and less dead non-reacted acrosome sperm, in comparison 

273 with BO and Thawed groups (p≤0.05). As expected, Triton X and Ionomycin positive 

274 control groups showed the highest rates of dead non-reacted and live reacted acrosome 

275 sperm, respectively (p≤0.05). 

276

277 3.3. Experiment 3: ICSI after high Cys IVM and sperm-COCs co-incubation 

278 Treatments on oocytes and sperm were evaluated for ICSI in bovine: IVM with 1 mM Cys 

279 (Cys 1 ICSI group) and co-incubation of sperm with COCs for a minimum of 3 h (ICSI + 

280 Co-cult group) before injection. In addition, both treatments were combined (Cys 1 ICSI + 

281 Co-cult group). ICSI, Sham and PA control groups subjected to standard IVM conditions 

282 were also included (ICSI, ICSI + Co-cult, Sham and PA Cys 0.1). All embryos were 

283 cultured under low O2 tension. Results are summarized in Table 4. Cleavage rates were 

284 higher for ICSI groups subjected to co-culture treatment (Cys 0.1 ICSI + Co-cult and Cys 1 

285 ICSI + Co-cult groups) compared to their controls (Cys 0.1 ICSI and Cys 1 ICSI groups, 

286 respectively) (p≤0.05). Interestingly, the combined treatment (Cys 1 ICSI + Co-cult) 

287 showed higher blastocyst rates than all other ICSI groups (p≤0.05). See Figure 4.

288
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289 3.4 Experiment 4: Gene expression analysis of ICSI blastocysts by qPCR

290 Since the combination of IVM with high Cys and the co-incubation of sperm-COCs 

291 previous to ICSI  improved both cleavage and blastocyst rates, the quality of blastocysts 

292 generated with this treatment (Cys 1 ICSI + Co-cult group) was analyzed in terms of 

293 relative expression of eight genes. Groups Cys 1 ICSI, Cys 0.1 ICSI and IVF were used as 

294 controls. Real time PCR results are sown in Figure 4. No differences were found for the 

295 relative abundance of mRNAs coding for INFτ, CAT, DNMT1, OCT4, and HDAC3 between 

296 groups (p≤0.05). However, SOD2, HADC1 and HADC2 expression was higher for Cys 0.1 

297 ICSI compared to IVF embryos (p≤0.05). On the other hand, SOD2 and HADC2 expression 

298 did not differ between Cys 1 ICSI, Cys 1 Co-cult and IVF groups.

299

300 4. Discussion 

301 Unlike other species, ICSI in cattle results in low blastocyst rates and poor quality embryos. 

302 In this work, we increased the concentration of Cys during IVM, and sperm were incubated 

303 with COCs prior to ICSI. This alternative protocol, designed to closer mimic physiological 

304 conditions, avoids the use of harmful chemical agents that may damage the oocyte and 

305 spermatozoa (ex. dithiothreitol, triton X-100, lysolecithin, methyl-β-cyclodextrin) [10, 12, 

306 38, 39, 40], and improves in vitro development of ICSI bovine embryos. 

307 In Experiment 1, the maximum Cys concentration that can be supplemented to the IVM 

308 medium without showing a negative impact on blastocyst development was determined. 

309 The addition of Cys to the maturation medium is known to increase GSH levels in mature 

310 oocytes, and oocytes with higher GSH content show increased developmental competence 
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311 [17, 41, 42]. As well as reducing the disulfide bonds of protamines, GSH acts as a major 

312 antioxidant within cells [43, 44]. For this reason we considered important to evaluate the 

313 effect of increasing Cys concentration during IVM on embryo development, performing 

314 IVC in more or less oxidative conditions (20% or 5% oxygen tension, respectively). For 

315 this assay, embryos were produced by IVF and results indicate that Cys concentration 

316 during IVM can be increased up to 1 mM, with no detrimental effects on embryo 

317 development when IVC is performed under 5% O2 tension. Oppositely, their counterparts 

318 cultured with 20% O2 showed lower blastocyst rates and total cells number. This is 

319 expected, since the physiologic environment where oocyte maturation and embryo 

320 development take place are highly hypoxic [45]. When embryos are exposed to more 

321 oxidative conditions, the electron donors and metabolic intermediates required for ATP 

322 production are diverted to biosynthetic pathways supply and antioxidant defense 

323 regeneration. Given that mitochondria are the only source of ATP for early embryos, 

324 developmental competence becomes affected by the lower energy supply [46]. Regarding 

325 to the maximum Cys concentration (10 mM) used during IVM, developmental rates 

326 substantially decreased for both 5 and 20% O2 tension culture conditions. This toxic effect 

327 might be explained, at least in part, by the availability of NADPH. The activity of 

328 glutathione reductase, which maintains most of glutathione molecules in its reduced state, 

329 requires NADPH as electron donor. If the concentration of glutathione is excessive, the 

330 availability of NADPH may not be enough for allowing glutathione reductase activity, 

331 leading to the accumulation of glutathione in its oxidized form, thus increasing the 

332 oxidative stress of the embryo. Moreover, glutathione transferases, which covalently link 

333 reactive chemicals with GSH, cooperate with other systems for the detoxification of cells. 

334 The excess of the components of one of these systems (such as GSH) might also affect the 
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335 functioning of the others, altering the redox state of the embryos, and even the expression 

336 of certain genes [reviewed by 44]. 

337 In Experiment 2, the effect of co-incubation of sperm with COCs for 3 h (Co-cult) on 

338 sperm acrosome membrane integrity was analyzed. Cumulus cells have been proposed to 

339 generate a microenvironment that is beneficial for the fertilizing sperm, to prevent the entry 

340 of abnormal sperm into the oocyte, and to enrich the sperm population with capacitated and 

341 reacted spermatozoa [47, 30, 31]. Indeed, clinical studies indicate the use of cumulus cells 

342 to select human spermatozoa before ICSI. It was reported that sperm populations that 

343 manage to get through the cumulus cells show higher percentages of capacitated and 

344 acrosome reacted sperm, beyond certain parameters of normality [48, 49]. In agreement 

345 with those reports, our results show that the rates of live and acrosome reacted spermatozoa 

346 increase after Co-cult treatment. Some authors have evidenced that the use of acrosome 

347 reacted sperm for ICSI improves in vitro embryo development and implantation rates in 

348 cattle and human, respectively [12, 28]. For all the exposed above, we employed the Co-

349 cult treatment for ICSI assay.

350 In Experiment 3, IVM was performed with 1 vs. 0.1 mM Cys and all ICSI embryos were in 

351 vitro cultured under 5% O2. In addition, IVM and IVC conditions were combined or not 

352 with the injection of sperm subjected to Co-cult. Our results show that the Co-cult increases 

353 cleavage rates of ICSI embryos, independently of IVM conditions. This is expected since 

354 certain structures of the intact sperm head were observed to obstruct sperm chromatin 

355 decondensation after ICSI [50]. Additionally, the Co-cult method restricts the sperm 

356 selection to those that are able to interact and stay attached to cumulus cells, and to 

357 maintain their motility for at least 3 h of incubation in a capacitating medium. Hence, 
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358 results from Experiments 2 and 3 suggest that the Co-cult treatment is not only enriching 

359 the sperm population with acrosome reacted ones, but also with those sperm that would be 

360 selected by the cumulus cells on an IVF protocol, which ultimately might increase cleavage 

361 rates. Nonetheless, Co-cult treatment only improved blastocyst rates when combined with 

362 the previous maturation of COCs with 1 mM Cys. These results could be explained by the 

363 protamin content in the bovine sperm nucleus. While protamines P1 and P2 are found in 

364 other species, only P1 is present in cattle, which displays higher affinity for DNA than P2 

365 [51-53]. It provokes a greater degree of chromatin compaction that might interfere with the 

366 development of ICSI embryos. However, by employing high [Cys] during IVM, competent 

367 oocytes could increase their ability to synthesize GHS, facilitating the replacement of 

368 sperm protamins by histones during the male pronucleus formation, resulting in better 

369 embryo development. Following the line of this hypothesis, we can infer that even though 

370 several changes on sperm physiology are needed to allow early development of bovine 

371 ICSI embryos, other changes into the ooplasm must also occur, that are not well achieved 

372 by current IVM systems.

373 Finally, the incidence of Cys 1 ICSI and Cys 1 ICSI + Co-cult treatments on relative 

374 expression of eight genes from ICSI blastocysts was analyzed by qPCR. Treated ICSI 

375 groups were compared with ICSI and IVF control groups, for which COCs were matured 

376 with 0.1 mM Cys and spermatozoa were not subjected to any pre-treatment (standard 

377 conditions). No differences were observed for INFτ, OCT4 and DNMT1 expression 

378 between groups, which might reflect capability of pregnancy maintenance and inner cell 

379 mass/trophoectoderm number of cells ratio closer to those of IVF blastocysts [54-57, 6]. 

380 Arias et al. [6] reported overexpression of CAT and SOD2 in ICSI bovine embryos. In our 
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381 hands, while ICSI control group overexpressed SOD2, this effect was reversed by both Cys 

382 1 ICSI and Cys 1 ICSI + Co-cult treatments, reflecting a better regulated oxidative state of 

383 embryos [58]. A similar observation was detected for HDAC1 and HDAC2 expression, 

384 whereas HDAC3 did not differ between groups. The expression of HDAC genes in ICSI 

385 bovine embryos had not been studied so far. They code for enzymes implicated in histone 

386 acethylation, which can induce transcriptional repression [59, 60]. Since level of these 

387 transcripts is expected to decrease after embryo genome activation [61], our results suggest 

388 an epigenetic profile less altered by in vitro production system for both ICSI treatments 

389 using 1 mM Cys concentrations.

390 4.1 Conclusions

391 The addition of high concentrations of Cys during IVM and co-incubation of sperm with 

392 COCs previous to injection improves in vitro development of ICSI bovine embryos, when 

393 IVC is performed under low O2 tension. This work evidences the need to study the changes 

394 that both male and female gametes suffer before fertilization under physiological 

395 conditions. This would allow the design of novel protocols, not only for sperm preparation, 

396 but also for improving IVM and IVC, in order to facilitate the development of ICSI 

397 embryos in cattle.  
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627 Table 1. Analyzed genes, sequence of specific primers, product size and access source in 
628 GenBank.

Gene Abbreviation Primer sequence (5’-3’) Product
size (bp) GeneBank

Interferon tau IFNτa TGGCCCTGGTGCTGGTCAGC
TCATTCGGGCCAGGAGCCTG 108 XM_001250591.1

Catalase CATb ACCCTCGTGGCTTTGCAG
ACTCAGGACGCAGGCTCC 192 NM_001035386.1

Mn-superoxide dismutase 
of the mitochondria SOD2c ACCTCAACGTCGCCGAGG

CCAACCGGAGCCTTGGAC 260 L22092.1

Dimethyltransferase 1 DNMT1d CGCATGGGCTACCAGTGCACCTT
GGGCTCCCCGTTGTATGAAATCT 312 X63692

Octamer-binding 
transcription factor 4 OCT4e GGTTCTCTTTGGAAAGGTGTTC

ACACTCGGACCACGTCTTTC 314 AF022987

Histone deacetylase 1 HDAC1f GGCTCTGACTCCTTGTCTGG
GCATAGGCAGGTTGAAGCTC 103 AY504948

Histone deacetylase 2 HDAC2g ACAGGGTCATCCCATGAAAC
TTCTTCGGCAGTGGCTTTAT 115 AY504949

Histone deacetylase 3 HDAC3h ATCTGGATGGAGCGTGAAGT
GTGGCTACACTGTCCGGAAT 137 AY504950

Tyrosine 3-monooxygenase/ 
tryptophan 5-monooxygenase 

activating zeta protein
YWHAZi GCATCCCACAGACTATTTCC

GCAAAGACAATGACAGACCA 120 BM446307

Glyceraldehyde 3-phosphate 
dehydrogenase GAPDHj GGAGCCAAACGGGTCATCATCTC

GAGGGGCCATCCACAGTCTTCT 223 XM_583628

629 aProtein secreted by the trophoectoderm involved in establishment and maintenance of pregnancy [57]. 
630 b,cMitochondrial enzymes with important role as antioxidant defense of the cells [44].
631 dDimethyltransferase involved in epigenetic regulation of pluripotency and cell differentiation [61].
632 eTranscription factor involved in embryonic stem cell pluripotency [62, 63]. 
633 f,g,hEnzymes involved in transcriptional repression through histone acetilation [64, 65].
634 i,jHousekeeping genes used as a reference [6,66].
635

636

637

638

639
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640 Table 2. Effect of high cysteamine (Cys) concentrations during in vitro maturation on 

641 development of bovine IVF embryos, using low or high O2 tension.

O2 tension [Cys] N Cleavage (%) Blastocysts (%) Mean cell n° ± SD

0.1 mM 139 115 (82.73)ac 52 (37.41)a 131±41 (n=22)a

0.5 mM 135 107 (79.26)ac 44 (32.59)ab 123±53 (n=43)a

1 mM 153 119 (77.78)ac 63 (41.18)a 120±42 (n=28)a

Low (5%)

10 mM 116 15 (12.93)b 4 (3.45)c 85±20 (n=4)ab

0.1 mM 140 107 (76.43)ac 55 (39.29)a 98±42 (n=32)ab

0.5 mM 158 135 (85.44)a 64 (40.51)a 99±39 (n=34)ab

1 mM 107 80 (74.77)c 26 (24.3)b 72±36 (n=18)b

High (20%)

10 mM 112 19 (16.96)b 10 (8.93)c 64±14 (n=10)b

642 a,b,c: different superscripts in the same column indicate significant difference (Fisher’s exact test, p ≤0.05 for 
643 cleavage and blastocyst rates; Kruskal-Wallis non-parametric test with Dunn’s correction for multiple 
644 comparisons, p ≤0.01 for mean cell n° ± SD).

645

646

647 Table 3. Effect of incubation with COCs on sperm acrosome membrane integrity.  

Treatments N

% Live, non 
reacted 

acrosome 
(PI-/PNA-)

% Dead, non 
reacted acrosome 

(PI+/PNA-)

% Live, reacted 
acrosome

 (PI-/PNA+)

% Dead, reacted
acrosome

 (PI+PNA+)

Co-cult 271 16.6a 21.03a 27.31c 35.06

BO 3h 361 21.6a 35.46b 6.93a 36.01

Thawed 503 19.48 a 29.22b 11.33b 39.96

Triton X 439 31.44 b 68.56c - -

Ionomicyn 537 18.62 a - 81.38d -
648 a,b,c,d: different superscripts in the same column indicate significant difference (Fisher’s exact test, p≤0.05). 
649 Sperm previously incubated in BO medium for 3 h with (Co-cult) or without COCs (BO) or just thawed 
650 (Thawed) and exposed to PI and PNA/FITC. Triton X: PI positive controls. Ionomycin: PNA/FITC positive 
651 controls.  

652
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653 Table 4. Effect of 1 mM cysteamine (Cys) during IVM and sperm co-incubation with 

654 COCs previous to ICSI over in vitro embryo development.  

[Cys] on IVM Groups N Cleavage (%) Blastocysts (%)

ICSI + Co-Cult 116 92 (79.31)a 27 (23.28)a

1 mM
ICSI 108 56 (51.85)b 19 (17.59)b

ICSI + Co-Cult 117 107 (91.45)c 13 (11.11)b

0.1 mM
ICSI 132 79 (59.85)b 18 (13.64)b

Sham 106 94 (88.68)c 22 (20.75)ab0.1 mM

(controls) PA 144 138 (95.83)c 88 (61.11)c

655 a,b,c: different superscripts in the same column indicate significant difference (Fisher’s exact test, p≤0.05). 
656 1 mM and 0.1 mM groups: COCs were IVM in the presence of 1 mM or 0.1 mM Cys (standard condition) 
657 before ICSI. ICSI + Co-cult groups: sperm were co-incubated with COCs for ≥ 3 h before intracytoplasmic 
658 injection. Sham: oocytes injected with an equivalent volume of the medium used for spermatozoa and 
659 activated with Io+3h+DMAP. PA: oocytes activated with Io+DMAP (parthenogenetic control).    
660

661

662 Figure captions

663 Figure 1. Micromanipulation technique for the production of ICSI embryos with sperm previously co-
664 incubated with COCs (Co-cult). A) Selection of sperm attached to cumulus cells (100X magnification). B) 
665 Immobilization of sperm with the injection pipette (200X). C) Mature oocyte prior to be injected with the 
666 selected sperm (200X).

667 Figure 2. COCs after 21 h of in vitro maturation under increasing Cys concentrations. 

668 Figure 3. Sperm acrosome membrane integrity assay. Sperm previously incubated in BO medium for 3 h with 
669 (Co-cult) or without COCs (BO) or just thawed (Thawed) and exposed to PI (red) and PNA/FITC (green). A) 
670 Sperm observed under bright field. The same sperm observed by fluorescence microscopy, positive for PI 
671 staining (B) and PNA/FITC probe (C). 200X magnification.  
672
673 Figure 4. ICSI blastocysts at day 7 of in vitro culture. Cys 1 ICSI: oocytes were IVM with 1 mM Cys before 
674 sperm injection. Cys 0.1 ICSI + co-cult: oocytes were IVM with 0.1 mM Cys and sperm were co-incubated 
675 with COCs for ≥ 3 h before sperm injection. Cys 0.1 ICSI: oocytes were IVM with 0.1 mM Cys before sperm 
676 injection (control). Cys 1 ICSI + co-cult: oocytes were IVM with 1 mM Cys and sperm were co-incubated 
677 with COCs for ≥ 3 h before sperm injection. 40X magnification.   
678
679 Figure 5. Relative quantification of mRNA by qPCR from ICSI blastocysts. a,b,c: different superscripts 
680 indicate significant difference (one-way ANOVA and LSD test, p ≤0.05). IFV: in vitro fertilized oocytes. 
681 White bars: fertilized/injected oocytes previously subjected to IVM in the presence of 0.1 mM Cys (controls). 
682 Black bars: injected oocytes previously subjected to IVM in the presence of 1 mM Cys. Co-cult: sperm co-
683 incubated with COCs for ≥3 h before ICSI. 
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