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Highlights 

 A Haemonchus contortus isolate showing high resistance to ivermectin was obtained. 

 Ivermectin exposure decreased both P-gp-3 and P-gp-9.1 gene expression. 

 P-gp mRNA levels varied considerably among intragroup H. contortus samples. 

 Changes in P-gp mRNA levels would not be enough to explain ivermectin resistance. 

 

 

ABSTRACT 

The efflux transporter P-glycoprotein (P-gp) has been implicated in multidrug resistance of 

different nematode parasites affecting livestock species. Increased expression of P-gp in 

nematodes after their in vitro as well as in vivo exposure to anthelmintics suggests a role of P-gp 

in drug resistance. The current work evaluated the P-gp gene expression in a highly-resistant 

isolate of the sheep nematode Haemonchus contortus, selected after exposure to ivermectin (IVM) 

treatments at 10-fold the therapeutic dose. Four lambs were artificially infected with L3 (7.000 
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L3/animal) of a previously selected IVM highly resistant H. contortus isolate. Forty five (45) days 

after infection, adult worms were collected at 0 (untreated), 6, 12 and 24 h post-oral IVM (2 mg/kg) 

administration. The relative transcription levels of different H. contortus P-gp genes were studied 

by quantitative real-time PCR (qPCR) and confirmed by RNA-seq. P-gp1 and P-gp11 gene 

expressions do not change throughout the experimental sampling period. P-gp3 and P-gp9.1 

transcripts decreased significantly at both 12 and 24 h post IVM exposure. P-gp2 expression was 

progressively increased in a time-dependent manner at 1.81 (6 h), 2.08 (12 h) and 2.49 (24 h) -

fold compared to adult worms not exposed (control 0 h) to IVM, although without reaching 

statistically significant differences (P>0.05).  P-gp12 was neither detected by qPCR nor by RNA-

seq analysis. These relatively modest changes in the P-gp gene expression could not be enough 

to explain the high level of IVM resistance displayed by the H. contortus isolate under assessment. 

Overexpression of membrane drug transporters including P-gp has been associated with IVM 

resistance in different nematode parasites. However, some evidences suggest that resistance to 

IVM and other macrocyclic lactones may develop by multiple mechanisms. Further studies are 

needed to improve the understanding of resistance mechanisms in adult stages of H. contortus.  

Key words: Drug resistance; ivermectin; Haemonchus contortus; P-glycoprotein. 

 

1. Introduction 

Gastrointestinal parasitism constitutes a major health and welfare problem for ruminants. 

Among the parasites that affect small ruminants, the abomasal sheep nematode Haemonchus 

contortus is one of the most widespread parasites in tropical and temperate farming areas, 

causing substantial economic losses to livestock worldwide (Lane et al., 2015). The control of 

these parasites relies on chemotherapy to ease the consequences of parasitism and reduce 

transmission. Among the chemical groups available against parasitic diseases affecting ruminants, 

the broad-spectrum macrocyclic lactones (ML) antiparasitic family has been one of the most 

widely used drug in veterinary medicine over the last 30 years (Chen, 2016; Omura, 2008; Ōmura 
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and Crump, 2014). Inadequate and intensive use of these antiparasitic compounds has led to the 

emergence of high levels of parasite resistance in nematodes of sheep, goats and cattle (Demeler 

et al., 2009; Lomniczi et al., 2013). The high prevalence of nematode resistant to multiple classes 

of anthelmintics, including ML, is nowadays an increasingly relevant worldwide problem (Kotze et 

al., 2018; Molento, 2009; Wolstenholme et al., 2004). However, there are several gaps concerning 

our understanding of the mechanisms underlying anthelmintic resistance. Changes on drug target 

sites and the up-regulation of cellular detoxification systems seem to be implicated in this 

phenomenon (Jani et al., 2011). In that respect, a number of studies have shown that nematode 

ATP binding cassette transporters (ABC transporters) display a protective function in parasites 

through their role in the efflux of anthelmintic (Lespine et al., 2012; Prichard and Roulet, 2007; 

Raza et al., 2016b, 2016a; Xu et al., 1998a).  

Compared to mammals, a greater diversity of ABC transporters has been described in 

nematodes. In H. contortus, at least ten P-glycoprotein (P-gp), one Haf transporter and two 

multidrug resistance protein (MRP) genes have been reported (Laing et al., 2013; Williamson and 

Wolstenholme, 2012). The diversity of nematode P-gps suggests that they may play a protective 

role in the efflux of a wide range of xenobiotics and endogenous metabolites (Prichard and Roulet, 

2007). In fact, there is consistent data describing a link between the efflux transporter P-gp and 

nematode resistance to the major anthelmintic groups, particularly against the ML class (Ardelli 

and Prichard, 2004; Blackhall et al., 1998; De Graef et al., 2013). Indeed, the increased 

expression of P-gp in larvae 3 (L3) of H. contortus has been confirmed after their exposure to the 

ML ivermectin (IVM) (Dicker et al., 2011; Raza et al., 2016b, 2016a; Xu et al., 1998a). Whereas 

most of the studies have been focused on the in vitro exposure of L3 to a variety of anthelmintics, 

there is only limited information on the potential association between drug exposure to these 

molecules and P-gp expression in adult parasites after in vivo anthelmintic treatments in the field 

(Lloberas et al., 2012; Prichard and Roulet, 2007). It has been shown that the transcriptomic 

profile of H. contortus, including that of ABC transporters, changes throughout its life cycle (Issouf 
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et al., 2014; Schwarz et al., 2013). Consequently, it is expected that response of these transporter 

proteins to anthelmintic drugs could differ between infective L3 and adult stages. 

Thus, the aim of the current work was to assess the effect of in vivo IVM exposure on the P-gp 

gene expression in adult H. contortus specimens highly resistant to this compound. The 

transcription levels of P-gp genes in adult worms from treated sheep at recovered at 6, 12, and 24 

hours after IVM administration were assessed by quantitative real-time PCR (qPCR) and 

confirmed by transcriptomic analysis by Next Generation Sequencing (NGS), in comparison to 

those collected from untreated control infected sheep.  

 

2. Material and methods 

2.1. Laboratory-selected isolate 

In order to select an IVM-highly resistant isolate, two consecutive efficacy trials involving H. 

contortus artificial infections were carried out in sheep (Figure 1). In the first efficacy trial, parasite 

free Corriedale lambs (21.2 ± 3.1 kg, n= 6) were infected with an IVM-resistant H. contortus isolate 

(7000 L3/lamb) (artificial infection I). It has been previously demonstrated that IVM (0.2 mg/kg) 

failed to control this isolate, with reported efficacies of 42 to 50% (Alvarez et al., 2015). Thirty days 

after infection, lambs were orally treated with IVM (Ivomec®, Merial, Argentina) at the dose of 2 

mg/kg (dose x 10) (Treatment I). Fourteen days after treatment, lambs were checked for faecal 

egg counts (EPG) and the anthelmintic efficacy of the treatment was evaluated by the faecal egg 

count reduction test (FECRT), according to McKenna (1990). Faecal cultures (MAFF, 1986) were 

performed with faecal material obtained from treated animals. The collected L3 were used for a 

second efficacy trial, in which parasite free lambs (27.8 ± 7.2 kg, n=6) were infected with the 

previously IVM treatment survivors H. contortus L3 (7000 L3/animal) (artificial infection II). Once 

again, thirty days after infection, lambs were orally treated with IVM at the dose of 2 mg/kg (dose x 

10) (Treatment II). Fourteen days after treatment, lambs were checked for EPG and the 

anthelmintic efficacy was evaluated as previously described. Finally, a highly resistant isolate of H. 
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contortus was obtained from faecal cultures performed with feces from treated animals. This 

isolate is maintained under laboratory conditions trough successive passages in parasite free 

lambs until now.  

All experimental animals used in the current studies were housed in a stall without access 

to grass and fed with a balanced commercial feed (Ovino® TandilCoop, Tandil, Argentina). Water 

was provided ad libitum. Animal procedures and management protocols were approved by the 

Ethics Committee (Animal Welfare Policy, act 12/2013) of the Faculty of Veterinary Medicine, 

Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina 

(http://www.vet.unicen.edu.ar). 

2.2. P-glycoprotein in vivo expression study 

Free parasite Corriedale lambs (30.8 ± 4.9 kg, n=4) were artificially infected with the IVM-

highly resistant H. contortus isolate (7.000 L3/animal) recovered from the above mentioned 

studies. Forty five days after infection, samples of adult H. contortus were collected from lambs 

sacrificed at 0 (untreated controls), 6, 12 and 24 h post-treatment with IVM (2 mg/kg, n=1/sampling 

point). Parasites (5 pools of approximately 80 female H. contortus/lamb) were recovered from the 

abomasum of each animal, gently washed in saline solution at 4C and immediately frozen in vials 

placed in liquid nitrogen to study the nematode P-gp expression. All samples were stored at -70 ºC 

for future use.  

2.3. RNA extraction and cDNA synthesis 

Total RNA (tRNA) from female H.contortus collected from experimental animals sacrificed 0 

(untreated), 6, 12 and 24 h post IVM treatment, was isolated using Trizol Reagent (Invitrogen, 

Carlsbad, CA, USA) according to the purchaser’s protocol with an additional DNAse digestion 

step. Total RNA integrity, purity and concentration were determined accordingly Mate et al. (2015). 

The cDNA synthesis was carried out with 2 µg of tRNA using the High Capacity cDNA Reverse 

Transcription Kit (Life Technologies, Foster City, CA, USA) following the manufacturer’s 

instructions.  
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2.4. Reference and target genes  

Actin (ACT) and Hco-pgp2 primer pairs were designed by using Primer Express software 

(Applied Biosystems, Foster City, CA, USA). The Hco-pgp-1, Hco-pgp-3, Hco-pgp-9.1, Hco-pgp-

11 and Hco-pgp-12 sequences were taken and tested against the P-gp sequences reported in 

Williamson and Wolstenholme (2012), and synthesized by Invitrogen (Carlsbad, CA, USA) (see 

Table 2). 

Following the study of P-gp genetic expression by qPCR, several complete and partial P-gp 

sequences have been reported (Godoy et al., 2015; Issouf et al., 2014) and the H. contortus 

genome has been fully sequenced (Ardelli and Prichard, 2013). Even if the H. contortus genes 

have been predicted, the specific P-gp status gene names have not been reported yet. The 

primers sequences used in the qPCR approach were reanalyzed taking into account this 

information and the transcriptomic sequences obtained in the present work.  

 2.5. Quantitative real-time PCR (qPCR) 

The relative expression levels of Hco-pgp1, Hco-pgp2, Hco-pgp3, Hco-pgp9.1, Hco-pgp11 

and Hco-pgp12 amplicons (Williamson and Wolstenholme, 2012) were carried out using an ABI 

Prism 7500 Real Time PCR System (Applied Biosystems SA). The reaction mixtures were 

prepared using PCR power SYBR Green Master Mix 2X (Applied Biosystems SA) following 

manufacturer´s instructions, including 2 μL of each primer set (300 nM), 2 μL of cDNA diluted 

1:100 and 4 μL of water to obtain a final volume of 20 μL. The qPCR was performed using the 

following thermal profile: initial hold at 95 °C for 10 min and then 40 cycles of 95 °C for 15 s 

followed by 1 min at 60 °C. Gene-specific amplification was confirmed by a melting-curve analysis.  

Before experimental samples were quantified, calibration curves were built making dilutions 

of a cDNA pool at five-fold intervals in order to evaluate the qPCR efficiency for each primer pair. 

Calibration curves displayed slope values between -3.6 and -3.25 and r2 higher than 0.985.  

2.6. Library preparation and high-throughput RNA sequencing   

RNA-seq analysis were performed to confirm the transcription levels of P-gp genes in two 

parasite pools (80 female H. contortus adults) recovered from each control and treated animal at 
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12 and 24 h post-IVM administration. The RNA sequencing libraries were constructed from 1 μg of 

total RNA using TruSeq RNA Sample Prep (Illumina). Each cDNA library was tagged with a 

specific Illumina adapter sequence and the six 100-bp paired-end libraries were subsequently 

pooled and loaded on two Illumina HiSeq 4000 sequencing lane. The libraries were sequenced at 

the Vincent J. Coates Genomics Sequencing Laboratory (http://qb3.berkeley.edu/gsl/Home.html). 

2.6.1. Identification of H. contortus P-gp genes 

Over the past years, protein sequence from several H.contortus P-gp gene have 

been reported (Issouf et al., 2014; Williamson and Wolstenholme, 2012). These sequences of H. 

contortus together with Caenorabditis elegans (C. elegans) P-gps protein genes were download 

from NCBI database (https://www.ncbi.nlm.nih.gov/). The above sequences were used for tbastn 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) search against genome assembly sequences of H. 

contortus at NCBI. 

A database search on PRJEB506 genome assembly of H. contortus using the tBLASTx 

algorithm (National Center for Biotechnology Information) was performed to identify the closest 

matching P-gp sequence. The P-gp genes identified in the PRJEB506 H. contortus genome are 

described in Table 1.  

2.7. Statistical analysis  

Relative expression of each Hco-pgp to ACT gene was calculated by the comparative delta-

Cq method (Livak and Schmittgen, 2001), incorporating the calculated amplification efficiency for 

each primer pair. Unpaired Student’s T-test and Welch correction if it was necessary were used to 

compare the Hco-pgp expression results obtained in control and IVM-treated groups at different 

sampling times. A value of P0.05 was considered statistically significant. 

Tophat2-DESeq2 (Kim et al., 2013; Love et al., 2014) and Kallisto–Sleuth (Bray et al., 2016; 

Pimentel et al., 2017) analyses were used for the comparison of transcriptome paired-end 

libraries. All reads were trimmed with Trimmomatics (Bolger et al., 2014) with a Phred quality 

threshold of 30. Reads were then mapped either to genome assembly of H. contortus (project ID 
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PRJEB506) with Tophat2 or with Kallisto. Differentially-expressed genes analysis was performed 

with Dseq2 and Sleuth Bioconductor packages using the Tophat2 and Kallisto output, respectively.  

3. Results 

3.1. Laboratory-selected isolate 

No adverse events were observed in the animals involved in the current trials after IVM 

treatments at high dose. The individual faecal egg counts as well as the overall faecal egg counts 

(arithmetic mean ± SD) obtained on days -1 and 14 after treatment are shown in Table 1, including 

the results of the FECRT with its lower and upper confidence intervals 95% at the two consecutive 

efficacy trials carried out in sheep. After the first treatment with IVM (2 mg/kg, dose x10) the result 

of the FECRT was 72.2%, indicating the presence of H. contortus resistant to IVM. In addition, in 

the second efficacy trial, in which parasite free lambs were infected with L3 obtained from the H. 

contortus survivors, a decrease in the FECRT value was observed (32.6%).  

3.2. Expression levels of P-gp by qPCR analysis 

Calibration parameters for qPCR analysis were properly validated. Data are summarized in 

Supplementary Table 1. 

In this work, the gene expression of the PCR products amplified with the putative Hco-pgp-

1, Hco-pgp-2, Hco-pgp-3, Hco-pgp-9.1 and Hco-pgp-11 in adult specimens of H. contortus was 

quantified. Hco-pgp-12 was not detected under the current qPCR conditions. The relative gene 

expression profiles of these transporters in adult parasites exposed to IVM in vivo, expressed as 

fold change compared to control samples, are shown in Figure 2. Whereas the transcription levels 

of Hco-pgp-3 and Hco-pgp-9 declined progressively throughout the sampling time, the Hco-pgp-2 

gene expression was increased 1.81 (6 h), 2.08 (12 h) and 2.49 (24 h) -fold compared to its 

expression in control parasites. One notable aspect was the large range of expression levels 

detected for this transporter, which resulted in no statistically significant differences among groups 

(P>0.05). The expression profiles of Hco-pgp-1 and Hco-pgp-11 determined by qPCR were almost 

identical, showing not substantial changes in a time-depending manner.  

3.3. RNA-seq analysis 
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To validate the results of the qPCR analysis, both cDNA P-gp sequences from H. contortus 

reported in the literature (Issouf et al., 2014; Williamson and Wolstenholme, 2012) and protein 

sequences from C. elegans were used in order to locate the genes corresponding to the PBR506 

H.contortus genome. The best match between each P-gp and the transcript sequences of 

H.contortus is displayed in Table 1. This analysis showed that the sequence HM635772 reported 

by Williamson and Wolstenholme (2012) as P-gp1 and used in this work for the quantification of 

Hco-pgp-1 by qPCR, matches the exons 26-27 from gene HCOI00233200, corresponding to P-

gp17(David et al., 2018; Laing et al., 2013). Unfortunately, the sequence HM635770 used for the 

design of the Hco-pgp-11 primers includes exons 5 to 7 of the same gene. Consequently, the 

gene expression results of Hco-pgp-1 and Hco-pgp-11 reflect the expression of a single underlying 

gene. This explains why the expression profiles of Hco-pgp-1 and Hco-pgp-11 determined by 

qPCR were almost identical (Figure 3). Similarly, the sequences HM635773 and HM635767 

reported by Williamson and Wolstenholme (2012) as P-gp12 and P-gp14, respectively, both match 

the complete P-gp13 mRNA sequence KX844966 published in GenBank (David et al., 2018) and 

corresponding to gene HCOI01115500 on the H. contortus reference genome (Laing et al., 2013). 

RNA-seq analysis were performed in two parasites pools (80 female/pool) recovered from 

each control and treated animal at 12 and 24 h post IVM administration. For six pool samples, a 

total of 140 million reads were obtained and used for mapping to the H. contortus genome.  

According to the mapping results, approximately 90% were mapped successfully to the reference. 

The ranking of transcription level, expressed as transcript per million (tpm) of P-gp genes from the 

higher to the lower was P-gp-11, P-gp2, P-gp3, P-gp1 and finally P-gp9.1 (Table 3). 

Only the P-gp transcripts that were quantified by qPCR are reported here. The results of 

RNAseq differential expression approach correlate with qPCR analysis. While P-gp2 gene 

expression was increased in parasites after 12h of IVM exposure, P-gp3 and P-gp9 transcripts 

decreased significantly at both 12 and 24 h post IVM exposure. By contrast, P-gp1 and P-gp11 

expression showed not significant changes in a time-dependent manner (Table 3, Figure 3). 

4. Discussion 
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The potential changes in the genetic expression of different P-gps occurring in a highly IVM-

resistant isolate of H. contortus in vivo exposed to IVM were assessed in the current experimental 

work. The highly resistant isolate was obtained after treatment of lambs infected with a pre-

selected isolate with 10 X the IVM therapeutic dose (Treatment II). The anthelmintic efficacy 

(assessed by FECRT) was only 32.6% when IVM was administered at ten times the therapeutic 

dose. Furthermore, no statistical differences in EPG counts were observed between day -1 and 

day 14 post-treatment, which demonstrate the complete therapeutic failure of IVM against this 

isolate at a dose as high as 2 mg/kg. The simple “selection scheme” reported here, resulted a 

suitable method for isolation of a highly resistant population of H. contortus. The rationale behind 

this experimental approach was that potential genetic changes underlying resistance may be 

easier to be shown in highly resistant individuals. To assess these potential genetic changes, two 

different experimental approaches, qPCR and RNA-seq analysis, were applied.  

P-glycoprotein, responsible for some cases of multidrug resistance reported in cancer cells 

(Gottesman and Pastan, 1993), may also contribute in different ways to ML resistance in H. 

contortus. Resistance occurs when a susceptible population decrease its response to a drug 

treatment and is complete when the maximum dose of this drug has no anthelmintic effect (Coles, 

2006). The individuals that survive drug treatment pass on their genes to the next generation, 

increasing the frequency of survivors over many generations. Understanding the development of 

drug resistance in parasitic helminths is crucial to prolong the lifespan of currently used 

anthelmintic drugs and to develop markers to monitor drug resistance. It was also be beneficial in 

the design of new chemotherapeutic agents to overcome or prevent resistance and in the 

identification of new drug targets (Bartram et al., 2012). There is considerable evidence that 

nematodes may regulate the expression levels of P-gp and other ABC transporters through 

transcriptional or post-transcriptional mechanisms to counteract the toxic effects of anthelmintic 

drugs (James and Davey, 2009; Lloberas et al., 2013; Raza et al., 2016a). However, nematode 

drug transporter genes do not show a consistent pattern of regulation following exposure to 

anthelmintics. In this regard, some studies on parasitic nematodes have reported an increase in 
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the transcriptional level of transporter genes following in vivo (Lloberas et al., 2013; Xu et al., 

1998b) and in vitro exposure to anthelmintic drugs (Raza et al., 2016a, 2016b; Williamson et al., 

2011; Xu et al., 1998a). However, other studies have reported no transporter transcriptional 

changes in nematodes collected from animals treated with IVM (Alvarez et al., 2015; Areskog et 

al., 2013).  

 

Williamson and Wolstenholme (2012) were able to quantify P-gp13 expression (reported in 

the manuscript as P-gp12 and P-gp14) by qPCR in the L3 stage of H. contortus. Recently, David 

et al. (David et al., 2018) reported the P-gp13 protein localization in several organs of the 

digestive, neuronal, excretory and epithelial systems in larvae and adult H. contortus cryosections 

by immunohistochemistry. By contrast, we were not able to quantify P-gp13 expression neither by 

qPCR nor RNA-seq analysis in female specimens of the H. contortus isolate here studied. 

Although one possible reason could be a technical limitation of both approaches (qPCR and RNA-

seq analysis) for detecting P-gp13 mRNA expression, an alternative explanation could be that P-

gp13 is not expressed in female H. contortus parasite. Further studies using both sexes are 

needed to clarify this situation. 

Under the current experimental conditions, either by qPCR or RNA-seq analysis, the 

transcription profile of both P-gp-3 and P-gp-9.1 tends to slightly decrease in vivo exposed adult 

parasites. Issouf et al. (Issouf et al., 2014) reported up regulation of P-gp3 in H. contortus exposed 

to sheep eosinophil granules, suggesting a role of this P-gp in detoxification of host immune cell 

products. In addition, the expression of P-gp3 and P-gp9.1 in intestinal excretory cells of the 

nematode C. elegans suggests they may play a role in the protection of worms against xenobiotic 

compounds (Ardelli and Prichard, 2013). By contrast, P-gp2 gene expression tends to increase in 

adult parasites following in vivo exposure to 10X the IVM therapeutic dose compared to those 

recovered from untreated animals. P-gp2 is expressed in the nematode digestive and adjacent 

nervous system, protecting them from the effects of anthelmintic drugs (Godoy et al., 2015). In 

fact, P-gp2 was the first nematode P-gp related to IVM resistance (Xu et al., 1998a). In agreement 
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with our results, Lloberas et al. (2013) reported that the IVM treatment significantly increased the 

P-gp2 expression in resistant H. contortus collected from treated lambs. Furthermore, similar to 

results reported by Williamson and Wolstenholme (2012), P-gp mRNA levels vary considerably 

among different intragroup samples in the H. contortus isolate analysed in the current work, 

especially for P-gp2. In fact, it is likely that this variability precluded us to find, either by qPCR or 

RNA-seq analysis, significant changes in the expression of P-gp2 following in vivo parasite 

exposure to IVM. A variety of studies have reported extremely high levels of genetic diversity 

within H. contortus populations, with the population size being a major determinant of this high 

genetic diversity (Gilleard and Redman, 2016; Laing et al., 2013; Otsen et al., 2001; Redman et 

al., 2008; Schwarz et al., 2013; Troell et al., 2006). This feature enables H. contortus populations 

to quickly adapt to climate changes, hosts and drug treatments  (Emery et al., 2016), the latter of 

which can lead to anthelmintic drug resistance even after a short time of drug use (Gilleard and 

Beech, 2007; Prichard, 2001). In this sense, a variety of studies suggest that laboratory strains of 

H. contortus retain high levels of genetic diversity, even if they are subjected to drug selection 

(Gilleard and Redman, 2016). In fact, a shallow inspection of the RNA sequences obtained from 

the H. contortus IVM-highly resistant isolate studied here showed a high level of polymorphism. It 

has been shown that the transcriptomic profile of H. contortus, changes throughout its life cycle 

and between adult sexes (Issouf et al., 2014; Schwarz et al., 2013). In this work, pools of female 

parasites were used for reasons of technical simplicity. Females can contain eggs that could 

interfere with P-gp expression analysis, maybe contributing to the large variation in the ARNs 

expression among different samples from the same parasite isolate. 

One of the most cited mechanisms in the development of IVM resistance in nematodes is 

the overexpression of ABC transporters. However, the increased expression levels that were 

previously observed  (Ardelli and Prichard, 2004; Dicker et al., 2011; Lloberas et al., 2013; Raza et 

al., 2016b, 2016a; Williamson et al., 2011) were modest and per se could not be sufficient to 

explain the high level of resistance to ML now reported in H. contortus populations. In agreement, 

there are some evidence suggesting that resistance to ML may develop by multiple mechanisms. 
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ML bind nematode glutamate-gated chloride channels (GluCls), leading to paralysis of the worm’s 

muscles (Cully et al., 1994; McCavera et al., 2009). A potential resistance mechanism could 

consist on allele frequency changes in genes encoding the GluCl channel subunits and/or g-

aminobutyric acid (GABA) receptor (Blackhall et al., 2003, 1998). It has been shown that 

substitutions of single amino acids of GluCl channels from Cooperia oncophora and GABA 

receptors from H. contortus could modulate drug (Feng et al., 2002; Njue et al., 2004). 

Alternatively, IVM treatment may select for some alleles of P-gp that possess a higher binding 

affinity for IVM, without changing the expression profile of this transporter  (Molento and Prichard, 

2001).  

5. Conclusion 

In summary, changes in the transcription level of some P-gp genes in an isolate of adult H. 

contortus resistant to IVM are here reported. However, the biological significance of the observed 

changes could not be sufficient to explain the high level of IVM resistance displayed by the isolate 

under assessment. Further studies focusing in e.g. examination of different H. contortus isolates, 

P-gp protein expression and activity, and gene polymorphism analysis, are needed in order to 

elucidate the mechanisms responsible for IVM resistance in H. contortus populations.  
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Tables  

Table 1. Nematode egg per gram counts (EPG, individual and arithmetic mean ± SD) and reduction percentages of faecal egg 

counts (FECR) with its lower and upper confidence intervals 95%, after the oral administration of ivermectin (IVM, 2 mg/kg) to 
artificially infected lambs. 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1FECR estimated according to McKenna (McKenna et al., 1990). CI: lower and upper confidence intervals. 
 

  
Table 2. Primers and GenBank accession numbers/ Reference for sequences used for quantitative PCR. 

 

Putative gene name Primer Sequence (5´→3´) 
GenBank 

Accession N°/Reference 

H. contortus   

ACT 

F: GCTCCCAGCACGATGAAAA 

R: CACCAATCCAGACAGAGTATTTGC 

DQ080917 

 (Kotze and Bagnall, 2006) 

Hco-pgp-1 F: GACTTTCAGCTACCCATCACG 

R:GTCCGGTTCGTAGAATCTCTC 

 

HM635772 

 

 (Williamson and Wolstenholme, 2012) 

Hco-pgp-2 F: CGGCAGCAGATCTCATGGT 

R: TCGGTTAGACGAGCTGTGAGATT 

 

AF003908 

 

 (Xu et al., 1998a) 

Hco-pgp-3 F: TGAACCTAAGCGTCCGACATG 

R: TAGTGATTCCACACAAAGCATCG 

 

HM635768 

 (Williamson and Wolstenholme, 2012) 

Efficacy 
trials 

Animals 

EPG Counts FECR1 (CI) 

Day -1 Day 14 

 

First 
Efficacy 

Trial 

1 10600 840  

2 3260 2840 
 

3 2940 460 
 

4 10840 3280 
 

5 5360 2240 
 

6 5300 800  

Mean ± SD 6383 ± 3506 1743 ± 1196 72.7% (43-87) 

Second 
Efficacy 

Trial 

1 3880 3500  

2 7680 1020  

3 3300 2840 
 

4 1840 2680  

5 8160 5580  

6 2800 3020  

Mean ± SD 4610 ± 2654 3107 ± 1475 32.6% (0-64) 
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Hco-pgp-9.1 F: CATCCGGTACGGACGAGAGA 

R: TGATTCGTCGAGAGCGCTAGTG 

 

HM635771 

 (Williamson and Wolstenholme, 2012) 

Hco-pgp-11 F: ACGATCACCACGAAGCTGAACG 

R: CCCAAATGCACACCAGAGTG 

 

HM635770 

 (Williamson and Wolstenholme, 2012) 

Hco-pgp-12 F: CCAAGGCTATTTTCGGGAACG 

R: CGTCCAGCAGCAATATCTTGG 

 

HM635773 

 (Williamson and Wolstenholme, 2012) 

 
ACTB: actin; bp: base pair; F: Forward; R: Reverse; P-gp: P glycoprotein.                                                                                                                                                 
 

Table 3. Sleuth output of differential expression analysis of H. contortus P-gp genes. 

 
P-gp 

 

Target_id 0h1 0h2 12h1 12h2 24h1 24h2 tpm q-value 

 

P-gp-1 HCOI00146500 402 384 298 319 406 394 6.59 0.146 

 

P-gp-2 HCOI00025600 1273 1145 1605 1469 1400 1507 15.06 0.117 

 

P-gp-3 HCOI00117000 1167 901 418 471 846 827 14.39 0.015 

 

P-gp-9.1 HCOI01671700 511 421 224 260 223 253 6.24 0.024 

 

P-gp-11 HCOI00233200 1268 671 1218 748 1199 1220 15.64 0.876 

 

Columns: 1 P-gp name, 2 Target id: P-gp genes identified in the PRJEB506 H. contortus genome, 3-8 Normalized reads counts in 

adult Haemonchus contortus parasites collected from lamb orally treated with IVM at 2 mg/Kg, at 12 and 24 h post-treatment in 

comparison with parasites (control, 0 h) collected from untreated lambs, 9 tpm: Transcript per million mean expression across all 

samples, 10 qval: false discovery rate (FDR) adjusted p-value. 

 

Figure captions 

Figure 1. Schematic representation of the selection of the Haemonchus contortus ivermectin-

highly resistant isolate used in the current trial. IVM: ivermectin; FECRT: faecal egg count 

reduction test; EPG: nematode egg per gram of faeces counts. 
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Figure 2.   Relative expression of P-glycoprotein mRNA in adult Haemonchus contortus parasites 

collected from lambs orally treated with IVM at 2 mg/Kg, at 6, 12 and 24 h post-treatment in 

comparison with parasites collected from untreated lambs.  Data are expressed as –fold change 

relative to control which was normalized to one, and reported as the mean±SEM (n=5 pool/group, 

composed each one of 80 adult female H. contortus). 
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Figure 3. Boxplot showing differences in expression of P-glycoprotein mRNA measured by 

RNAseq in adult Haemonchus contortus parasites collected from lamb orally treated with IVM at 2 

mg/Kg, at 12 and 24 h post-treatment in comparison with parasites collected from untreated 

lambs.  Data are expressed as normalized reads count. The intrasampling variance was obtained 

by 100 bootstrap sample using the Sleuth R package. 
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