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ABSTRACT 

New types of biodegradable nanocarriers for drug delivery were prepared using casein 

(CAS) micelles as particle templates and glyceraldehyde (GAL) as a crosslinking agent. 

We found that highly crosslinked casein micelles (CCM) maintained their structural 

integrity at pH 7.4 (plasma conditions) but were easily degraded in the presence of 

proteases at pH 5 (lysosomal conditions). Nile red (NR) was chosen as a hydrophobic 

model drug inspired by the natural role of casein as lipophilic nutrient nanotransporter. 

The cumulative release of the NR-loaded micelles showed marginal dye leakage at pH 

7.4 but was significantly accelerated by protease and pH−mediated degradation of the 

nanocarriers in a dual-responsive fashion. The prepared nanocarriers possess many 

favorable features for drug delivery: excellent biocompatibility and biodegradability, 

high stability in physiological conditions, remarkable capacity for the encapsulation of 

hydrophobic drugs, minimal drug leakage under extracellular conditions, and rapid drug 

release in response to the endo-lysosomal levels of pH and proteases. In this regard, the 

prepared CCM represent a promising candidate for the delivery and triggered release of 

anti-cancer drugs in lysosomal environments.  

 

Keywords: protein carriers, casein micelles, drug delivery, nanocarriers, cancer therapy.  
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1. Introduction  

Over the last years, the development of nanoparticles based on bio-polymers for 

application as drug delivery systems (DDS) has gained attention due to their intrinsic 

biocompatibility and biodegradability compared with nanoparticles based on synthetic 

polymers.1–4 In particular, the preparation of protein-based nanocarriers for their 

utilization as DDS is an area of growing interest.5–10 In addition to biodegradability and 

biocompatibility, proteins have an interesting variety of easily modifiable functional 

groups such as carboxylic acids (glutamic or aspartic acid), amines (lysine and arginine) 

and thiols (cysteine) in their primary structure. These groups provide a great variety of 

crosslinking points for network formation and stabilization,11 polymer conjugation,12,13 

nanoparticle modification/functionalization with target molecules14,15 or drug binding 

via chemical,16 hydrophobic,17 or ionic bonds18 among others.  

Casein (CAS) is a nutritive milk protein with excellent biocompatibility, 

biodegradability, and high abundance. These properties characterize CAS as an 

attractive bio-polymer for the development of novel, pharmaceutical materials.19,20 The 

intrinsic property of CAS to form micelles in aqueous solution in the presence of Ca2+ 

ions offers a template for the formation of nanocarriers. CAS micelles are spherical 

colloids of 50–500 nm in diameter and have an hydrophobic core formed by αs1-casein, 

αs2-casein, and β-casein, all of them bearing phosphoserine residues able to form strong 

ionic bonds with Ca2+ ions, and an hydrophilic shell of κ-casein as steric and 

electrostatic stabilizer.21,22 According to these assembly properties, CAS micelles could 

be natural micellar nanocarriers for the transport of hydrophobic drugs to tumor tissue 

by passive targeting as well as for the internalization and controlled drug release.20 Non-

crosslinked micelles of CAS have previously been prepared for the entrapment, 

protection, and delivery of hydrophobic compounds such as curcumin,23–25 
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ergocalciferol (vitamin D2),26 docosahexaenoic acid,27 and meloxicam28 among others. 

In addition, non-crosslinked CAS nanoparticles stabilized by lysine or arginine were 

recently designed for oral delivery of folic acid.29 However, when non-covalently 

crosslinked micelles are used as drug carrier, the high dilution after injection in the 

bloodstream would lead to micelle dissociation and a premature drug release. To avoid 

the dissociation, the functionalities of CAS could provide anchoring points for the 

preparation of crosslinked structures using different chemical processes after micelle 

formation in order to obtain stable crosslinked casein micelles (CCM) that are suitable 

for systemic administration. In addition, the lack of a rigid, three-dimensional, and 

tertiary conformation of CAS causes it to be heat stable. Therefore it can be used in 

crosslinking processes at high temperatures.21  

Different chemical routes have been evaluated for the preparation of crosslinked casein 

micelles (CCM), e.g., natural crosslinkers such as genipin and transglutaminase were 

used for the formation of stable CCM.30–33 Moreover, sodium polyphosphate was used 

as ionic crosslinker of CAS micelles which were employed as carriers of flutamide for 

cancer therapy.34 Despite several reports about the preparation of CCM, the employed 

crosslinkers in the literature did not introduce any stimuli−responsive properties to the 

micelles. In this sense, smart nanocarriers are considered as the new generation of 

materials in the field of controlled drug delivery.35–38 Furthermore, the response of these 

CAS-based micelles to proteases, which are present in cells and overexpressed in 

various tumor types, has not been studied so far. The degradation by proteases could not 

only lead to a triggered release of the encapsulated drug in tumor cells overexpressing 

proteases but also assure the clearance of the carrier from the body after delivery of the 

cargo.  
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Here, we report the use of glyceraldehyde (GAL) as crosslinker of CAS micelles to 

produce pH-sensitive CCM. We hypothesized that the formation of imine groups 

(Schiff base) generated by the reaction with amine groups of CAS would give stable 

CCM at pH 7.4 but lead to hydrolysis at acidic pH. Combined with the enzymatic 

degradation, this could activate the release of hydrophobic drug molecules loaded into 

the micelles in a dual-responsive manner that can take place during the endocytic 

pathway. Thus, the crosslinker-induced pH-responsive property and the proteolytic 

degradability endow the CCM with dual-responsive release features that have not been 

studied so far. In this work, we report the preparation of smart CCM as carriers for 

hydrophobic drugs and the evaluation of their pH/protease dually responsive 

degradation and release behavior.  

 

2. Experimental section 

2.1. Materials 

The following chemicals were used as purchased: Caseinate sodium salt (CAS, Sigma-

Aldrich); DL-glyceraldehyde (GAL, Senn Chemicals); calcium chloride dihydrate 

(CaCl2.2H2O, Grüssing), sodium hydroxide (NaOH, Roth), sodium chloride (NaCl, 

VWR Chemicals), tri-sodium citrate dehydrate (TSC, Merck), urea (Sigma-Aldrich), 

acetic acid glacial (AA, Fisher Chemicals), sodium acetate (NaAc, Grüssing), sodium 

dihydrogen phosphate (NaH2PO4, Grüssing), disodium hydrogen phosphate (Na2HPO4, 

Grüssing), HPLC grade o-phthalaldehyde (OPA, Sigma-Aldrich), microscopy grade 

uranyl acetate 1 wt% solution (UAc, EMS), Nile red (NR, Sigma-Aldrich), deuterium 

oxide (D2O, Sigma-Aldrich), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT, Sigma-Aldrich).  
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2.2 Formation and characterization of CAS micelles 

Casein micelles were reconstituted from CAS by dialysis of a protein solution 

(50 mg mL-1) against a 0.05 mM CaCl2 solution for 4, 6, 8, and 24 h using a dialysis 

membrane with molecular weight cut off (MWCO) of 10 kDa. After the dialysis 

process, re-assembled micelles were kept at 4 °C for 48 h and then centrifuged at 10,000 

rpm for 10 min in order to precipitate protein aggregates. Finally, the hydrodynamic 

diameters of micelles were determined by dynamic light scattering (DLS) at 25 °C and 

70 °C, which was chosen as the reaction temperature for crosslinking.  

2.3 Synthesis of the CCM 

In a typical procedure for the preparation of the CCM with different degrees of 

crosslinking, an aqueous dispersion of CAS micelles (10 mg/mL) and GAL was mixed 

to have a final crosslinker concentration of 1.8, 3.5, 7.0, or 14.0 mM. The reaction was 

carried out at 70 °C for 4 h under stirring conditions. Figure S1 in the Supporting 

Information (SI) shows a schematic illustration of the crosslinking mechanism between 

CAS amino groups and GAL. At the end of the reaction, the color of the dispersion 

changed from white to orange indicating that the protein crosslinking successfully 

occurred.39 This change of color is due to the generation of chromophore as a 

consequence of the carbonyl-amine reaction from the ketoamine formed by the Amadori 

rearrangement as shown in Figure S1.  The CCM were dialyzed against ultrapure water 

(4 changes of water) using a 50 kDa MWCO membrane. Finally, samples were kept at 4 

°C prior to analysis.  

2.4 Determination of the crosslinking efficiency – OPA method  

The effective percentages of amine groups crosslinked with GAL were determined by a 

spectrophotometric assay using o-phthaldialdehyde (OPA) as fluorescent amino marker. 
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The OPA method exploits the reaction with primary amino groups of proteins to form 

highly fluorescent 1-alkylthio-2-alkyl−substituted isoindoles, which showed an 

absorption maximum at 340 nm.40 This reaction was carried out in the presence of 

2-mercaptoethanol, at pH 9.5, and at room temperature. For the analysis, 100 µL of 

CCM dispersion (1% w/w) were mixed with 2 mL of freshly prepared OPA reagent 

(80 mg of OPA in 2 mL absolute ethanol, 50 mL of 0.1 M sodium borate solution, pH 

10, 5 mL of 20% SDS solution, and 0.2 mL of 2-mercaptoethanol filled to 100 mL with 

water). The absorbance was measured at 340 nm by UV-spectroscopy against OPA 

reagent as reference. The amino group concentration was determined on the basis of the 

measured absorbance and a calibration curve using glycine as standard (see Figure S2 of 

SI). 

2.5 Size characterization and stability test 

The hydrodynamic diameters (Z-average) of CCM were measured by DLS using a 

Zetasizer Nano ZS (Malvern Instruments). Measurements were carried out at a 

scattering angle of 173° and a laser wavelength of 633 nm. Dispersions (10 mg/mL) 

were previously diluted 1:10 in water, 10 mM phosphate buffer pH 7.4 with 0.14 M 

NaCl, or 10 mM acetate buffer pH 5 with 0.14 M NaCl, respectively, and measured by 

DLS at 25 and 37 °C. DLS was also used to study the resistance of CCM against 

dissociating agents. Dispersions were diluted 1:10 in 100 mM sodium citrate at pH 7.1, 

in 8 M urea at pH 9.3 or in 0.01 M NaOH at pH 12. Non-crosslinked micelles were used 

as control. Nanoparticle tracking analysis (NTA) was performed using a NanoSight 

NS500 equipment (Malvern). NTA measurements were carried out at 25 °C from water 

diluted samples (2×10-4 mg/mL, lower than the casein critical micellar concentration 

0.1 mg/mL).  
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2.6 Characterization by TEM and SEM  

The morphology of casein micelles was studied by means of transmission electron 

microscopy (TEM) using a Hitachi SU8030 microscope. To this effect, a drop of diluted 

dispersion (0.01 wt% of solids content) was placed on a carbon−coated copper grid.  

After drying, a drop of 1 wt% uranyl acetate (UAc) solution was added as a staining 

agent. Additionally, scanning electron microscopy (SEM, Zeiss Sigma) was used as a 

complementary technique in order to evaluate the nanocarriers morphology. CCM were 

coated with gold in a sputter coater and observed under an accelerating voltage of 

2.0 kV. 

2.7 Rheological characterization of the CCM 

Rheology tests were performed on a Malvern Kinexus Pro rheometer in the frequency 

range of 0.1−100 Hz at 25 °C, using a 60 mm cone-plate geometry and sample 

concentration of 100 mg/mL. To ensure the rheological measurements within a linear 

viscoelastic region, a dynamic amplitude sweep was conducted prior to the frequency 

sweep, and the corresponding strain was determined to be 1%. 

2.8 Degradation studies of the CCM by GPC 

The degradation of the CCM in plasma or simulated lysosomal conditions was analyzed 

by gel permeation chromatography (GPC). Samples with a concentration of 1 mg/mL 

were incubated in 10 mM phosphate buffer pH 7.4, 10 mM acetate buffer pH 5 or 

10 mM acetate buffer pH 5 plus trypsin (0.5% wt/wt) for 24 h at 37 °C. After 

incubation, samples were characterized by GPC using a Shimadzu Prominenze-i LC-

2030 system equipped with a Shimadzu RID-20A refractive index detector. The GPC 

column used was a Shodex OHpak SB-806M HQ, with an OHpak SB-G 6B as a guard 
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column. Measurements were carried out in phosphate or acetate buffers at a flow rate of 

1 mL/min.  

2.9 Cytotoxicity of CCM 

HeLa cells were obtained from the Leibnitz Institute DSMZ - German Collection of 

Microorganisms and Cell Cultures (#ACC 57). 10,000 cells per well were seeded into 

96-well plates in 100 µl per well RPMI 1640 medium (Lonza) containing 10% fetal 

bovine serum (FBS Superior, Merck), 1% penicillin/streptomycin (Thermo Fisher 

Scientific) and 1% minimum essential medium (MEM) non-essential amino acids 

(Sigma-Aldrich) and grown at 37 °C and 5% CO2 overnight. The next day, the medium 

was replaced with fresh medium containing various dilutions of test compound 

dispersions in duplicates and incubated for 48 h at 37 °C and 5% CO2. The cell culture 

supernatant was removed and cells were washed twice with 200 µL/well phosphate 

buffer saline (PBS). Then, 100 µL/well fresh full medium and 10 µL/well MTT (Sigma-

Aldrich, 5 mg/ml in PBS) were added and incubated for another 4 h at 37 °C. After 

development of formazan crystals, the cell culture supernatant was removed and crystals 

were dissolved by addition of 100 µL/well of isopropanol containing 0.04 M HCl. 

Absorbance was read at 590 nm in a Tecan infinite M200 Pro microplate reader. 

Relative viabilities were calculated by dividing average absorbance values of wells with 

treated cells by values of untreated cells (= 100% viability). All tests were repeated 3 

times independently and errors were expressed as standard error of the mean (SEM). 

2.10 Encapsulation of hydrophobic Nile red (NR) 

For the encapsulation of NR into the micelles, 100 µL of dye solution (1 mg/mL) in 

methanol was transferred into a glass vial and methanol was evaporated to obtain a thin 

film. Then 4 mL of CCM solution (5 mg/mL) were added to the vial and stirred 
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overnight under exclusion of light. After removal of any free dye by centrifugation 

(3000 rpm for 2 min), the loaded dye was extracted from the micelles by diluting the 

samples with methanol and separation of precipitated micelles by centrifugation. NR 

content was quantified in the respective samples by UV-Vis spectrophotometry (λ = 

552 nm) using a calibration curve of the NR measured in methanol. Encapsulation 

efficiency was defined as the weight percentage of the dye loaded versus the amount 

added to the micelles dispersion, and loading capacity was calculated as the weight 

percentage of dye relative to the micelles. 

2.11 Release of NR from the CCM 

For release studies of NR from the nanocarriers, 100 µL of loaded CCM (1 mg/mL) 

were incubated in phosphate buffer of pH 7.4 or acetate buffer of pH 5 containing 

trypsin (10 µL of 0.005% trypsin solution) at 37 °C in a 96-well plate. The assay was 

performed on a Tecan InfiniteM200 Pro microplate reader. Immediately after the start 

of the incubation, fluorescence intensity was recorded every 3 minutes at an excitation 

wavelength of 535 nm (9 nm bandwidth) and an emission wavelength of 612 nm (20 nm 

bandwidth). Average values from the duplicates were plotted against time.  

2.12 Cellular uptake of CCM loaded with Nile Red 

10,000 HeLa cells/ml were seeded onto cover slips in 24-well plates and grown over 

night in RPMI1640 (Lonza) 10% FBS (FBS Superior, Merck) 1% 

penicillin/streptomycin (Thermo Fisher Scientific) 1% MEM non-essential amino acid 

solution (Sigma-Aldrich) at 37 °C and 5% CO2. The next day, the medium was replaced 

with fresh medium without supplements and without phenol red and micelles were 

added to a final concentration of 1 mg/mL. After 6 h of incubation at 37 °C, cells were 

washed 3 times with PBS and fixed with 10% neutral buffered formalin for 20 minutes 
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at room temperature. Then, objects were washed 3 times with PBS and stained with 

4',6-diamidino-2-phenylindole (DAPI, 5 µg/mL in PBS, Sigma-Aldrich) for 30 minutes 

at room temperature. After another washing step, objects were mounted on microscope 

slides using ProTaqs Mount Fluor (Quartett GmbH) and dried overnight. Images were 

acquired with a Leica SP8 confocal laser scanning microscope using LASX software. 

3. Results and Discussion 

3.1 Controlled formation of casein micelles  

Livney et al. have reported that CAS micelles could be re-assembled in vitro from a 

CAS solution, by adding tripotassium citrate, K2HPO4, and CaCl2.
26,27 Following this 

procedure, they obtained micelles with diameters of around 147 nm. The average size in 

milk is 150 nm. However, micelle sizes could hardly be tailored by this methodology, 

which results in a disadvantage for the design of DDS. Moreover, the addition of Ca2+ 

in bulk could produce a premature aggregation of the CAS micelles and consequently 

increase the dispersity of the sample. Thus, in this work, a new and controlled process 

for the formation of CAS micelles was developed through the dialysis of CAS solution 

against 0.5 mM CaCl2 for 4, 6, 8, and 24 h. The slow diffusion of Ca2+ through the 

dialysis membrane towards the casein solution allowed an adequate control over the 

formation of the CAS micelles, as shown schematically in Figure 1. The size 

distributions by intensity of the micelles formed after different dialysis times are 

depicted in Figure 2. Micelles showed a hydrodynamic diameter at 25 °C of 128.0 (PDI 

0.228), 142.4 (PDI 0.241), 146.1 (PDI 0.222), and 509.1 nm (PDI 0.266) for 4, 6, 8, and 

24 h of dialysis, respectively. In this way, micelle size could easily be tuned by 

controlling the time of dialysis as shown by increasing micelles sizes over time. The 

accumulation of Ca2+ by the diffusion-driven process probably caused aggregation of 
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the CAS micelles at some point, and consequently larger sizes were observed. 

Moreover, when the measurement temperature was increased until 70 °C micelle sizes 

increased up to 177.9 (PDI 0.086), 180.7 (PDI 0.131), 185.3 (PDI 0.126), and 879.5 nm 

(PDI 0.230) for 4, 6, 8, and 24 h, respectively. The increase in temperature may have 

produced a major uptake of water leading to a higher swelling of the micelles. 

Interestingly, the PDI of the micelles decreased at higher temperatures. Similar results 

were reported by Beliciu and Moraru,41 where micelle size increases were attributed to 

the aggregation of κ-CAS. However, the reasons for the decrease in the PDI are still 

under investigation. 

 

Figure 1. Schematic illustration of dialysis process for CAS micelle formation. 
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a) b) 

  
Figure 2. Size distributions by intensity of CAS micelles formed by dialysis against  

CaCl2 at different times. Measurements at (a) 25 °C and (b) 70 °C. 

 
According to the application requirements intended for these micelles as DDS in cancer 

therapy, dialysis for 4 h followed by crosslinking at 70 °C could be favorable conditions 

to produce stable nanocarriers with sizes below 200 nm and adequate PDI. It is widely 

accepted by the scientific community that nanoparticles with sizes between 50 and 

200 nm are ideal for the application as carriers in cancer therapy.42 It has been described 

that nanoparticles with sizes below 200 nm can evade the reticuloendothelial system 

(RES) after intravenous injection and consequently show longer circulation times in 

vivo.42 In addition, nanoparticles with sizes lower than 5 nm are eliminated by renal 

clearance after injection in the bloodstream and nanoparticles between 5 and 50 nm can 

rapidly accumulate in the spleen.  

 
3.2 Synthesis of the CCM 

Although the micellar sizes suggest that they could be suitable as DDS, it is also known 

that non-crosslinked micelles are prone to suffer dissociation in vivo due to the dilution 

under these conditions, which consequently leads to premature release of the payload. 

Thus to increase the micelle stability, a crosslinking process was performed at 70 °C by 

addition of GAL to the prepared CAS micelles as shown in Figure 3.  
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Figure 3. Schematic illustration of the crosslinking process used to obtain the CCM. 

 
CCM were prepared with increasing GAL concentrations from 1.8 to 14 mM. The 

products were identified as CCM1.8, CCM3.5, CCM7, and CCM14 according to the GAL 

molar concentration used in each reaction. With an increasing amount of crosslinker, a 

more intense orange color was observed in the products giving a visual indication that 

the crosslinking process successfully occurred (see Figure S3 of the SI). Although 

attempts to obtain spectroscopic evidences of the crosslinking reaction by 1H-NMR and 

FTIR were made, the complexity of the CAS spectra obtained from both techniques did 

not allow inferring any clear conclusion on the crosslinking effectivity reached with 

GAL. However, as it will be demonstrated in the following sections, the crosslinking 

reaction could be confirmed by: i) the consumption of amine groups determined by the 

OPA method, and ii) experiments of structural stability of micelles performed by DLS.  
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3.3 Evaluation of the crosslinking efficiency 

The degree of micelle crosslinking is a key parameter in the design of this kind of 

delivery agents, since it would allow a fine control over their degradation rate by 

proteases. The amount of CAS amine groups involved in the micelles crosslinking 

process was determined by a spectrophotometric method using OPA as amino marker. 

The crosslinking mechanism of proteins with GAL was previously proposed by Forni et 

al.,43 as shown in Figure S1. Although this mechanism suggest that GAL would able to 

react with three amine groups from proteins, the crosslinking of three different CAS 

chains may be unlikely due to steric hindrance factors. Table 1 shows the number of 

remaining amine groups from lysine and arginine after crosslinking of the micelles. As 

it was expected, when the crosslinker amount was increased, more amine groups were 

consumed during the crosslinking process. In this way, when using a GAL 

concentration of 14 mM, 92% of the available amine groups were consumed. These 

results indicate that CCM14 presents the highest crosslinking density and therefore it 

could show superior structural stability and resistance to proteolytic degradation. 

 
Table 1. Number of remaining lysyl and arginyl residues and crosslinking efficiency for 

CCM.  

Product Remaining NH2/CAS molecule Available NH2 groups 
consumed 

Non-CCM 50 - 

CCM1.8 24 48% 

CCM3.5 15 70% 

CCM7 10 80% 

CCM14 4 92% 

 

 

Page 15 of 35 Polymer Chemistry

P
ol

ym
er

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
4 

Ju
ne

 2
01

8.
 D

ow
nl

oa
de

d 
by

 Y
or

k 
U

ni
ve

rs
ity

 o
n 

04
/0

6/
20

18
 1

6:
42

:2
5.

 

View Article Online
DOI: 10.1039/C8PY00600H

http://dx.doi.org/10.1039/c8py00600h


16 

 

3.4 Hydrodynamic diameter of the CCM by DLS 

CCM sizes and stability under physiological salt concentrations and different pH 

conditions were determined by DLS. Here, we varied the pH values from pH 7.4 to 

pH 5 to simulate the conditions the CCM would face during the circulation and cellular 

internalization pathway. Table 2 shows the hydrodynamic diameters and the PDI of the 

CCM under physiological and endo-lysosomal conditions.  

Table 2. Hydrodynamic diameters and PDI of the CCM at simulated physiological 
conditions. 

Products Mean 
diameter 

(PDI) in water 
at 25 °C [nm] 

Mean 
diameter 

(PDI) pH 7.4 
at 25 °C [nm] 

Mean 
diameter 

(PDI) pH 7.4 
at 37 °C [nm] 

Mean 
diameter 

(PDI) pH 5 at 
25 °C [nm] 

Mean 
diameter 

(PDI) pH 5 at 
37 °C [nm] 

CCM1.8 188.0 
 (0.137) 

 

184.6 
(0.119) 

182.1 
(0.145) 

-a -a 

CCM3.5 202.1  
(0.246) 

185.3 
(0.120) 

185.2 
(0.122) 

-a -a 

CCM7 180.0  
(0.150) 

175.2 
(0.132) 

176.0  
(0.111) 

236.5 
(0.152) 

-a 

CCM14 181.8  
(0.181) 

170.5  
(0.129) 

172.8 
(0.106) 

157.8  
(0.116) 

158.1  
(0.115) 

a Unstable sample with aggregate formation. 
 
All the CCM sizes presented at physiological conditions (pH 7.4 and 0.14 M NaCl at 

37 °C) were between 172 and 185 nm with PDI minor to 0.200. Furthermore, Table 2 

shows that micelle sizes were not significantly affected by the crosslinker concentration 

employed, which is in agreement with the results reported by Gaucheron et al.
31 for 

genipin crosslinked micelles. This result suggests that a rigid micellar structure can be 

obtained with low GAL amounts and further crosslinker addition further improves the 

micelle integrity (see Figure 4b) without important changes in their swelling capability. 

It can be noted that except for the highest GAL concentration, CCM were colloidally 

unstable at pH 5 and 37 °C. In these cases, micelle precipitation was induced by protein 
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aggregation as the pH value was close to the isoelectric point of CAS (pH 4.8). On the 

other hand, CCM14 was colloidally stable even at low pH probably due to the rigidity 

imposed by its higher crosslinking density. Despite CCM1.8, CCM3.5, and CCM7 

samples were unstable at pH 5 and 37 °C, the aggregation of these systems inside the 

lysosomes may be unlikely, due to the low micelles concentration that would be 

achieved in the cells. The presence of proteases in those organelles (e.g. Cathepsin B), 

which are overexpressed in tumor cells, could degrade the CCM preventing protein 

aggregations. However, the size and stability under acidic conditions of CCM14 suggest 

that this carrier is the most promising for the utilization as DDS for cancer therapy. 

 
3.5 Number size distribution of the CCM by NTA 

In order to determine the micelle sizes at diluted conditions and confirm the crosslinked 

structure of the systems, we analyzed the micelles using NTA on water−diluted samples 

at 25 °C. All the CCM presented average sizes between 123 and 138 nm with narrow 

distributions as it is shown in Figure 4. In agreement with results obtained by DLS, a 

correlation between the crosslinking degree and the size in dispersion of the CCM was 

not observed. In addition, NTA confirmed the micellar crosslinking since they were 

stable in dispersion with concentrations hundred times below the critical micellar 

concentration of the CAS. At this point, it is worth to mention that non-crosslinked 

micelles were completely dissociated at the dilutions used for NTA measurements. In 

video 1 to 4 of the SI, the scattered light of the CCM was recorded in real time showing 

the Brownian motion of the particles. The analysis of the videos showed that the 

nanoparticles present sizes ranging from 90 to 230 nm, as was also determined by DLS, 

which could be suitable for cancer therapy applications.  
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a) b) 

 
c) d) 

Figure 4. Size distributions of CCM1.8 (a), CCM3.5 (b), CCM7 (c) and CCM14 (d) as 

measured by NTA. Mode values are referred to the main peaks of the distributions.  

3.6 Morphology of the CCM 

Microscopy images of the CCM could give information about the morphology and 

dispersity of the samples. Thus, TEM images of the CCM were taken under vacuum. 

The images show that the CCM presented spherical morphology with acceptable size 

distribution, and no distinct differences were observed between systems with varied 

GAL concentration. An image of CCM14 is shown in Figure 5a as a representative 

example. The CCM particle size was around 160 nm in dry state in concordance with 

the results obtained by DLS and NTA. Moreover, small black dots were observed in 

TEM images, which may correspond to slightly crosslinked micelles that collapsed and 

lost their structural integrity under the high vacuum conditions used for TEM analysis. 

However, these tiny particles were not observed by SEM (Figure 5b), wherein high 
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levels of vacuum are also utilized, and therefore this TEM artifact could be due to the 

use of the staining agent, UAc. From SEM image of Figure 5b could also be observed a 

similar particle size distribution as TEM. In addition, magnification of an individual 

micelle is shown in the upper left corner of the figure. 

a) 

 
b) 

 

Figure 5. Morphology of CCM14 observed by TEM (a) and SEM (b). 

 

3.7 Rheological behavior of CCM 

Rheological tests over CCM gave information about the viscoelastic properties of the 

CCM to any applied force that allowed one to further prove their structural stability. 

Thus, the viscoelastic behavior of CCM dispersions was analyzed by rheological 

measurements with the aim to determine the effect of crosslinker concentration on the 

micellar structure. Measurements were performed at 25 °C with water dispersions of 
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CCM (100 mg/mL). Figure 6 shows frequency sweep experiments for different CCM at 

high concentrations. Clearly, it can be observed that the storage modulus (G’) increased 

as the crosslinking degree of the CAS micelles was risen, from 4.91×10-3 Pa for CCM1.8 

to 1.089 Pa for CCM14 at 1 Hz. This result confirms that micelles stiffened with an 

increasing amount of crosslinking points in their structure. Regarding their applicability, 

crosslinking provided them a higher resistance to the shear stress present in the 

bloodstream. Our findings are in line with previous reports of interfacial dilational 

rheology for genipin-crosslinked micelles.31 

 

Figure 6. Storage modulus versus scanning frequency of non-crosslinked micelles and 
CCM at 25 °C. 

 

3.8 Stability of the CCM 

In order to measure the stability of CCM against micelle disrupting agents, the sizes of 

CCM were analyzed by DLS after the addition of urea and citrate, and in alkaline 

conditions. As reported earlier, non-crosslinked CAS micelles dissociate after the 

addition of urea due to the disruption of hydrogen bonding and hydrophobic 

interactions,44 as well as when the colloidal calcium is solubilized by chelating agents 

(e.g., citrate or EDTA)45 or under strong alkaline conditions (pH∼12).15 Figure 7a 
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shows the intensity-based size distribution of CCM14 before and after addition of urea, 

compared with non-crosslinked micelles. It could be observed that the use of urea as 

dissociating agent for the CCM resulted in particle swelling without destabilization of 

the colloidal integrity, which confirms the chemically crosslinked nature of the micelles. 

On the other hand, urea addition to non-crosslinked micelles led to a pronounced 

colloidal destabilization as it was evidenced by the notable broadening in the sample 

size distribution. The same tendency was observed for other dissociating agents such as 

sodium citrate and 0.01 M NaOH (pH 12) and it was depicted in Figure S4 of the SI. In 

these figures, it is possible to see that CCM sizes were not significantly affected by 

citrate chelation or alkaline conditions, while non-crosslinked CAS micelles resulted in 

colloidal unstable dispersions. It is worth mentioning that all remaining systems 

CCM1.8, CCM3.5, and CCM7 were also stable against these dissociating agents (data not 

shown), which confirms their potential applicability as DDS. It was also observed that, 

regardless the dissociating agent used, micelles swelled to a minor extent as the 

crosslinker concentration increased, which indicated their higher structural integrity. In 

this case, the hydrodynamic sizes changed from 188 to 332 nm, from 202 to 301 nm, 

from 180 to 274 nm, and from 182 nm to 223 nm, for CCM1.8, CCM3.5, CCM7, and 

CCM14, respectively. This observation is in agreement with the results of crosslinking 

efficiency shown above. As an example, the size distributions that were obtained for 

urea as dissociating agent are shown in Figure 7b.  
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a) b) 

  
Figure 7. Size distribution by intensity of (a) CCM14 and non-crosslinked micelles and 

(b) all of the CCM systems after addition of urea as dissociating agent. 

3.9 Degradation capability of the CCM under plasma and lysosomal simulated 

conditions 

In order to study the degradation of CAS micelles in different pH conditions and in the 

presence of protease, CCM were analyzed by GPC after incubation in different 

degradation mediums. As it was previously mentioned, the presence of overexpressed 

proteases in cancer cells could activate the degradation of the CCM after cellular uptake 

and thus trigger a drug release process. Recently, Cohen et al.
46
 assessed the in vitro 

digestive proteolysis of cholecalciferol (vitamin D3)−loaded non-crosslinked micelles. 

They showed that the non-crosslinked nanovehicles could be easily degraded by pepsin 

into small peptides (2−15 kDa), while the addition of trypsin led to the complete 

degradation of the casein. In this context, the question arises if the crosslinking could 

have any effect on the proteolytic degradation of the micelles. In addition, imine groups 

in the CCM could lead to destabilization of the micellar structure under acidic 

conditions. For this reason, degradation of CCM was evaluated by GPC at pH 5 in 

presence and absence of protease (trypsin was used as model protease) in order to 

simulate the lysosomal environment. Figure 8 shows the GPC chromatograms of CCM 
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samples after incubation for 24 h at 37 °C in different media. It can be observed that the 

chromatograms of samples incubated in PBS with pH 7.4 exhibited two peaks with 

elution times of around 11.3 min and 13.3 min, respectively. The signal at 11.3 min 

could be attributed to the CCM, while that of lower molecular weight (13.3 min) may 

have corresponded to the degradation products of micelles under these conditions. 

These results suggest that imine groups in the micelle structure could even be partly 

destabilized at pH 7.4. According to the chromatograms at pH 7.4, was also observed 

that the peak corresponding to the CCM decreased from CCM14 to CCM1.8, while the 

peak of the degradation products increased. The crosslinking degree of these micelles 

showed a clear influence on the stability of the samples at pH 7.4. Therefore, when 

increasing the amount of crosslinker, the CCM became more stable under physiological 

conditions. On the other hand, under acidic conditions (pH 5), CCM1.8, CCM3.5, and 

CCM7 were completely degraded and only one signal was observed around 13.3 min. In 

the case of CCM14 with higher crosslinking density, a fraction of micelles remained 

after the incubation period, although in a minor proportion compared to pH 7.4. These 

results show that CCM could be suitable for degradation at simulated lysosomal pH, 

probably due to the hydrolysis of the imine groups formed in the crosslinking reaction. 

Moreover, after the addition of trypsin, all the samples including CCM14 were 

completely degraded. These results suggest that CCM14 would be the most stable 

system when circulating in the blood stream. At the site of the disease CCM14 could be 

completely degraded by the action of the lysosomal conditions (combination of acidic 

pH and presence of proteases). Thus, CCM14 seem to be the most promising candidate 

for its utilization as a carrier system for oncological drugs as it could maintain the cargo 

in plasma conditions (pH 7.4) but release the payload in intracellular conditions. For the 

other CCM, the major percentage of micelles already degraded at pH 7.4, which is 
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undesirable because the loaded drug could be prematurely released at plasma conditions 

before reaching the tumor. For this reason, CCM14 was chosen to explore the in vitro 

loading and release behavior with a model drug.  
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a) 

 
b) 

 
c) 

 
Figure 8. GPC chromatograms of CCM after incubation for 24 h at 37 °C in buffer 

pH 7.4 (a), pH 5 (b), and pH 5 plus trypsin (c). 
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3.10 Cytotoxicity of CCM  

With the aim to show the potential use of CCM in cancer therapy, we investigated the 

effect of the carriers on the cell viability after 48 h in direct contact with cell culture. 

Figure 9 shows the resulting viabilities of cells after exposition to the different CCMs 

and non-crosslinked micelles as control. Up to a concentration of 10 µg/mL, all micelle 

dispersions tested caused a slight reduction of viability to around 70%, which is still 

considered to be non-toxic according to the norm ISO 10993-5. For the highest 

concentration of 1 mg/mL, preparations CCM1.8 and CCM3.5 caused a reduction in 

viability to about 50%, while CCM7 and CCM14 were more toxic, which reduced the 

viability to about 30%. However, exposure to non-crosslinked micelles resulted in no 

further reduction of viability even at the highest tested concentration of 1 mg/mL. These 

results suggest that GAL was probably the source of toxicity of the nanocarriers. As 

mentioned above, it is expected that imine groups in the CCM structure are cleaved in 

acidic pH, and consequently some molecules of free GAL could be released into the 

cells. However, this fact does not compromise the use of the CCM in DDS, since they 

would never be applied in such high cytotoxic concentrations. 
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Figure 9. Dose−dependent viability of the CCM on HeLa cells. 
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3.11 Nile red encapsulation  

The therapeutic application of poorly water−soluble drugs is a serious problem that the 

pharmaceutical industry is still struggling with. Even though many potent drugs were 

developed, they tend to fail due to their poor physico−chemical properties. With the 

objective of increasing the solubility of such candidates, we determined the capacity of 

the CCM to interact with highly hydrophobic drugs by testing the loading properties of 

CCM14 with NR as model compound. NR is a water−insoluble dye which could be 

solubilized in the hydrophobic core of CCM14. For the dye encapsulation, the film 

method was employed where a thin film of NR was prepared by evaporation of a 

methanol solution. Then the CCM14 dispersion was added and stirred overnight. After 

removal of free NR by centrifugation, a notable increase in the "water−solubility" of NR 

was reached as is shown in Figure 10, indicating a good interaction between the CAS 

micelles and the dye. Indeed, CCM14 presented an acceptable loading capacity of 0.44% 

and an excellent encapsulation efficiency of 89% for the used dye/micelle ratio of 5 

µg/mg. These results are comparable to the NR encapsulation in other DDS, e.g., in 

propylene sulfide–b–N,N-dimethylacrylamide micelles where 0.394% and 63.1% were 

reported for both parameters respectively, using a dye/polymer ratio of 6.25 µg/mg.47 
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Figure 10. Dispersibility of the hydrophobic NR molecules after incubation in water 

(left) and with CCM14 (right). 

3.12 Release of Nile red from the crosslinked micelles  

For cancer therapy, it is highly desirable that the CCM can transport the drug under 

plasma conditions without premature release but, after reaching acidic conditions a 

triggered release should be activated for a therapeutic effect. For this reason, the release 

profiles of the NR−loaded CCM14 in different mediums, simulating plasma and 

lysosomal conditions were analyzed by following the dye fluorescence over time. 

Figure 11 shows: (a) the intensity of fluorescence as function over time and (b) the 

corresponding percentage of released dye in each medium used in the experiment. At 

pH 7.4, the fluorescence signal presented a small decay in the first minutes and then it 

increased to a constant plateau over time. This increase in fluorescence occurs due to 

the change in medium pH during the incubation (from slightly acidic in water to pH 

7.4), which favors the hydrophobic interactions between the NR and the CAS micelles 

and thus achieving a better stabilization of the hydrophobic compound. According to 

this result, the dye is properly encapsulated and not released at pH 7.4 (Figure 11b). On 

the other hand, the intensity of the fluorescence signal showed a considerable and 

constant decay when the loaded CCM14 was incubated at pH 5 and in the presence of 
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trypsin. The observation can be explained by the degradation of the carrier in such 

conditions. The micelle disintegration produces a progressive release of NR towards the 

aqueous medium and, since NR is water−insoluble, it precipitates and decays in the 

fluorescence. Thus, a cumulative release of around 30% of NR was reached after 6 h. At 

this point, it is worth noting that despite the full disruption of the micellar structures 

after proteolytic cleavage as shown by GPC, a complete dye release was not achieved in 

the studied period of time. This behavior could be due to the formation of small protein 

particles, products of the degradation, which are able to entrap and stabilize the 

hydrophobic compound.46 The presence of these protein particles was confirmed by 

following the hydrodynamic diameter of CCM14 during its incubation at pH 5 with 

trypsin for 24 h by DLS. The results are presented in Figure S5 of the SI, where after 12 

h of incubation, the particle size of the degradation products was around 80 nm and 

remained constant until the end of the experiment. These results show the promising 

release properties of the CCM14 for their utilization as smart carriers, wherein they 

could maintain the cargo of the drug at physiological simulated conditions at pH 7.4 but 

enable the release of the cargo under lysosomal conditions at pH 5 and in the presence 

of proteases. 

a) b) 

Figure 11. (a) Fluorescence intensity and (b) release percentage of NR over time at pH 

7.4 (red) and at pH 5 with trypsin (blue).  
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3.13. Cellular uptake of CCM 

For an efficient drug delivery the carrier needs to protect its cargo and transport it 

efficiently into the diseased cells where it can be released in a controlled way. Here, the 

delivery of NR into HeLa cells by CCM14 was assessed qualitatively by confocal laser 

scanning microscopy. NR fluorescence could clearly be detected in cells incubated with 

loaded CCM14 (Figure 12a) revealing the same staining pattern as cells treated with free 

NR (Figure 12b). As control, unloaded micelles were also incubated with cell to exclude 

background fluorescence from CCM (Figure 12c). Thus, NR was successfully delivered 

into the cells by means of CCM as a carrier. These results suggest that CCM can be 

internalized into HeLa cells and deliver their cargo in a controlled fashion as was 

demonstrated by in vitro release experiments.  

 

Figure 12. Delivery of NR as a hydrophobic model compound into cells. Confocal 

microscopy images of HeLa cells incubated with (a) CCM14 loaded with NR, (b) free 

NR (0.3µg/mL), and (c) unloaded micelles background control. NR fluorescence shown 

in red, nuclei were stained with DAPI (blue). Scale bar = 50 µm. 

4. Conclusions 

CAS micelles were prepared using a novel method based on the properties of the 

protein to form micelles in presence of Ca2+ ions, using a membrane for slow Ca2+ 
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diffusion. The CAS micelles were chemically stabilized by the addition of 

glyceraldehyde as crosslinker−forming imine bonds with the available amine groups of 

the protein. While the formulation with the highest crosslinker concentration (CCM14) 

could be degraded at acidic pH and by proteases (similar to lysosomal conditions), they 

maintained their structure in simulated plasma conditions (PBS, pH 7.4). The 

hydrophobic dye NR could be successfully stabilized in the hydrophobic core of CCM14 

with excellent encapsulation efficiencies. Moreover, the release of NR from CCM14 was 

negligible in plasma conditions but was highly accelerated at intracellular conditions 

(pH 5 and the presence of proteases). Finally, CCM showed no major toxicity when 

directly exposed to HeLa cells for concentrations up to 100µg/ml and could successfully 

deliver the encapsulated hydrophobic model drug NR into the cells. For this reason, we 

concluded that the as-prepared CCM are promising candidates for the application as 

carrier systems for the transport of oncological and hydrophobic drugs (e.g., 

doxorubicin, paclitaxel or docetaxel). According to the nanometric sizes and 

physicochemical properties analyzed here, we expect in an in vivo scenario that the 

particles accumulate in tumor tissue by the enhanced permeability and retention effect 

(EPR) and release the cargo only in intracellular compartments responding to enzymatic 

and pH changes. 
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Crosslinked casein micelles with a dually pH and protease drug triggered release can be 

applied as a promising hydrophobic drug carrier material. 
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