Accepted Manuscript

Improved embryo development using high cysteamine concentration during IVM and sperm co-culture with COCs previous to ICSI in bovine

Natalia Gabriela Canel, Mariana Suvá, Romina Jimena Bevacqua, María Elena Arias, Ricardo Felmer, Daniel Felipe Salamone

PII: S0093-691X(18)30218-8

DOI: 10.1016/j.theriogenology.2018.05.017

Reference: THE 14556

To appear in: Theriogenology

Received Date: 16 November 2017

Accepted Date: 15 May 2018

Please cite this article as: Natalia Gabriela Canel, Mariana Suvá, Romina Jimena Bevacqua, María Elena Arias, Ricardo Felmer, Daniel Felipe Salamone, Improved embryo development using high cysteamine concentration during IVM and sperm co-culture with COCs previous to ICSI in bovine, *Theriogenology* (2018), doi: 10.1016/j.theriogenology.2018.05.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Revised
2	Improved embryo development using high cysteamine concentration during IVM and
3	sperm co-culture with COCs previous to ICSI in bovine.
4	
5	Dr. Natalia Gabriela Canel _a , naty_canel@hotmail.com
6	Lic. Mariana Suvá _a , marianasuva@gmail.com
7	Dr. Romina Jimena Bevacqua _a , bevacqua@stanford.edu
8	Dr. María Elena Arias _b , mariascea@gmail.com
9	Dr. Ricardo Felmer _b ,rfelmerd@gmail.com
10	Ph.D. Daniel Felipe Salamone* _a , <u>salamone@agro.uba.ar</u>
11	
12	aLaboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av.
13	San Martín 4453, P.C. 1417, Buenos Aires, Argentina. _b Laboratorio de Reproducción, Centro de
14	Biotecnología de la Reproducción (CEBIOR-BIOREN), Universidad de La Frontera, Montevideo
15	0870, Temuco, Chile. *Corresponding author.
16 17 18	

19 Abstract

In contrast to other species, intracytoplasmic sperm injection (ICSI) in bovine remains
inefficient, resulting in low embryo developmental rates. It is unclear whether such
inefficiency is due to the poor response of bovine ooplasms to the injection stimulus, or to
the inability of bull sperm to induce oocyte activation. In order to facilitate these events,
two strategies were assessed: the use of high concentration of cysteamine [Cys] during
IVM; and the selection of sperm attached to cumulus cells after incubation with COCs for

26	ICSI. First, COCs were IVM with increasing [Cys] and subjected to IVF. Zygotes from all
27	groups were cultured under different O2 tensions and development to blastocyst was
28	evaluated. In a second experiment, sperm were co-cultured for 3 h with COCs and
29	acrosome reaction was studied. Afterwards, the best IVM and IVC conditions determined
30	on Experiment 1 were used for ICSI assay. COCs were matured for 21 h with 1 (Cys 1) or
31	0.1 mM Cys (Cys 0.1 groups, standard condition). In addition, COCs were incubated for \geq 3
32	h with 16x10 ⁶ sperm/ml and only sperm attached to cumulus cells were selected for ICSI
33	(ICSI + Co-cult groups). After chemical activation, embryos were cultured in SOF medium
34	under low O ₂ tension. Cleavage and blastocyst rates were evaluated at days 2 and 7 of IVC,
35	respectively. Finally, the relative expression of eight genes indicators of embryo quality
36	was compared between ICSI and IVF control blastocysts by qPCR. Cleavage rates were
37	higher for Cys 0.1 ICSI + Co-cult and Cys 1 ICSI + Co-cult groups (n=117, 92% and
38	n=116, 79%, respectively) compared to their controls (n=132, 60% for Cys 0.1 ICSI and
39	n=108, 52% for Cys 1 ICSI) (p \leq 0.05). Interestingly, the combined treatment (Cys 1 ICSI +
40	Co-cult) showed higher blastocyst rates than all other ICSI groups (23 vs. 11, 18 and 14%
41	for Cys 0.1 ICSI + Co-cult, Cys 1 ICSI, and Cys 0.1 ICSI, respectively) ($p \le 0.05$).
42	Moreover, incubation with COCs increased the rates of live acrosome reacted sperm
43	(p \leq 0.05). The relative abundance of mRNAs coding for <i>INF</i> τ , <i>CAT</i> , <i>DNMT1</i> , <i>OCT4</i> , and
44	<i>HDAC3</i> did not differ between treatments ($p \le 0.05$). <i>SOD2, HADC1</i> and <i>HADC2</i> expression
45	was higher for Cys 0.1 ICSI than for IVF embryos (p≤0.05). Group Cys 1 ICSI did not
46	differ from IVF for those three genes, neither did Cys 1 ICSI + Co-cult, except for HDAC1
47	(p \leq 0.05). In conclusion, the use of 1 mM Cys during IVM and of sperm incubated with
48	mature COCs might be a good strategy to improve ICSI outcomes in cattle.

Keywords: sperm injection, cumulus cells, pretreatment, *in vitro* maturation, oxygen
tension, gene expression.

51

52

53 **1. Introduction**

Since the first intracytoplasmic sperm injection (ICSI) performed in bovine [1], many 54 efforts have been made worldwide to improve in vitro embryo development and birth rates. 55 56 Despite the great advances achieved in terms of *in vitro* embryo production, ICSI in cattle continues being inefficient [reviewed by 2]. In this species, low embryo development 57 would be related to abnormal levels of sperm decondensation and pronuclei formation 58 observed after ICSI [3-6]. It is still unclear whether such inconsistencies are due to the 59 inability of bull sperm to induce complete oocyte activation, or to the poor response of 60 bovine ooplasms to the injection stimulus, which provokes an incorrect sperm head 61 decondensation. For this reason, several oocyte activation protocols and sperm 62 pretreatments have been developed, though with varying results [7-13]. The aim of this 63 work was to evaluate treatments that better resemble physiological processes occurring to 64 oocytes and sperm during fertilization, in order to facilitate ICSI embryo development. 65 Upon regular fertilization, the hypercondensed sperm chromatin decondenses resulting into 66 a male pronucleus. This complex process is mediated by the reduced glutathione (GSH), 67

68 which accumulates in the ooplasm during oocyte maturation [reviewed by 14]. After

69 fertilization, the endogenous GSH reduces the disulfide bonds of protamines from the

sperm nucleus, leading to their replacement by histones and allowing sperm chromatin

decondensation [15, 16]. For *in vitro* embryo production, 0.1 mM cysteamine (Cys) is 71 72 added to the *in vitro* maturation (IVM) medium as the main precursor of GSH [17]. For species with frequent fertilization failure after IVF, five fold Cys concentration has been 73 used to increase endogenous GSH levels into the oocvte, resulting in higher rates of 74 75 pronuclei formation [18, 19]. In bovine, while fertilization failure does not usually occur after IVF, it is highly frequent after ICSI [13, 20-22]. Thus, we propose the use of higher 76 concentrations of Cys during IVM to improve fertilization rates after ICSI in cattle. To this 77 aim, an IVF assay was initially performed to determine the highest concentration of Cys to 78 be used for *in vitro* maturation of COCs. Since Cys has an anti-oxidant action [23], high 79 and low O₂ tension were tested during *in vitro* culture of IVF embryos until the blastocyst 80 stage and the best combination of IVM and IVC conditions (Cys concentration and O₂ 81 tension, respectively) were used for ICSI assay. 82

Prior to in vivo fertilization, mammalian spermatozoa become capacitated in the female 83 84 reproductive tract, turning competent to undergo the acrosome reaction. It consists on the release of the acrosome content, which allows the sperm to penetrate the zona pellucida for 85 further fertilization. During acrosome reaction, the complex of membranes that surrounds 86 the sperm nucleus is removed, facilitating the entry of the sperm nucleus into the oocyte 87 [24]. The ICSI procedure bypasses these events and introduces additional membrane 88 barriers between sperm nucleus and ooplasm [25-27] that might be responsible for the 89 reduced developmental competence of the resulting embryos [26, 28, 29]. Recently, it was 90 suggested that in vitro matured bovine oocytes might be unable to decondense sperm that 91 92 have not suffered *in vivo* capacitation and acrosome reaction [22]. In addition, sperm interaction with cumulus cells was shown to increase acrosome reaction, sperm capacitation 93

94	and subsequent in vitro fertilization rates [30, 31]. For this reason, we intended to closely
95	mimic physiological processes that usually precede fertilization by allowing the interaction
96	of sperm with cumulus cells in a capacitating medium. After incubation, sperm that were
97	attached to cumulus cells were separated from COCs by aspiration with the injection
98	pipette and immediately used for ICSI.
99	In summary, this report intended to facilitate sperm decondensation after ICSI by means of
100	specific treatment of oocytes and sperm, by the supplementation of the IVM medium with
101	high Cys concentration and the incubation of sperm with COCs prior to ICSI. Results were
102	evaluated in terms of blastocyst production and quality of the generated blastocysts, based
103	on the relative expression of important developmental genes by qPCR.
10/	

104

2. Materials and Methods 105

Unless otherwise indicated, all chemicals were purchased from Sigma Chemical Company 106 (St. Louis, MO, USA). 107

108

Experimental design 2.1. 109

In Experiment 1, the maximum Cys concentration that could be supplemented on IVM 110

medium with no detrimental effects over blastocysts development was determined. COCs 111

- were in vitro matured under standard conditions (with 0.1 mM Cys) or with increasing 112
- concentrations of Cys (0.5, 1 and 10 mM) and IVF was performed. Embryos from all 113
- groups were cultured under low and high O2 tension. In Experiment 2, the effect of sperm 114

115 co-culture with COCs on sperm acrosome membrane integrity was studied. In Experiment 116 3, the best IVM and IVC conditions determined on Experiment 1 were used for ICSI assay. 117 The effect of sperm-COCs co-culture prior to ICSI on embryo development was evaluated. 118 In experiment 4, the quality of ICSI blastocysts was analyzed based on relative expression 119 of $INF\tau$, *CAT*, *SOD2*, *DNMT1*, *OCT4*, *HDAC1*, *HDAC2* and *HDAC3* genes.

120

2.2 Cumulus-oocyte complexes (COCs) collection and in vitro maturation (IVM) 121 COCs collection was performed as previously described by Canel et al. [32]. The 122 maturation medium was TCM-199 with Earle's salts (11150042; Gibco, NY, USA) 123 124 containing 10% v/v fetal bovine serum (FBS, Internegocios, Mercedes, Argentina), 1% v/v penicillin/streptomycin/Fungizone® (ATB/ATM, 15240-096; Gibco, NY, USA), 0.3 mM 125 sodium pyruvate (P2256) and 2 µg/ml Follicle Stimulating Hormone (FSH, NIH-FSH-P1, 126 127 Folltropin®, Bioniche, Australia). For Experiment 1, IVM medium was supplemented with 0.1, 0.5, 1 or 10 mM cysteamine (Cys, M9768). For Experiment 3, IVM medium was 128 supplemented with 0.1 or 1 mM Cys, depending on the groups. In all cases, groups of 20-129 22 COCs were randomly allocated in 100 µl droplets of IVM medium covered with mineral 130 oil (M8410) and incubated at 39°C in a humidified atmosphere of 6% CO₂ and 20% O₂ in 131 air. After 20-22 h of IVM, cumulus cells were removed from COCs by vortexing for 3 min 132 in 1 mg/ml hyaluronidase solution (H4272) and washed three times in Hepes-TALP [33]. 133 Oocvtes with an extruded first polar body (PB) were selected for ICSI or chemical 134 activation. 135

136

137 2.3 In vitro fertilization (IVF)

138	For IVF groups, COCs were matured in vitro for 21 h, washed in Hepes-TALP and
139	immediately co-incubated with sperm. The IVF procedure was previously described by
140	Brackett and Oliphant [34]. Briefly, frozen semen from two bulls was thawed in a 37°C
141	water bath for 30 sec. Sperm were washed twice by centrifugation at 490 X g for 5 min
142	with 5 ml of Brackett's defined medium. Sperm concentration was adjusted to 15×10^{6} /mL
143	in Brackett's fertilization (BO) medium and co-incubated for 5 h with groups of 20-22
144	COCs in 100 μ l droplets covered with mineral oil. Afterwards, presumptive zygotes were
145	vortexed for 30 to 60 sec and washed several times in Hepes-TALP and cultured in vitro as
146	described below.

147

148 2.4 Co-incubation of sperm with COCs (Co-cult) previous to ICSI

149	This procedure was	performed a	as was	explained i	n IVF	section,	with sligh	t differences.

150 Groups of 2-3 *in vitro* matured COCs were washed in TALP-H and placed in 20 µl droplets

- 151 containing 15x10⁶/mL sperm. The co-incubation of sperm and COCs (co-culture) was
- 152 carried out for a minimum of 3 h. Then, COCs were placed directly into a PVP droplet,
- 153 carrying the spermatozoa that were attached to the cumulus cells. These spermatozoa were
- aspirated with the ICSI pipette, then immobilized and finally injected into the cytoplasm of
- *in vitro* matured oocytes as explained in the following section (Figure 1).

156

After 21 h of IVM, sperm injection was performed in 100 µl droplets of Hepes-TALP 158 159 under mineral oil in 100 x 20 mm culture dishes (430,167; Corning, NY, USA), using hydraulic micromanipulators (Narishige, Medical Systems, Great Neck, NY, USA) 160 mounted on a Nikon Eclipse TE-300 microscope (Nikon, Melville, NY, USA), According 161 162 to the experimental group, spermatozoa or COCs previously incubated with sperm from two bulls were placed in a 2 µl droplet of 10% v/v polyvinylpyrrolidone (PVP, Irvine 163 Scientific, Santa Ana, CA, USA) in Hepes-TALP. Each spermatozoon was immobilized by 164 breaking its tail and aspirated tail-first into a 9 µM inner diameter injection pipette. The 165 injection pipette was transferred to a droplet containing MII oocytes, which were held by 166 negative pressure with a holding pipette, locating the polar body at the 6 or 12 o'clock 167 position. Immediately, sperm injection was performed by aspiration (until the breakage of 168 the oocyte membrane) and subsequent deposition of the spermatozoa and the previously 169 aspirated ooplasm inside the oocyte. Sham controls were injected with the medium used for 170 spermatozoa/COCs, but with no sperm, using a volume equivalent to that used for ICSI. A 171 parthenogenetic group (PA) was also included as a control of *in vitro* development. After 172 injection, all groups were subjected to chemical activation as described below. 173

174

175 2.6 Chemical activation

Sperm injected oocytes were treated with 5 µM ionomycin (I24222; Invitrogen, Carlsbad,
CA, USA) in Hepes-TALP for 4 min, followed by incubation for 3 h in TCM-199 medium
(to allow second polar body extrusion), and finally treated with 1.9 mM 6-DMAP (D2629)
diluted in TCM-199 medium for 3 h. In the case of PA control group, metaphase II oocytes

180	were treated with 6-DMAP immediately after ionomycin incubation to inhibit sec	ond polar
181	body extrusion. Afterwards, oocytes were thoroughly washed in Hepes-TALP and	d cultured
182	as described below.	

- 183
- 184 *2.7 In vitro culture (IVC) and determination of blastocyst cell number*

Activated oocytes and presumptive zygotes were cultured in 50 µl droplets of SOF medium 185 [35, 36] supplemented with 2.5% FBS, covered with mineral oil. Incubation was performed 186 at 39°C in a humidified atmosphere of 6% CO₂ and 5% O₂ in air for 7 days. For Experiment 187 1, some groups were incubated under an atmosphere of 6% CO₂ and 20% O₂ in air (high 188 189 oxygen tension condition). The number of cleaved embryos and blastocysts was evaluated at days 2 and 7 respectively, and 100% of the medium was replaced at days 2 and 5 of in 190 vitro development. Total cell number of IVF blastocysts was determined at day 7 of in vitro 191 192 development, by staining with 3 µg/ml of Hoechst Bisbenzimide 33342 (H33342: B-2261) for 10 min. Embryos were placed between a slide and a coverslip, and nuclei were 193 194 visualized and counted under an inverted epifluorescence microscope, using an excitation/emission wavelength of 350/461 nm. 195

196

197 2.8 Evaluation of acrosome membrane integrity

Sperm previously incubated in BO medium for 3 h with COCs (Co-cult group), without
COCs (BO group) or just thawed (Thawed group) were analyzed. In the case of co-cult
group, sperm attached to the cumulus cells were separated from COCs using an ICSI

201	pipette, as was performed prior to sperm injection. All groups were resuspended in 200 μl
202	of BO medium and incubated with 10 μ g/ml of the fluorescence probe peanut agglutinin
203	conjugated with fluorescein isothiocyanate (PNA/FITC, L7381) and 5 μ g/ml propidium
204	iodide (PI, P4170) for 15 min at 39°C in the dark. Then, samples were washed by
205	centrifugation at 490 X g for 5 min and the pellet was resuspended in 50 μl of BO medium
206	for evaluation of acrosome membrane integrity. Sperm samples used as PI positive controls
207	were treated with 0.8% (v/v) Triton X-100 (T-9284) in PBS for 15 min (Triton X group).
208	Sperm samples used as PNA/FITC positive controls were treated with 10 μ M ionomycin
209	for 45 min in the dark (Ionomycin group). All samples were placed between a glass slide
210	and a coverslip and observed under an epifluorescence microscope using excitation
211	wavelengths of 488 and 544 nm.

2

212

213 2.9 RNA extraction and real time PCR

-	
214	Pools of five expanded blastocysts from IVF, ICSI Control, Cys 1 ICSI + Co-cult and Cys
215	1 ICSI groups were kept in RNA Later® (AM 7020, Ambion, CA, USA) at -50°C until
216	RNA extraction. Total RNA was extracted using the commercial Pico Pure Isolation kit
217	(Arcturus, Carlsbad, CA, USA) and residual genomic DNA was removed by DNAsa I
218	digestion with the RNase-Free DNase Set kit (Qiagen, Valencia, CA, USA). Reverse
219	transcription was performed using the Revert Aid ™ H Minus First Strand kit (Thermo
220	Scientific Inc., Pittsburgh, PA, USA) and quantitative real-time PCR (qPCR) using the
221	Brilliant II SYBR Green QPCR masterbatch (Stratagene Agilent Technologies, Inc., Palo
222	Alto, CA, USA) and the Q-PCR MX3000PTM kit (Stratagene Agilent Technologies) in a

MX3000P thermocycler (Stratagene Agilent Technologies). Genes analyzed were IFN₇. 223 224 CAT, SOD2, DNMT1, OCT4, HDAC1, HDAC2 and HDAC3. A detailed table including gene accession numbers, primers and amplification products is included (Table 1). 225 Negative controls consisted on the same mix but substituting the cDNA with water, and run 226 227 in parallel with the samples. IVF blastocysts were used as calibrators and the values are shown as n times of relative difference with respect to the calibrator. Dissociation curves 228 were performed after each PCR run to ensure that a single PCR product had been amplified. 229 Quantification of relative mRNA expression levels was performed using the MXPro-230 MX300P Version 4.10 program (Stratagene Agilent Technologies), based on the $\Delta\Delta$ Ct 231 method and using the amplification efficiency of each gene as a correction factor [37]. As a 232 reference, the geometric average of YWHAZ and GAPDH were used, after being analyzed 233 with the geNorm Visual Basic program (Microsoft Excel). 234

235

236 2.10 Statistical analysis

237 Each experiment was repeated at least three times. Fisher's nonparametric analysis was performed to compare in vitro development and sperm membrane integrity results, with a 238 239 confidence interval of 95% of the data obtained using Graph Pad PRISM® software, 5.01 version. The mean cell number of blastocysts and standard deviation (SD) were compared 240 using the Kruskal-Wallis non-parametric test, with Dunn's correction for multiple 241 242 comparisons. For calculations of relative quantification of mRNAs, differences between 243 treatments in each experiment were determined by one-way ANOVA, after transforming the proportional data to its arc sine. In cases where significant differences were observed, 244

- the Least Significant Difference (LSD) test was used to determine the magnitude of the
- 246 differences. For Kruskal-Wallis non-parametric test and all other analyzes, a difference of p
- ≤ 0.01 and 0.05 were considered significant, respectively.

248

- 249 **3. Results**
- 3.1 Experiment 1: Effect of Cys concentration during IVM followed by IVC under low or
 high O₂ on development of IVF embryos.

The effect of increasing concentrations of Cys during IVM (0.5, 1 and 10 mM vs. 0.1 mM 252 control) on the development of IVF bovine embryos was evaluated (Figure 2). All these 253 treatments were combined with *in vitro* culture of embryos until the blastocyst stage under 254 255 high (20%) or low (5%) O₂ tension. Total cell number of blastocysts from all groups was determined. Results are detailed in Table 2. No detrimental effect over cleavage/blastocysts 256 rates and mean cell number of blastocysts was observed for COCs matured with 0.5 and 1 257 mM Cys when embryos were cultured under 5% O₂, nor for COCs matured with 0.5 mM 258 Cys and embryos cultured under 20% O_2 (p ≤ 0.05). However, a decline in cleavage and 259 blastocyst rates was observed after IVM with 10 mM Cys, using both high and low O₂ 260 tension during IVC. The same effect was observed when maturation was performed with 1 261 mM Cys and embryo culture under 20% O_2 (p ≤ 0.05). A decrease of mean cell number was 262 263 observed for blastocysts subjected to IVM with 1 and 10 mM Cys and IVC under 20% O₂ 264 compared to 0.1, 0.5 and 1 mM Cys groups, cultured under 5% O_2 (p \leq 0.01). On the basis of these results, 1 mM Cys and 5% O₂ were the conditions chosen for IVM and IVC of ICSI 265 266 assays.

2	C7	
,	h/	
~	υ,	

3.2 Experiment 2: Sperm acrosome membrane integrity after incubation with COCs

269	The effect of sperm incubation with COCs on sperm acrosome membrane integrity was
270	tested (Table 3, Figure 3). All treatments showed similar rates of live non-reacted and dead
271	reacted acrosome sperm (p \leq 0.05). Nonetheless, incubation with COCs (Co-cult group)
272	resulted in more live reacted and less dead non-reacted acrosome sperm, in comparison
273	with BO and Thawed groups ($p \le 0.05$). As expected, Triton X and Ionomycin positive
274	control groups showed the highest rates of dead non-reacted and live reacted acrosome
275	sperm, respectively ($p \le 0.05$).
276	
277	3.3. Experiment 3: ICSI after high Cys IVM and sperm-COCs co-incubation
278	Treatments on oocytes and sperm were evaluated for ICSI in bovine: IVM with 1 mM Cys
279	(Cys 1 ICSI group) and co-incubation of sperm with COCs for a minimum of 3 h (ICSI +
280	Co-cult group) before injection. In addition, both treatments were combined (Cys 1 ICSI +
281	Co-cult group). ICSI, Sham and PA control groups subjected to standard IVM conditions
282	were also included (ICSI, ICSI + Co-cult, Sham and PA Cys 0.1). All embryos were
283	cultured under low O ₂ tension. Results are summarized in Table 4. Cleavage rates were
284	higher for ICSI groups subjected to co-culture treatment (Cys 0.1 ICSI + Co-cult and Cys 1
285	ICSI + Co-cult groups) compared to their controls (Cys 0.1 ICSI and Cys 1 ICSI groups,
286	respectively) (p \leq 0.05). Interestingly, the combined treatment (Cys 1 ICSI + Co-cult)
287	showed higher blastocyst rates than all other ICSI groups (p≤0.05). See Figure 4.

289 3.4 Experiment 4: Gene expression analysis of ICSI blastocysts by qPCR

290	Since the combination of IVM with high Cys and the co-incubation of sperm-COCs
291	previous to ICSI improved both cleavage and blastocyst rates, the quality of blastocysts
292	generated with this treatment (Cys 1 ICSI + Co-cult group) was analyzed in terms of
293	relative expression of eight genes. Groups Cys 1 ICSI, Cys 0.1 ICSI and IVF were used as
294	controls. Real time PCR results are sown in Figure 4. No differences were found for the
295	relative abundance of mRNAs coding for <i>INF</i> _{\u03c4} , <i>CAT</i> , <i>DNMT1</i> , <i>OCT4</i> , and <i>HDAC3</i> between
296	groups (p \leq 0.05). However, <i>SOD2, HADC1</i> and <i>HADC2</i> expression was higher for Cys 0.1
297	ICSI compared to IVF embryos ($p \le 0.05$). On the other hand, <i>SOD2</i> and <i>HADC2</i> expression
298	did not differ between Cys 1 ICSI, Cys 1 Co-cult and IVF groups.

299

300 **4. Discussion**

Unlike other species, ICSI in cattle results in low blastocyst rates and poor quality embryos.
In this work, we increased the concentration of Cys during IVM, and sperm were incubated
with COCs prior to ICSI. This alternative protocol, designed to closer mimic physiological
conditions, avoids the use of harmful chemical agents that may damage the oocyte and
spermatozoa (ex. dithiothreitol, triton X-100, lysolecithin, methyl-β-cyclodextrin) [10, 12,
38, 39, 40], and improves *in vitro* development of ICSI bovine embryos.

307 In Experiment 1, the maximum Cys concentration that can be supplemented to the IVM

308 medium without showing a negative impact on blastocyst development was determined.

309 The addition of Cys to the maturation medium is known to increase GSH levels in mature

310 oocytes, and oocytes with higher GSH content show increased developmental competence

311	[17, 41, 42]. As well as reducing the disulfide bonds of protamines, GSH acts as a major
312	antioxidant within cells [43, 44]. For this reason we considered important to evaluate the
313	effect of increasing Cys concentration during IVM on embryo development, performing
314	IVC in more or less oxidative conditions (20% or 5% oxygen tension, respectively). For
315	this assay, embryos were produced by IVF and results indicate that Cys concentration
316	during IVM can be increased up to 1 mM, with no detrimental effects on embryo
317	development when IVC is performed under 5% O2 tension. Oppositely, their counterparts
318	cultured with 20% O_2 showed lower blastocyst rates and total cells number. This is
319	expected, since the physiologic environment where oocyte maturation and embryo
320	development take place are highly hypoxic [45]. When embryos are exposed to more
321	oxidative conditions, the electron donors and metabolic intermediates required for ATP
322	production are diverted to biosynthetic pathways supply and antioxidant defense
323	regeneration. Given that mitochondria are the only source of ATP for early embryos,
324	developmental competence becomes affected by the lower energy supply [46]. Regarding
325	to the maximum Cys concentration (10 mM) used during IVM, developmental rates
326	substantially decreased for both 5 and 20% O_2 tension culture conditions. This toxic effect
327	might be explained, at least in part, by the availability of NADPH. The activity of
328	glutathione reductase, which maintains most of glutathione molecules in its reduced state,
329	requires NADPH as electron donor. If the concentration of glutathione is excessive, the
330	availability of NADPH may not be enough for allowing glutathione reductase activity,
331	leading to the accumulation of glutathione in its oxidized form, thus increasing the
332	oxidative stress of the embryo. Moreover, glutathione transferases, which covalently link
333	reactive chemicals with GSH, cooperate with other systems for the detoxification of cells.
334	The excess of the components of one of these systems (such as GSH) might also affect the

functioning of the others, altering the redox state of the embryos, and even the expressionof certain genes [reviewed by 44].

337 In Experiment 2, the effect of co-incubation of sperm with COCs for 3 h (Co-cult) on sperm acrosome membrane integrity was analyzed. Cumulus cells have been proposed to 338 generate a microenvironment that is beneficial for the fertilizing sperm, to prevent the entry 339 340 of abnormal sperm into the oocyte, and to enrich the sperm population with capacitated and reacted spermatozoa [47, 30, 31]. Indeed, clinical studies indicate the use of cumulus cells 341 to select human spermatozoa before ICSI. It was reported that sperm populations that 342 manage to get through the cumulus cells show higher percentages of capacitated and 343 acrosome reacted sperm, beyond certain parameters of normality [48, 49]. In agreement 344 with those reports, our results show that the rates of live and acrosome reacted spermatozoa 345 increase after Co-cult treatment. Some authors have evidenced that the use of acrosome 346 reacted sperm for ICSI improves *in vitro* embryo development and implantation rates in 347 348 cattle and human, respectively [12, 28]. For all the exposed above, we employed the Cocult treatment for ICSI assay. 349

In Experiment 3, IVM was performed with 1 vs. 0.1 mM Cys and all ICSI embryos were in 350 vitro cultured under 5% O₂. In addition, IVM and IVC conditions were combined or not 351 352 with the injection of sperm subjected to Co-cult. Our results show that the Co-cult increases cleavage rates of ICSI embryos, independently of IVM conditions. This is expected since 353 certain structures of the intact sperm head were observed to obstruct sperm chromatin 354 355 decondensation after ICSI [50]. Additionally, the Co-cult method restricts the sperm selection to those that are able to interact and stay attached to cumulus cells, and to 356 357 maintain their motility for at least 3 h of incubation in a capacitating medium. Hence,

results from Experiments 2 and 3 suggest that the Co-cult treatment is not only enriching 358 359 the sperm population with acrosome reacted ones, but also with those sperm that would be selected by the cumulus cells on an IVF protocol, which ultimately might increase cleavage 360 rates. Nonetheless. Co-cult treatment only improved blastocyst rates when combined with 361 362 the previous maturation of COCs with 1 mM Cys. These results could be explained by the protamin content in the bovine sperm nucleus. While protamines P1 and P2 are found in 363 other species, only P1 is present in cattle, which displays higher affinity for DNA than P2 364 [51-53]. It provokes a greater degree of chromatin compaction that might interfere with the 365 development of ICSI embryos. However, by employing high [Cys] during IVM, competent 366 oocytes could increase their ability to synthesize GHS, facilitating the replacement of 367 sperm protamins by histones during the male pronucleus formation, resulting in better 368 embryo development. Following the line of this hypothesis, we can infer that even though 369 several changes on sperm physiology are needed to allow early development of bovine 370 ICSI embryos, other changes into the ooplasm must also occur, that are not well achieved 371 by current IVM systems. 372

Finally, the incidence of Cys 1 ICSI and Cys 1 ICSI + Co-cult treatments on relative 373 374 expression of eight genes from ICSI blastocysts was analyzed by qPCR. Treated ICSI groups were compared with ICSI and IVF control groups, for which COCs were matured 375 376 with 0.1 mM Cys and spermatozoa were not subjected to any pre-treatment (standard conditions). No differences were observed for $INF\tau$, OCT4 and DNMT1 expression 377 between groups, which might reflect capability of pregnancy maintenance and inner cell 378 379 mass/trophoectoderm number of cells ratio closer to those of IVF blastocysts [54-57, 6]. Arias et al. [6] reported overexpression of CAT and SOD2 in ICSI bovine embryos. In our 380

381	hands, while ICSI control group overexpressed SOD2, this effect was reversed by both Cys
382	1 ICSI and Cys 1 ICSI + Co-cult treatments, reflecting a better regulated oxidative state of
383	embryos [58]. A similar observation was detected for HDAC1 and HDAC2 expression,
384	whereas HDAC3 did not differ between groups. The expression of HDAC genes in ICSI
385	bovine embryos had not been studied so far. They code for enzymes implicated in histone
386	acethylation, which can induce transcriptional repression [59, 60]. Since level of these
387	transcripts is expected to decrease after embryo genome activation [61], our results suggest
388	an epigenetic profile less altered by <i>in vitro</i> production system for both ICSI treatments
389	using 1 mM Cys concentrations.
390	4.1 Conclusions
391	The addition of high concentrations of Cys during IVM and co-incubation of sperm with
392	COCs previous to injection improves in vitro development of ICSI bovine embryos, when
393	IVC is performed under low O_2 tension. This work evidences the need to study the changes

that both male and female gametes suffer before fertilization under physiological

395 conditions. This would allow the design of novel protocols, not only for sperm preparation,

but also for improving IVM and IVC, in order to facilitate the development of ICSI

397 embryos in cattle.

398

399 Authorship

N.G.C. performed oocyte collection and *in vitro* maturation, IVF, ICSI, the experimental
design, data analysis, and manuscript writing. M.S. and R.B. took part in ICSI protocols,
study design, manuscript drafting, critical discussion and data analysis. N.G.C. and M.S.

403 performed sperm membrane integrity analysis. M.E.A. performed RNA extraction and

404 qPCR. M.E.A. and R.F. were involved in qPCR experimental design and analyzed the data.

405 D.S. was in charge of research coordination, contributed to the experimental design, critical

406 discussion and manuscript editing and submission. All the authors revised and accepted the

- 407 draft version of the manuscript.
- 408

409 Funding

410 This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica

411 from the Ministry of Science and Technology of Argentina (PICT-2010-2716 grant).

412

413 **Conflict of interest**

414 None.

415

416 Acknowledgments

- 417 We thank to Dr. Ariel Ahumada for the enriching discussion of the results and the great
- 418 contribution of ideas to carry out this work. We also thank to Frigorifico I.F.S.S.A (Loma
- 419 Hermosa) and CIALE for generously providing the biological material.

420

421 Rererences

422	[1]Westhusin ME, Anderson JG, Harms PG, Kraemer DC. Microinjection of
423	spermatozoa into bovine eggs. Theriogenology 1984; 21: 274.
424	[2]Salamone DF, Canel NG, Rodríguez MB. ICSI in domestic and wild mammals.
425	Reproduction 2017;154: 111-124. doi: 10.1530/REP-17-0357.
426	[3] Rho GJ, Kawarsky S, Johnson WH, Kochhar K, Betteridge KJ. Sperm and oocyte
427	treatments to improve the formation of male and female pronuclei and subsequent
428	development following intracytoplasmic sperm injection into bovine oocytes. Biol
429	Reprod 1998; 59: 918-24.
430	[4]Chung JT, Keefer CL, Downey BR. Activation of bovine oocytes following
431	intracytoplasmic sperm injection (ICSI). Theriogenology 2000; 53: 1273-84. doi:
432	10.1016/S0093-691X(00)00271-5
433	[5]Malcuit C, Maserati M, Takahashi Y, Page R, Fissore RA. Intracytoplasmic sperm
434	injection in the bovine induces abnormal [Ca2+] i responses and oocyte activation.
435	Reprod Fertil Dev 2006; 18: 39–51.
436	[6]Arias ME, Risopatrón J, Sánchez R, Felmer R. Intracytoplasmic sperm injection
437	affects embryo developmental potential and gene expression in cattle. Reprod Biol
438	2015; 15: 34-41. doi: 10.1016/j.repbio.2014.11.001.
439	[7]Galli C, Vassiliev I, Lagutina I, Galli A, Lazzari G. Bovine embryo development
440	following ICSI: effect of activation, sperm capacitation and pre-treatment with
441	dithiothreitol. Theriogenology 2003; 60: 1467-80.

442	[8]Bevacqua RJ, Pereyra-Bonnet F, Fernandez-Martin R, Salamone DF. High rates of
443	bovine blastocyst development after ICSI-mediated gene transfer assisted by
444	chemical activation. Theriogenology 2010; 74: 922-31. doi:
445	10.1016/j.theriogenology.2010.04.017.
446	[9]Devito LG, Fernandes CB, Blanco ID, Tsuribe PM, Landim-Alvarenga FC. Use of a
447	Piezo drill for intracytoplasmic sperm injection into cattle oocytes activated with
448	ionomycin associated with roscovitine. Reprod Domest Anim 2010; 45: 654-8. doi:
449	10.1111/j.1439-0531.2008.01323.x.
450	[10] Sekhavati MH, Shadanloo F, Hosseini MS, Tahmoorespur M, Nasiri MR, Hajian M,
451	et al. Improved bovine ICSI outcomes by sperm selected after combined heparin-
452	glutathione treatment. Cell Reprogr 2012; 14: 295-304. doi: 10.1089/cell.2012.0014.
453	[11] Arias ME, Sanchez R, Risopatrón J, Perez L, Felmer R. Effect of sperm
454	pretreatment with sodium hydroxide and dithiothreitol on the efficiency of bovine
455	intracytoplasmic sperm injection. Reprod Fertil Dev 2014; 26: 847-854. doi:
456	10.1071/RD13009.
457	[12] Zambrano F, Aguila L, Arias ME, Sánchez R, Felmer R. Improved preimplantation
458	development of bovine ICSI embryos generated with spermatozoa pretreated with
459	membrane-destabilizing agents lysolecithin and Triton X-100. Theriogenology 2016;
460	86: 1489-97. doi: 10.1016/j.theriogenology.2016.05.007.
461	[13] Canel NG, Bevacqua RJ, Hiriart MI, Rabelo NC, de Almeida Camargo LS,
462	Romanato M, et al. Sperm pretreatment with heparin and l-glutathione, sex-sorting,

463	and double cryopreservation to improve intracytoplasmic sperm injection in bovine.
464	Theriogenology 2017; 93: 62-70. doi: 10.1016/j.theriogenology.2016.12.018.
465	[14] Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol 2005; 5: 5-
466	17.
467	[15] Perreault SD, Barbu RR, Slott VL. Importance of glutathione in the acquisition and
468	maintenance of sperm nuclear decondensing activity in maturing hamster oocytes.
469	Dev Biol 1988; 125: 181-186.
470	[16] Sutovsky P, Schatten G. Depletion of glutathione during bovine oocyte maturation
471	reversibly blocks the decondensation of the male pronucleus and pronuclear
472	apposition during fertilization. Biol Reprod 1997; 56: 1503-12.
473	[17] De Matos DG, Furnus CC. The importance of having high glutathione (GSH) level
474	after bovine in vitro maturation on embryo development: effect of bmercaptoethanol,
475	cysteine and cystine. Theriogenology 2000; 53:761-71.
476	[18] Grupen CG, Nagashima H, Nottle MB. Cysteamine enhances in vitro development
477	of porcine oocytes matured and fertilized in vitro. Biol Reprod 1995; 53: 173-8.
478	[19] Curnow EC, Ryan JP, Saunders DM, Hayes ES. Oocyte glutathione and fertilisation
479	outcome of Macaca nemestrina and Macaca fascicularis in in vivo- and in vitro-
480	matured oocytes. Reprod Fertil Dev 2010; 22: 1032-40.
481	[20] Li X, Hamano K, Qian XQ, Funauchi K, Furudate M, Minato Y. Oocyte activation
482	and parthenogenetic development of bovine oocytes following intracytoplasmic
483	sperm injection. Zygote 1999; 7: 233-7.

484	[21] Suttner R, Zakhartchenko V, Stojkovic P, Muller S, Alberio R, Medjugorac I, et al.
485	Intracytoplasmic sperm injection in bovine: effects of oocyte activation, sperm
486	pretreatment and injection technique. Theriogenology 2000; 54: 935-948. doi:
487	10.1016/S0093-691X(00)00403-9.
488	[22] Águila L, Felmer R, Arias ME, Navarrete F, Martin-Hidalgo D, Lee HC, et al.
489	Defective sperm head decondensation undermines the success of ICSI in the bovine.
490	Reproduction 2017; 154: 207-218. doi: 10.1530/REP-17-0270.
491	[23] Deleuze S, Goudet G. Cysteamine supplementation of in vitro maturation media: a
492	review. Reprod Domest Anim 2010; 45:e476-82. doi: 10.1111/j.1439-
493	0531.2010.01587.x.
494	[24] Knobil E, Nelly JD. Fertilization in mammals. In Wassarman PM, Albertili DF,
495	editors. The physiology of reproduction, New York: Ed. Raven Press; 1994, p. 55-
496	112.
497	[25] Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote:
498	fertilization after sperm-egg fusion. Int Rev Cytol 2000; 195: 1-65.
499	[26] Morozumi K, Shikano T, Miyazaki S, Yanagimachi R. Simultaneous removal of
500	sperm plasma membrane and acrosome before intracytoplasmic sperm injection
501	improves oocyte activation/embryonic development. Proc Natl Acad Sci U S A 2006;
502	103: 17661-6.
503	[27] Roldan ER. Better intracytoplasmic sperm injection without sperm membranes and
504	acrosome. Proc Natl Acad Sci USA 2006; 103: 17585-6.

505	[28] Gianaroli L, Magli MC, Ferraretti AP, Crippa A, Lappi M, Capitani S, Baccetti B.
506	Birefringence characteristics in sperm heads allow for the selection of reacted
507	spermatozoa for intracytoplasmic sperm injection. Fertil Steril 2010; 93: 807-813.
508	doi: 10.1016/j.fertnstert.2008.10.024
509	[29] Yanagimachi R. Problems of sperm fertility: a reproductive biologist's view. Syst
510	Biol Reprod Med 2011; 57: 102-14. doi: 10.3109/19396368.2010.507860.
511	[30] Hong SJ, Chiu PC, Lee KF, Tse JY, Ho PC, Yeung WS. Cumulus cells and their
512	extracellular matrix affect the quality of the spermatozoa penetrating the cumulus
513	mass. Fertil Steril 2009; 92: 971-8.
514	[31] Shimada M, Mihara T, Kawashima I, Okazaki T. Anti-bacterial factors secreted
515	from cumulus cells of ovulated COCs enhance sperm capacitation during in vitro
516	fertilization. Am J Reprod Immunol 2013; 69: 168-79.
517	[32] Canel N, Bevacqua R, Hiriart MI, Salamone D. Replication of somatic micronuclei
518	in bovine enucleated oocytes. Cell Div 2012; 7: 23-43. doi: 10.1186/1747-1028-7-23.
519	[33] Bavister BD, Yanaguimachi R. The effects of sperm extracts and energy sources on
520	the motility and acrosome reaction of hamster spermatozoa in vitro. Biol Reprod
521	1977; 16: 228-237.
522	[34] Brackett B, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod
523	1975; 12: 260-74.
524	[35] Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and
525	cattle ova. J Reprod Fertil 1972; 30: 493-7.

526	[36] Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst
527	development in a static in vitro production system using SOFaa medium
528	supplemented with sodium citrate and myo-inositol with or without serum-proteins.
529	Theriogenology 1999; 52: 683-700.
530	[37] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
531	quantitative PCR and the 2(-Delta Delta C(T)) Method Methods 2001; 25: 402–8.
532	doi: 10.1006/meth.2001.1262.
533	[38] Lee JW, Yang X. Factors affecting fertilization of porcine oocytes following
534	intracytoplasmic injection of sperm. Mol Reprod Dev 2004; 68: 96-102. doi:
535	10.1002/mrd.20044
536	[39] Watanabe H, Suzuki H, Fukui Y. Fertilizability, developmental competence, and
537	chromosomal integrity of oocytes microinjected with pre-treated spermatozoa in
538	mice. Reproduction 2010; 139: 513-21. doi: 10.1530/REP-09-0270
539	[40] Águila L, Arias ME, Vargas T, Zambrano F, Felmer R. Methyl-β-cyclodextrin
540	improves sperm capacitation status assessed by flow cytometry analysis and zona
541	pellucida-binding ability of frozen/thawed bovine spermatozoa. Reprod Domest
542	Anim. 2015; 50: 931-8. doi: 10.1111/rda.12611.
543	[41] Jiao GZ, Cao XY, Cui W, Lian HY, Miao YL, Wu XF, et al. Developmental
544	potential of prepubertal mouse oocytes is compromised due mainly to their impaired
545	synthesis of glutathione. PLoS One 2013; 8: e58018. doi:
546	10.1371/journal.pone.0058018.

547	[42] Deleuze S, Goudet G. Cysteamine supplementation of in vitro maturation media: a
548	review. Reprod Domest Anim. 2010; 45: e476-82. doi: 10.1111/j.1439-
549	0531.2010.01587.x.
550	[43] Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione
551	synthesis. Free Radic Biol Med 1999; 27: 922-35.
552	[44] Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and
553	antioxidants in ovarian toxicity. Biol Reprod 2012; 86: 27. doi:
554	10.1095/biolreprod.111.095224.
555	[45] Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus
556	monkeys, hamsters and rabbits. J Reprod Fertil 1993; 99: 673-9.
557	[46] Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K. Mitochondrial
558	function and redox state in mammalian embryos. Semin Cell Dev Biol 2009; 20: 346-
559	53.
560	[47] Van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus
561	oophorus before and during mammalian fertilization. Reprod Domest Anim 2002; 37:
562	144-51.
563	[48] Rijsdijk M, Franken DR. Use of the capillary-cumulus oophorus model for
564	evaluating the selection of spermatozoa. Fertil Steril 2007; 88: 1595-602.
565	[49] Franken DR, Bastiaan HS. Can a cumulus cell complex be used to select
566	spermatozoa for assisted reproduction? Andrologia 2009; 41: 369-76. doi:
567	10.1111/j.1439-0272.2009.00938.x.

568	[50] Ramalho-Santos J, Simerly CR, Hewitson L, Schatten G. Acrosome components
569	after intracytoplasmic sperm injection: the decondensation frontier. Fertil Steril 2001;
570	76: 196–7.
571	[51] Maier WM, Nussbaum G, Domenjoud L, Klemm U, Engel W. The lack of
572	protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene.
573	Nucleic Acids Research 1990; 18: 1249–1254.
574	[52] Brewer L, Corzett M, Lau EY, Balhorn R. Dynamics of protamine 1 binding to
575	single DNA molecules. J Biol Chem 2003; 278: 42403-8. doi:
576	10.1074/jbc.M303610200
577	[53] Sanchez MC, Sedo CA, Julianelli VL, Romanato M, Calvo L, Calvo JC, et al.
578	Dermatan sulfate synergizes with heparin in murine sperm chromatin decondensation.
579	Syst Biol Reprod Med 2013; 59: 82-90. doi: 10.3109/19396368.2012.756952.
580	[54] Flint AP, Parkinson TJ, Stewart HJ, Vallet JL, Lamming GE. Molecular biology of
581	trophoblast interferons and studies of their effects in vivo. J Reprod Fertil Suppl
582	1991; 43:13-25.
583	[55] Van Eijk MJ, Van Rooijen MA, Modina S, Scesi L, Folkers G, van Tol HT, et al.
584	Molecular cloning, genetic mapping, and developmental expression of bovine
585	POU5F1. Biol Reprod 1999; 60: 1093-103.
586	[56] Yin LJ, Zhang Y, Lv PP, He WH, Wu YT, Liu AX, et al. Insufficient maintenance
587	DNA methylation is associated with abnormal embryonic development. BMC Med
588	2012; 10: 26. doi: 10.1186/1741-7015-10-26.

589	[57] Rodina, TM, Cooke, FN, Hansen, PJ, Ealy, AD. Oxygen tension and medium type
590	actions on blastocyst development and interferon-tau secretion in cattle. Anim Reprod
591	Sci 2009; 111: 173-88. doi: 10.1016/j.anireprosci.2008.02.014.
592	[58] Cebrian-Serrano A, Salvador I, García-Roselló E, Pericuesta E, Pérez-Cerezales S,
593	Gutierrez-Adán A, et al. Effect of the bovine oviductal fluid on in vitro fertilization,
594	development and gene expression of in vitro-produced bovine blastocysts. Reprod
595	Domest Anim 2013; 48: 331-8. doi: 10.1111/j.1439-0531.2012.02157.x
596	[59] Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and
597	transcription? Cell 1997; 89: 325–328.
598	[60] Wolffe AP. Transcriptional control. Sinful repression. Nature 1997; 387: 16–17.
599	[61] McGraw S, Robert C, Massicotte L, Sirard MA. Quantification of histone
600	acetyltransferase and histone deacetylase transcripts during early bovine embryo
601	development. Biol Reprod 2003; 68: 383-9.
602	[62] Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H et al.
603	Expression pattern of Oct-4 in preimplantation embryos of different species. Biol
604	Reprod 2000; 63,1698–1705.
605	[63] Vigneault C, McGraw S, Massicotte L, Sirard MA. Transcription factor expression
606	patterns in bovine in vitro-derived embryos prior to maternal-zygotic transition. Biol
607	Reprod. 2004; 70(6):1701-9. doi: 10.1095/biolreprod.103.022970

608	[64] Li J, Lin Q, Wang W, Wade P, Wong J. Specific targeting and constitutive
609	association of histone deacetylase complexes during transcriptional repression. Genes
610	Dev 2002; 16: 687-92. doi: 10.1101/gad.962502
611	[65] Zhou W, Sadeghieh S, Abruzzese R, Uppada S, Meredith J, Ohlrichs C, et al.
612	Transcript levels of several epigenome regulatory genes in bovine somatic donor cells
613	are not correlated with their cloning efficiency. Cloning Stem Cells 2009; 11: 397-
614	405. doi: 10.1089/clo.2009.0016.
615	[66] Smolkina Z, Karus A. Bovine GAPDH expression using real-time RT-PCR. Vet
616	Med Zoot 2004; 27: 94–100.
617	
618	
619	
620	
621	Q
622	
623	
624	
625	
626	

627 Table 1. Analyzed genes, sequence of specific primers, product size and access source in

628 GenBank.

Gene	Abbreviation	Primer sequence (5'-3')	Product size (bp)	GeneBank
Interferon tau	$IFN au^a$	TGGCCCTGGTGCTGGTCAGC TCATTCGGGCCAGGAGCCTG	108	XM_001250591
Catalase	CAT ^b	ACCCTCGTGGCTTTGCAG ACTCAGGACGCAGGCTCC	192	NM_001035386.
Mn-superoxide dismutase of the mitochondria	SOD2 ^c	ACCTCAACGTCGCCGAGG CCAACCGGAGCCTTGGAC	260	L22092.1
Dimethyltransferase 1	DNMT1 ^d	CGCATGGGCTACCAGTGCACCTT GGGCTCCCCGTTGTATGAAATCT	312	X63692
Octamer-binding transcription factor 4	OCT4 ^e	GGTTCTCTTTGGAAAGGTGTTC ACACTCGGACCACGTCTTTC	314	AF022987
Histone deacetylase 1	HDAC1 ^f	GGCTCTGACTCCTTGTCTGG GCATAGGCAGGTTGAAGCTC	103	AY504948
Histone deacetylase 2	HDAC2 ^g	ACAGGGTCATCCCATGAAAC TTCTTCGGCAGTGGCTTTAT	115	AY504949
Histone deacetylase 3	HDAC3 ^h	ATCTGGATGGAGCGTGAAGT GTGGCTACACTGTCCGGAAT	137	AY504950
Tyrosine 3-monooxygenase/ tryptophan 5-monooxygenase activating zeta protein	YWHAZ ⁱ	GCATCCCACAGACTATTTCC GCAAAGACAATGACAGACCA	120	BM446307
Glyceraldehyde 3-phosphate dehydrogenase	GAPDH	GGAGCCAAACGGGTCATCATCTC GAGGGGCCATCCACAGTCTTCT	223	XM_583628

630 ^{b,c}Mitochondrial enzymes with important role as antioxidant defense of the cells [44].

^dDimethyltransferase involved in epigenetic regulation of pluripotency and cell differentiation [61].

632 ^eTranscription factor involved in embryonic stem cell pluripotency [62, 63].

633 ^{f,g,h}Enzymes involved in transcriptional repression through histone acetilation [64, 65].

- 634 ^{i,j}Housekeeping genes used as a reference [6,66].
- 635

636	- A
637	\mathbf{G}
638	Y
639	V

ACCEPTED MANU

O ₂ tension	[Cys]	Ν	Cleavage (%)	Blastocysts (%)	Mean cell n° ± SD
Low (5%)	0.1 mM	139	115 (82.73) ^{ac}	52 (37.41) ^a	131±41 (n=22) ^a
	0.5 mM	135	107 (79.26) ^{ac}	44 (32.59) ^{ab}	123±53 (n=43) ^a
	1 mM	153	119 (77.78) ^{ac}	63 (41.18) ^a	120±42 (n=28) ^a
	10 mM	116	15 (12.93) ^b	4 (3.45)°	85±20 (n=4) ^{ab}
High (20%)	0.1 mM	140	107 (76.43) ^{ac}	55 (39.29) ^a	98±42 (n=32) ^{ab}
	0.5 mM	158	135 (85.44) ^a	64 (40.51) ^a	99±39 (n=34) ^{ab}
	1 mM	107	80 (74.77) ^c	26 (24.3) ^b	72±36 (n=18) ^b
	10 mM	112	19 (16.96) ^b	10 (8.93) ^c	64±14 (n=10) ^b

n

640 Table 2. Effect of high cysteamine (Cys) concentrations during <i>in vitro</i> matur	ation on
---	----------

641 development of bovine IVF	embryos, using low	or high O_2 tension.
-------------------------------	--------------------	------------------------

^{a,b,c}: different superscripts in the same column indicate significant difference (Fisher's exact test, $p \le 0.05$ for 642 cleavage and blastocyst rates; Kruskal-Wallis non-parametric test with Dunn's correction for multiple 643 644 comparisons, $p \le 0.01$ for mean cell $n^\circ \pm SD$).

645

646

Table 3. Effect of incubation with COCs on sperm acrosome membrane integrity. 647

Treatments	N	% Live, non reacted acrosome (PI-/PNA-)	% Dead, non reacted acrosome (PI+/PNA-)	% Live, reacted acrosome (PI-/PNA+)	% Dead, reacted acrosome (PI+PNA+)
Co-cult	271	16.6ª	21.03ª	27.31°	35.06
BO 3h	361	21.6ª	35.46 ^b	6.93 ^a	36.01
Thawed	503	19.48 ª	29.22 ^b	11.33 ^b	39.96
Triton X	439	31.44 ^b	68.56°	-	-
Ionomicyn	537	18.62 ^a	-	81.38 ^d	-

^{a,b,c,d}: different superscripts in the same column indicate significant difference (Fisher's exact test, $p \le 0.05$). 648

Sperm previously incubated in BO medium for 3 h with (Co-cult) or without COCs (BO) or just thawed 649 650 (Thawed) and exposed to PI and PNA/FITC. Triton X: PI positive controls. Ionomycin: PNA/FITC positive 651 controls.

652

[Cys] on IVM	Groups	Ν	Cleavage (%)	Blastocysts (%)
1 mM	ICSI + Co-Cult	116	92 (79.31) ^a	27 (23.28) ^a
	ICSI	108	56 (51.85) ^b	19 (17.59) ^b
0.1 mM	ICSI + Co-Cult	117	107 (91.45) ^c	13 (11.11) ^b
	ICSI	132	79 (59.85) ^b	18 (13.64) ^b
0.1 mM	Sham	106	94 (88.68) ^c	22 (20.75) ^{ab}
(controls)	PA	144	138 (95.83) ^c	88 (61.11) ^c

Table 4. Effect of 1 mM cysteamine (Cys) during IVM and sperm co-incubation with 653

654	COCs pr	evious to	ICSI	over in	vitro	embryo	development	•
-----	---------	-----------	------	---------	-------	--------	-------------	---

655 ^{a,b,c}: different superscripts in the same column indicate significant difference (Fisher's exact test, $p \le 0.05$). 656 1 mM and 0.1 mM groups: COCs were IVM in the presence of 1 mM or 0.1 mM Cys (standard condition) before ICSI. ICSI + Co-cult groups: sperm were co-incubated with COCs for \geq 3 h before intracytoplasmic 657 658 injection. Sham: oocytes injected with an equivalent volume of the medium used for spermatozoa and 659 activated with Io+3h+DMAP. PA: oocytes activated with Io+DMAP (parthenogenetic control). 660

661

Figure captions 662

663 Figure 1. Micromanipulation technique for the production of ICSI embryos with sperm previously co-664 incubated with COCs (Co-cult). A) Selection of sperm attached to cumulus cells (100X magnification). B) 665 Immobilization of sperm with the injection pipette (200X). C) Mature oocyte prior to be injected with the 666 selected sperm (200X).

667 Figure 2. COCs after 21 h of *in vitro* maturation under increasing Cys concentrations.

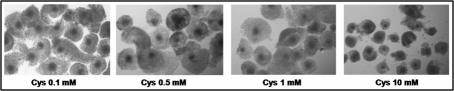
668 Figure 3. Sperm acrosome membrane integrity assay. Sperm previously incubated in BO medium for 3 h with 669 (Co-cult) or without COCs (BO) or just thawed (Thawed) and exposed to PI (red) and PNA/FITC (green). A) 670 Sperm observed under bright field. The same sperm observed by fluorescence microscopy, positive for PI staining (B) and PNA/FITC probe (C). 200X magnification. 671

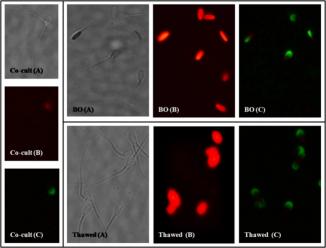
672

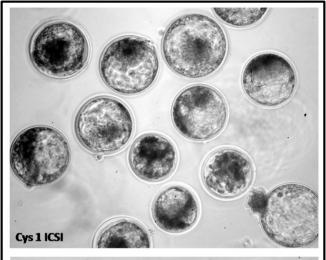
673 Figure 4. ICSI blastocysts at day 7 of in vitro culture. Cys 1 ICSI: oocytes were IVM with 1 mM Cys before 674 sperm injection. Cys 0.1 ICSI + co-cult: oocytes were IVM with 0.1 mM Cys and sperm were co-incubated 675 with COCs for \geq 3 h before sperm injection. Cys 0.1 ICSI: oocytes were IVM with 0.1 mM Cys before sperm 676 injection (control). Cys 1 ICSI + co-cult: oocytes were IVM with 1 mM Cys and sperm were co-incubated with COCs for \geq 3 h before sperm injection. 40X magnification. 677

678

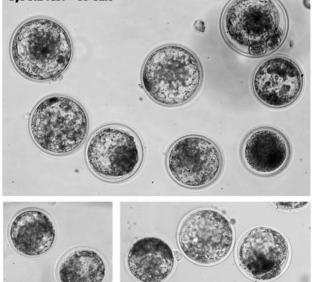
Figure 5. Relative quantification of mRNA by qPCR from ICSI blastocysts. a.b.c: different superscripts 679

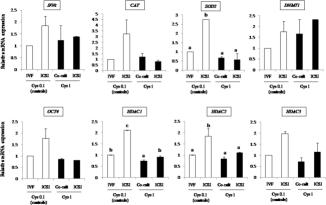

680 indicate significant difference (one-way ANOVA and LSD test, $p \le 0.05$). IFV: *in vitro* fertilized oocytes.


681 White bars: fertilized/injected oocytes previously subjected to IVM in the presence of 0.1 mM Cys (controls).


682 Black bars: injected oocytes previously subjected to IVM in the presence of 1 mM Cys. Co-cult: sperm co-

incubated with COCs for \geq 3 h before ICSI. 683





Cys 0.1 ICSI + co-cult

Cys 0.1 ICSI

Cys1 ICSI + co-cult

