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Abstract 

This work presents studies about the gasification of the lignocellulosic winery wastes in fluidized 

bed to obtain energy. Based on the exergy analysis, the exergetic improvement potential (IP) and 

sustainability index (SI) variations with different operational variables were analyzed. IP increases 

and SI decreases when moisture content, ER and SBR augment. On the other hand, both indexes 

present contrary behavior with the temperature increasing.  

Additionally, the kinetic behavior was investigated using a macro thermo-balance. The thermal 

decomposition of the studied biomass wastes at three heating rate, 5, 10 and 15ºC/min under 

steam/air mixture atmosphere show that the gasification takes place in three visible stage: water 

vaporization, pyrolysis and the last step associated with the reaction of the char by CO2. The 

distributed activation energy model method (DAEM) was used. The decomposition is not a single 

reaction stage, it includes the contributions of parallel reaction steps on the global reaction rate. 

Last, the fluidization was analyzed using air at room temperature and local atmospheric pressure. 

Each experiment was carried out with 100% and 75% v lignocellulosic wastes. Segregation, 

slugging and channelization in all studied cases. However, the addition of sand particles improves 

the behavior of both winery wastes. 

 

Keywords: lignocellulosic winery wastes; fluidized bed; kinetic analysis; exergetic improvement 

potential; sustainability index; fluidodynamic study.   
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Introduction 

The global energy consumption has importantly augmented in last years due to industrial and 

economic growth and population increase. Instead, in past decades, fossil fuel reserves are 

continuously depleting, and they also adversely affect the environment. Due to these concerns, 

significant efforts are directed globally to search for alternate renewable energy and environment 

friendly fuel sources. Among lignocellulosic biomass has emerged as an attractive source for 

producing fuels due to its low cost and abundance. So, thermochemical biomass transformation, 

particularly gasification, is considered as the most promising technology for a large-scale energy 

production. Biomass gasification comprises of partial oxidation at high temperature (800 – 

1000°C) and successive reduction reactions. This process produces a gas mixture, called syngas, 

which contains H2, CO, CO2, H2O, CH4 and higher hydrocarbons (tar). The gasification can be 

carried out using air, oxygen steam or a mixture of them as the gasifying agents. Usually, an 

air/steam mixture is used. The oxygen content in this atmosphere is lower at stoichiometric 

content. The obtained syngas is characterized for the H2 and CO contents. 

Otherwise, different operating variables have a high influence on the gasification behavior: 

biomass feedstock, temperature (T), equivalence ratio (ER, supply air/stoichiometric air) and 

supply steam/biomass ratio (SBR) [1]. To evaluate the gasification performance, the exergy 

analysis can be employed (based on the first and second law of thermodynamic). This analysis 

permits to identify the inefficiencies and their sources allowing an effective management and 

optimization of the gasification process [2]. Then, many authors used the exergy analysis as a 

methodology for evaluating the efficiency and the processes sustainability, considering both the 

amount and the quality of mass and energy streams simultaneously [3]. For a better analysis, the 

process efficiency at different operational conditions, diverse indicators have been developed. 

Osturk et al. [4] used a set of exergetic parameters for assessing environmental impact and 

sustainability, among which can be mentioned the IP and SI [4]. These parameters have been 

applied to different processes in others works [5], [6].  

On the other hand, the biomass wastes involve an important reactions number and their unknown 

mechanisms, simple kinetic models cannot describe the global reactions. However, experiences 

where the loss weight is measured with the temperature variation are an important tool in order to 
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obtain information on chemical kinetics. It is important to note the scarce information found in the 

literature about this aspect [7]. Elbager et al. [8] studied the steam gasification reactivity, thermal 

behavior and activation energies of sugar cane bagasse chars prepared at 500, 800 and 900ºC via 

thermogravimetric analysis (TGA) under non-isothermal conditions at different heating rates. To 

estimate the activation energies, these researchers used the Vyazovkin and Ozawa–Flynn–Wall 

methods. They observed that both methods can be efficiently utilized to predict the experimental 

data and the reaction mechanism. Yao et al. [9] studied the reactions of biomass char CO2-

gasification within granulated blast furnace slag using TGA. They observed that the nuclei 

production model fitted accurately the experimental data. The founded activation energy was from 

52.75 kJ/mol to 64.42 kJ/mol and was lower with the increase of heating rate and the content of 

blast furnace slag in the mixture. Huang et al. [10] analyzed the chemical looping gasification as 

a novel and promising gasification technology because it can produce high quality syngas with 

low cost. They carried out the thermodynamic analysis to predict the feasibility and limitation of 

redox reaction and the kinetic model to understand the controlling factors of chemical reaction 

rate. 

Considering the used technology to carry out the gasification process, fluidized-bed reactor has 

been recognized as one of the most effective reactor to transform the biomass into energy [11]. 

Oliveira et al. [12] determined the minimum fluidization velocity of binary mixtures using the 

characteristic diagram of pressure drop in the bed and to develop an experimental correlation for 

the minimum fluidization velocity of biomass and sand mixtures. These researchers used three 

types of biomass (sweet sorghum bagasse, waste tobacco and soybean hulls) and four sands with 

different sizes. The results showed that the fluid dynamic behavior of binary mixtures is directly 

related to the biomass size and shape. They proposed a correlation to predict the minimum 

fluidization velocities for mixtures of biomass and sand in fluidized beds. Fotovat et al. [13] 

investigated bubbling fluidization of a sand fluidized bed with different biomass. They employed 

the radioactive particle tracking to explore the impact of the particle shape factor on the biomass 

distribution and velocity profiles. The results showed that spherical biomass particles rise faster 

and sinks lower than the cylindrical biomass particles; furthermore, bubbles are more prone to 

break in the presence of biomass particles with lower sphericity. These researchers carried out a 

three-dimensional numerical simulation via an Euleriann-fluid approach with a good 

reproducibility.  
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Considering the foregoing and, the fact that the wine industry is one of the most important in the 

Cuyo Region, Argentina, generating large volumes of lignocellulosic wastes, in order to extend 

and improve the basic knowledge on gasification process and based on an exergy analysis of 

literature [14]. IP and SI indexes variation with different operational variables were studied. On 

the other hand, this work investigates the solid winery wastes kinetic behavior during this process 

and the hydrodynamic performance of pure biomass and biomass-sand binary mixtures. The 

kinetic characterization was carried out using a macro thermo-balance and applying the DAEM 

model. The fluidization of pure biomass and their mixture with sand was carried out using air at 

room temperature and local atmospheric pressure. These analysis behavior enables the prediction 

of the fluidized bed gasifier when the solid waste winery is utilized. Such efforts are expected to 

lead to a better use of these biomass wastes in gasification process. 

 

1. Materials and methods 

1.1.Winery wastes characterization   

The raw material used in this work were marc and stalks from wine industry.  They are located in 

San Juan Province - Cuyo Region - Argentina. The weight loss at 105ºC, ash and organic matter 

content were determined according to ASTM standards (ASTM D3173-87, ASTM D3172-89 

(02)). Ultimate analyses on the samples were performed using EuroEA3000 model elemental 

analyzer. The results are shown in Table 1. To evaluate the biomass high heating value 

(HHV,MJ/kg), the correlations present by Sheng and Azevedo [15] were used:  

 

HHVbiomass = −1.3675 + 0.3137 C + 0.7009 H + 0.0318 O∗ (1) 

 

Where O* is the weight percentage (dry biomass) of O and other elements like S, N, Cl, among 

others, so O*= 100-C-H-ash. The low heating value (LHV, MJ/kg) was calculated from the HHV 

and the latent heat of water vaporization. The HHV and LHV values are shown in Table 1 for each 

studied waste. 

The concentration of 28 elements in these wastes were determined using inductively coupled 

plasma mass spectrometer Shimadzu ICPE 9000. Biowastes samples were digested in a Multiwave 

Go-Anton Paar microwave digestion system using 0.3 g of sample and 10.2 cm3 of three different 

acid mixtures added to each teflon vessel in the oven. The vessels were heated at 190ºC for 35 min 
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three times. Each sample was digested in triplicate. De-ionized water, nitric acid (65%), 

hydrofluoric acid (47-51%) and hydrogen peroxide (30%) were used throughout the work. The 

experimental results are shown in Table 2. 

The values of lignin, cellulose and hemicellulose contents, expressed in percentage, were 

determined by ASTM standard (ASTM D1106-56, ASTM D1103-60 and ASTM D1103-60, 

respectively). These analyses were carried out by the laboratory of the Chemistry Section of Agro 

Products (EEAOC-Estación Experimental Agroindustrial Obispo Colombres) -Tucumán / 

Argentina. The analysis results are expressed in dry basis. The results are shown in Table 3.  

On the other hand, the samples were sieved to obtain classified particles in diverse ranges. For the 

mixture experiences, biomass and sand particles were used. The river sand and biomass were 

sieved to obtain classified particles in different ranges. Tyler Standard Mesh sizes were used for 

the characterization (ASTM E - 11/95). Sauter diameter (�̅�𝑝) represents the material diameter, and 

it is fixed for the sand (between 0.25mm and 0.71mm). The sieving procedure is used to obtain the 

particle size distribution (ANSI/ASAE S424.1, 2006) and to categorize the particles according to 

the Geldart Classification (GC) [16]. The results are shown in Figure 1 and Table 4. D̅p is 

calculated by the following expression: 

 

D̅p = [∑
Xi

dp
]

−1

        
(2) 

 

Where Xi is the mass fraction of retained particles in the mean diameter interval (dp between two 

sieves). The determination of the real density of the particles was made liquid pycnometer 

technique. The experiment was performed in triplicate, using water as fluid. The bulk density 

determination was carried out following the ASTM Standard Test Method for Bulk Density of 

Densified Particulate Biomass Fuels E873-82 

 

1.2.Experimental method to carry out the kinetic analysis of winery wastes gasification 

The experiments were carried out in a macro thermo-balance (macro-TGA). It is formed by a 

tubular reactor of 5cm of internal diameter and 100cm of height. It is heated by electrical resistance 

and is coupled to an analytical balance. This equipment is connected to a control system, through 
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which it is possible to vary the heating rate and to register time, mass data and temperature in a 

computer.  

Experiments were carried out under air/steam atmosphere, the steam flow rate was 0.17mL/min, 

guarantying the steam/biomass ratio equal to 2.5 [17]. The temperature increased from ambient 

temperature (approximately 25ºC) to 900ºC. This final temperature ensures the highest 

decomposition. Three heating rates, 5, 10 and 15ºC/min were used. In order to minimize heat 

transfer and mass phenomena, 5g of sample with size between 0.212 and 0.250mm were used. 

Figure 2 shows the utilized reactor.  

 

1.3.Experimental procedure to study the hydrodynamic behavior of winery wastes 

The tests were carried out in a transparent plexiglass cylindrical cold flow fluidized bed with an 

internal diameter of 0.137 m and a height of 1.7 m fitted with a perforated distributor plate and a 

stainless-steel mesh of 0.1 mm diameter. Air was used as the fluidizing agent. Experiments were 

conducted at room temperature and atmospheric pressure. The experimental setup is presented in 

Figure 3. A Kimo differential pressure transmitter (CP213 B-O) was used to register the pressure. 

Also, Kimo flowmeter (Function SQRT/3) was used to measure the gas flow rate.  

Each experiment was carried out with 100% and 75% v lignocellulosic wastes for two different 

fixed bed heights (Lbed/Dbed = 0.50 and Lbed/Dbed = 0.75). The particles were homogenized and 

added to the bed until they reached stablished bed height of the respective test. The minimum 

fluidization velocity has been determined from the plot of bed pressure drop vs. superficial gas 

mass velocity, increasing and decreasing flow air rates for each studied case. The Umf was 

estimated through the graphical method [18], as the intersection of the pressure drop line of the 

fixed bed with that for the fluidization state [19]. The bed height, pressure loss and gas flowrate 

were registered. Also, each condition was repeated 3 times and each test was filmed so as to 

analyze the fluidization behavior.  

 

1.4. Exergetic indicators 

Echegaray et al. [14] proposed a nonstoichiometric equilibrium model in order to find the 

composition of syngas and the exergy efficiency (ηεx). This model is based on minimizing Gibbs 

free energy in the system [20]. It is derived from the important chemical reactions that occur during 

biomass gasification are based on the following assumptions: 1) biomass is represented by the 

ACCEPTED M
ANUSCRIP

T



general formula CHaOb. Due to the biomass contains insignificant amount of N y S in comparison 

to the preceding elements, they are not considered 2) the reactions are at thermodynamic 

equilibrium (at atmospheric pressure = 1 bar), 3) the reactions proceed adiabatically (heat losses 

neglected), 4) ash of biomass wastes are not considered, 5) the reactions of heat losses are 

neglected, 6) no chars living with the exit of the gasifier products.  

Taking into account that ηεx clearly helps determine efficiency improvements and reductions in 

thermodynamic losses attributable to a process, IP and SI can be calculated. The environmental 

impact can be reduced proposing measures to increase exergy efficiency, diminishing the energy 

losses [21]. It is clear that maximum improvement in the ηεx for a process is reached when the lost 

exergy (εL, kJ/h) is minimized. Therefore, different authors proposed the use of this concept to 

analyze a process [22], [23]. IP is given by:  

 

IP = (1 −
ηεx

100
) εL (3) 

 

This indicator is used for comparing different conditions of processes, even though the obvious 

maximum improvement for a given process is its total exergy loss. On the other hand, the exergy 

analysis results are relative to this environment, generally the actual local environment. This 

linkage between exergy and the environment has implications regarding the environmental impact. 

So, it is possible to utilize exergy analysis to assess a system and its environmental impact. For 

that, the SI is defined as the relation between the input exergy and the exergy losses of the system. 

This index can get information about the process effect on the environment, and it is considered a 

significant evaluation parameter [23]. The SI is calculated as: 

 

SI =
1

1 − (ηεx 100⁄ )
 (4) 

 

Both index, IP and SI, vary with the different operational parameters, such as SBR, ER, T and 

waste moisture.  

 

1.5. Kinetic analysis. Theory 
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There are two main mathematical approaches to obtain the kinetics parameters from the 

thermogravimetric data: model-free (isoconversional) methods and model-based (non-

isoconversional) methods [24]. Model-free methods enable determination of kinetic parameters 

without knowledge of the reaction mechanism [25], while model-based methods allow the 

determination of the controlling reaction mechanism and reaction order. In this work, DAEM was 

applied. This method, developed by Vand [26], has been widely utilized for analyzing the complex 

reactions occurring during the pyrolysis of fossil fuels. This model assumes that number of parallel 

irreversible first order reactions that have different kinetic parameters occur simultaneously. 

Apparent activation energy (E), apparent pre-exponential factor (A) and f (E) can be calculated by 

following expression [27]: 

 

ln β T2⁄ =ln RA E⁄ +0.6075- E RT⁄  (5) 

 

 

Where β is the heating rate and R is the universal gas constant (0.008314 kJ/molK). Eq. (5) 

develops a linear relationship between lnβ/T2 and 1/T with the slope of (-E/R). The E and A can 

be determined from the slope and intercept of the plots. 

 

2. Results and discussion  

2.1. Characterization 

Table 1 shows the results obtained by ultimate and proximate analysis for the studied winery 

wastes. Taking into account the first analysis, the marc has the highest carbon (52.91 %) and 

hydrogen (5.93 %) contents. Furthermore, the stalk has the highest nitrogen content (6.37 %). The 

results are in agreement with those of other investigators [27], [28]. 

The immediate analysis results show the moisture content of analyzed biomass wastes is lower 

than 10%. According to Mc Kendry [29], the thermal conversion needs low moisture content 

biomass, generally less than 50%. In order to know the biowastes easiness to be ignited and then 

gasified, the volatile matter and fixed carbon contents must be known [29]. So, he grape marc 

present the highest volatile matter content. The ash content can be a problematic aspect in the 

energetic use of the lignocellulosic biomass. It is significant to note that the presence of alkali 

metals and chlorine causes the components of the ash melt and volatilize at low temperatures, even 
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though, their total composition in biomass is usually lower than that of coal. The studied wastes 

have a low percentage of ash, affecting positively the high heating value (HHV) [30]. The high 

content of organic matter makes these wastes very suitable for thermal treatment [31] 

The concentrations of several elements in the studied biomass are determined.  Fe, Cr, Pb, Sn, Mo, 

Ni, Ag, Ti, V, Mn, Cd, B are not detected. The other elements concentrations are showing in Table 

2. Al, Ca, K, Mg, Na and Si are defined as major elements, and As, Ba, Co, Cu, In, Li, P, Sr, Tl 

and Zn as trace elements. Comparing with the limits of trace element described in the EN ISO 

17225:2014 standard, the As contents were higher than stablished limits, for marc and stalk. The 

Cu content in the tested biomass reached 14.86 mg/kg, exceeding the limit for commercial use but 

not for the industrial use. The Zn contents are lower than stablished limits, for both lignocellulosic 

winery wastes. 

The trace elements contents in the raw material is important, considering the environmental 

protection, due to the dust particles have these elements in their surface and, they are discharged 

to the atmosphere. If the gas cleaning systems of dust have a low efficiency, high heavy metals 

quantities are emitted. So, according to Wang et al. [32] the elements can be classified in different 

groups, taking into account their behavior during the thermal process. Group I includes the non-

volatile elements as Ba, Cu and Sr. As, Li and Zn belong to the group II (semi-volatile elements). 

Group III includes volatile elements as In and Tl. According to Cui et al. [33], most trace elements 

are relatively enriched in the gas stream during the gasification process. They found that Ca, K, 

Mg and P were adhered to the surface of bed materials and Zn are principally partitioned into the 

gas stream. 

In order to estimate the quantity of emissions related to the quantity of produced energy, an 

emission factor was used [34]. This factor considers the trace elements content in the biomass 

wastes and their HHV and it was calculated for the semi-volatile and volatile elements. Table 5 

shows the calculated values of this emission factor for As, In, Li, Tl and Zn. The obtained values 

of this factor are similar for both winery wastes.  

Considering the Na and K release during the gasification process, Ftehi et al. [35] concluded that 

during the pyrolysis stage up to 55% and less than 10% of Na and K, respectively, was released. 

However, Bartocci et al. [36], observed that the Na release is about 65% of the initial quantity for 

gasification and, the Ca, Mg and K release is about 45%.  
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On the other hand, the Na, K, Mg, P and Ca contents in the biomass are very important due to 

these elements. Their reaction with Si produces an adhesive liquid phase, which can blockage the 

reactor outputs. 

The contents of lignin, hemicellulose and cellulose vary depending on the biomass type; also, for 

the same biomass type, these contents depend on the environmental conditions of the generation 

place. Agree to the current literature, the woody vegetable species have strongly bound fibers and 

they are richer in lignin, however, herbaceous vegetables have more loosely bound fibers, 

indicating lower lignin content [37]. Considering the obtained results (Table 3), the highest 

hemicellulose and cellulose contents are present in stalk, 5.78 and 16.02%, respectively. The marc 

has the highest lignin content, 37.97%. McKendry worked with different biomass and he reported 

values for cellulose, hemicellulose and lignin equals to 40–50%, 20–40% and 10–40%, 

respectively [29] and Yang, et al. determined hemicellulose, cellulose and lignin contents about 

20–40, 40–60, and 10–25% respectively [38]. Hence, the obtained values are in the order of 

reported by these authors. Taking into account the lignin content, it is important to note that, during 

the thermal decomposition of this compound, benzene rings with high stability and high molecular 

weight compounds are produced, contributing to the char and tar production [39].  

 

2.2. Exergetic Improvement Potential and Sustainability Index 

In order to analyze the IP and SI with temperature variation, SBR value was set at 2, ER at 0.25 

and the moisture content of the biowastes was equal to 13%. Figure 4 (a) shows this variation for 

the stalk gasification. Both studied biowastes present similar behavior. The exergetic efficiency 

increases when the gasifier temperature augments and consequently, SI growths and IP diminishes. 

These results are similar to those obtained by Zhang et al. [40]. The lower temperatures favor the 

exothermic reactions of CH4 and CO2 formations. On the other hand, the higher temperatures favor 

the endothermic reactions as the H2 and CO formation reactions. Therefore, in the product, moles 

of H2 and CO increase and consequently the exergy efficiency of the process. So, in the syngas 

composition, the moles of these gases augment and consequently, exergetic efficiency of the 

process increases. 

To study the ER influence on the IP and SI indexes, the gasifier temperature was set at 850ºC and 

SBR at 1.5 and the moisture content of the biowastes was equal to 13%. Figure 4 (b) shows that 

SI value of the stalk gasification diminishes and IP value augments with the ER increasing. Marc 
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presents analogous comportment. It is due to the O2 content in the gasifying agent promotes the 

combustion reactions. During the gasification process, these reactions are not desirable due to, 

they compete with the reactions to transform the biomass in syngas rich in H2 and CO contents. 

Marcs present similar behavior.  

Considering the influence of SBR in the IP and SI indexes, this parameter was varied when ER 

value was equal to 0.25, the gasifier temperature equal to 850ºC and the moisture content of 

biowastes was equal to 13%. IP softly augments and SI decreases slightly when SBR growths 

(Figure 5 (a)). This comportment is due to the physical exergy of the steam used as the gasifying 

agent. There is a necessity of supply energy to the water to transform it in steam. So, physical 

exergy is related to the syngas sensible heat and this is lost when the gas cools and it influences 

the exergetic efficiency value. Increasing the SBR value, the water content in the produced gas 

flow increases and also it contributes to the physical exergy.  

The high moisture content affects the chemical reactions in the process. To understand how the 

gasification responds to variations in biomass moisture content, the process was assessed for a 

range of biomass moisture fractions. The results are also shown in Figure 5 (b). Both wastes 

present similar behavior. In this case, the gasification agent was air (SBR = 0), the temperature 

was equal to 850ºC and ER value equal to 0.25. The effect of moisture content was studied between 

0 and 40%. The IP increases and SI decreases with the moisture content augments. In this case, 

the rate of CO2 production growths, which itself is an exothermic process. In steam-biomass 

gasification, the liberated heat is consumed by water evaporation rather by the endothermic CO 

and H2 reactions. Thus, the CO concentration decrease significantly and the H2 concentration 

increase slightly, and then it decreases, explaining the exergetic efficiency decreased with biomass 

wastes moisture and consequently, SI and IP diminishes and augments, respectively. On the other 

hand, moisture content has a negative effect on the chemical and physical exergy. 

 

2.3. Kinetic analysis 

The thermal decomposition of the studied biomass wastes at three heating rate, 5, 10 and 15ºC/min 

under steam/air mixture atmosphere show that the gasification takes place in three well defined 

stage. Figures 6 and 7 show the weight loss and their derivative TG (DTG) curves.  

The first step involves heating and weight loss due to the water vaporization and it is produced 

between 25 and 200ºC, constituting an around 1.82-2.96% weight loss for all the biomass wastes. 

ACCEPTED M
ANUSCRIP

T



The second step corresponds to pyrolysis namely, the thermal decomposition in the absence of 

oxygen. During this stage (between 200 and 375ºC), the volatile compounds are released and 

primary char residue is formed. It can be considered that it constitutes a transition stage with the 

maximum weight loss and abrupt decomposition reaction. The weight loss of this step is about 

58.96-59.30%. The maximum weight loss rate of winery wastes is reached at 173-283ºC, 251-

297ºC and 303-324ºC at heating rates equal to 5; 10 and 15ºC/min, respectively. These thermal 

ranges variation is typical of degradation of lignocellulosic biomass, considering that the cellulose, 

hemicellulose and lignin are the main components of these biowastes [41].The last step (char 

gasification) occurs between 375 and 900ºC, its weight loss represents a 15.82-19.28% [42]. The 

little differences in this temperature range, for winery wastes, can be attributed to composition 

variation. 

Considering the kinetic analysis, the Eq. (5) was used to calculate the values of activation energy 

at each selected level of conversion rate α from the Arrhenius plot of ln (β/T2) versus 1/T. The 

conversions from 0.1 to 0.9 was considered for describing the application of DAEM (Figure 8), it 

is due to  the fact that for higher conversions the plots are nonlinear and show different behavior 

due to the different chemical reactions occur [27]. The apparent activation energy and pre-

exponential factor values are reported in Table 6. The E dependence with α shows that the 

decomposition is not a single reaction stage but, it includes the contributions of parallel reaction 

steps on the global reaction rate (Figure 9).  

In this way, global kinetic parameters are less useful for studying the thermal degradation of the 

fuels since particular reactions not can be defined [43]. Nevertheless, this analysis is relevant in 

order to obtain general tendencies, with particular regard to the assessment of the reactivity of the 

fuels.  

 

2.4. Flow characteristics of the waste winery-sand mixtures 

Figures 10 and 11 show the pressure drop versus air velocity (characteristic curve), to increasing 

and decreasing flow air rates for each studied case. The average values of this parameter for each 

biowastes and conditions are shown in Table 7. The Umf value increases with the Lbed/Dbed 

augmentation, both for pure biomass particles and for binary mixtures with sand, as predictable, 

due to the bed weight. This parameter decreases, for the same Lbed/Dbed ratio, with the sand addition 

due to the minor diameter of this material, the increasing voidage and the high irregularity of the 

ACCEPTED M
ANUSCRIP

T



biomass particles [12]. These results show that the sand addition leads to an important effect on 

the bed hydrodynamics. A higher Umf signifies a disadvantage considering the energy 

consumption. Considering the obtained Umf values for marcs and stalks, for a same biomass/sand 

ratio, an important difference is not observed due to a compensation of particle diameter, density 

and voidage effects on the hydrodynamic behavior. For a determined biomass-sand mixture, very 

small differences were observed considering the Lbed/Dbed ratio. 

Before reaching Umf, the bed pressure drop presents a linear relationship with increasing air 

velocity. During this stage, the bed height keeps steady without any bed expansion. The obtained 

curves presented segregation during fluidization, when the air velocity increases, the Umf values 

are not associated to a single point. This behavior is verified with the high hysteresis, characterized 

by the differences between the up flow and the down flow curves. This comportment shows that 

the particles are reorganized during the fluidization process. For gas velocities higher than the 

minimum fluidization velocities, the growing bubbles in the bed were observed, causing the 

slugging and channelization, favoring the segregation and producing a large pressure fluctuation 

[18]. The dissimilarities in density and sizes between the mixture particles produce the segregation 

in the bed. These phenomena reduce the fluidization quality. Commonly, the sand (higher density) 

migrates to the bottom of the bed, and the biomass (lower density) migrates to the top. The different 

shapes of sand and biomass also affects the mixing and segregation performance [44]. 

 

Conclusions  

This work presents studies on the gasification in fluidized bed of lignocellulosic winery wastes 

from Cuyo Region (Argentine). Considering the characterization results, it was observed: 

 The studied lignocellulosic biowastes have a low percentage of ash, affecting positively the 

high heating value. The high content of organic matter makes these wastes very suitable for 

thermal treatment.  

 The concentrations of several elements in the studied biomass are determined.  Fe, Cr, Pb, Sn, 

Mo, Ni, Ag, Ti, V, Mn, Cd, B are not detected. The As content in both winery wastes exceeds 

the limits stablished in the EN ISO 17225:2014 standard and Cu content surpasses the limit 

for commercial.  

 Taking into account the semi-volatile and volatile elements, to estimate the quantity of 

emissions related to the quantity of produced energy, an emission factor was used. The 
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obtained values of this factor are similar for both winery wastes. Also, Na, Ca, K and Mg can 

be released during the gasification process. Further, these elements can react with Si, 

producing an adhesive liquid phase, which can blockage the reactor outputs. 

 

On the other hand, the exergy analysis allowed to analyze the IP and SI variation with the different 

operational variables, found the following conclusions:   

 SI growths and IP diminishes when the gasifier temperature augments. 

 SI value diminishes and IP value augments with the ER increasing.  

 IP softly augments and SI decreases slightly when SBR growths.  

 

In consideration of the results of kinetic analysis, it was observed: 

  Three stages during thermal decomposition were observed, where the second step called 

pyrolysis shows the highest weight loss.  

 The E dependence with α, for both wastes, shows that the decomposition is not a single 

reaction stage, but includes the contributions of parallel reaction steps on the global reaction 

rate.  

 The average E value of stalk is higher than these values presented for the marc, however, the 

difference is not very significant.  

 

Taking into account the fluid-dynamic analysis, the following conclusions were obtained: 

 When the biomass is pure, the minimum fluidization velocity (Umf) is higher than this 

parameter observed for the biomass-san mixtures and, segregation, slugging and 

channelization in all studied cases.  

 The non-desired phenomena are minor when the sand is added. Its addition improves the 

behavior of both winery wastes. It is important to consider that the heat release during the 

gasification process could produce differences in the temperature and gas velocity in the bed, 

varying the fluidization regime in the gasifier.  
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Figure captions 

 

 

Figure 1. Particle size distribution of the considered biomass particles. 

  

 

 

Figure 2. Graphic of weight loss equipment used. 
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Figure 3. Schematic diagram of the fluidized bed experimental setup. (1) Compressor, (2) filter-

regulator, (3) needle valve, (4) rotameter, (5) plenum, (6) distributor plate, (7) biomass particle 

bed, (8) pressure sensors, (9) data acquisition computer, (10) bed support and (11) power supply. 
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Figure 4. a) Effect of temperature on the IP and SI of stalk gasification process, b) Effect of ER 

on the IP and SI of stalk gasification process. 

Figure 5. a) Effect of SBR on the IP and SI of marc gasification process, b) Effect of moisture 

content on the IP and SI of marc gasification process. 
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Figure 6. Weight loss and derivatives curves for grape stalk at different heating rates 

  

Figure 7. Weight loss and derivatives curves for grape marc at different heating rates 

 

 

 

  

Figure 8. Linear regression to conversion range 0.1-0.9 for a) grape stalk and b) grape marc.  
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Figure 9. Dependence of the activation energy on the extent of evaluated conversion.  

 

 

 

 

Figure 10. Hydrodynamic curves for: a) pure stalk and b) stalk/sand mixture (…… decreasing 

gas velocity, L/D = 0.5, …*… decreasing gas velocity, L/D = 0.75, -x- increasing gas velocity, 

L/D = 0.5, -- increasing gas velocity, L/D = 0.75). 
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Figure 11. Hydrodynamic curves for: a) pure  marc and b) marc /sand mixture.(…… 

decreasing gas velocity, L/D = 0.5, …*… decreasing gas velocity, L/D = 0.75, -x- increasing gas 

velocity, L/D = 0.5, -- increasing gas velocity, L/D = 0.75). 
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Table 

 

Table 1. Results of Proximate and Ultimate Analysis (Dry Basis, Weight Percentage). High 

heating values (HHV) 

Biomass type 

Ultimate analysis (%), dry basis Proximate analysis (%), dry basis High 

heating 

value HHV 

(MJ/kg) 

Low 

heating 

value LHV 

(MJ/kg) 
C H O* N S Moisture 

Volatile 

matter 

Fixed 

carbon 
Ash 

Grape stalk 46.14 5.74 37.54 6.37 4.21 7.70 55.84 23.07 10.16 18.34 17.08 

Grape marc 52.91 5.93 30.41 5.41 5.34 8.38 68.60 21.98 8.81 20.41 19.11 

* By difference 

Table 2. Metals contents in the marc and stalks (dry basis) 

 Al (mg/kg) As (mg/kg) Ba (mg/kg) Ca (mg/kg) Co (mg/ kg) Cu (mg/ kg) 

Marc 26.97+0.02 2.12+0.01 5.11+0.01 165.40+0.10 3.54+0.01 14.86+0.03 

Stalk 28.86+0.03 3.65+0.01 5.36+0.02 276.60+0.15 3.57+0.01 17.31+0.02 

 In (mg/ kg) K (mg/ kg) Li (mg/ kg) Mg (mg/ kg) Na (mg/ kg) P (mg/ kg) 

Marc 8.27+0.02 160.70+0.15 5.76+0.01 48.67+0.03 105.90+0.10 72.26+0.05 

Stalk 8.14+0.02 191.90+0.10 5.99+0.02 63.72+0.04 149.10+0.15 63.64+0.05 

 Si (mg/ kg) Sr (mg/ kg) Tl (mg/ kg) Zn (mg/ kg)   

Marc 4.04+0.01 0.80+0.01 10.55+0.03 22.36+0.02   

Stalk 4.22+0.01 1.75+0.01 10.38+0.03 24.26+0.02 
  

 

 

Table 3. Contents of lignin, cellulose and hemicellulose determined by ASTM standard methods 

 

 Marc Stalk 

Hemicellulose (%) 4.96+0.01 5.78+0.01 

Cellulose (%) 15.31+0.03 16.02+0.02 

Lignine (%) 37.97+0.05 30.79+0.04 
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Table 4. Physical properties characterization and corresponding Geldart classification on 

behavior of the considered biomass and sand particles  

Material  GC Density Size  

  

   (g/cm3) mm mm 

Marc  B 1.10±0.005 

 

0.60-1.00 0.81 

Stalk  B 0.95±0.003 0.60-1.00 0.87 

Inert material of bed  B 2.34±0.3 0.25-0.71 0.33 

 

 

Table 5. Calculated emission factor of different trace elements for winery wastes 

 As (kg/TJ) In (kg/TJ) Li (kg/TJ) Tl (kg/TJ) Zn (kg/TJ) 

Marc 1.59*10-4 1.59*10-4 4.33*10-4 1.59*10-4 1.67*10-3 

Stalk 3.03*10-4 3.03*10-4 4.98*10-4 3.03*10-4 2.07*10-3 
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Table 6.  Activation energy and pre-exponential factor 

Wastes Α E (kJ/mol) A (s-1) R2 

 

Grape stalk 

0.1 166.65 2.91 1019 0.92 

0.2 204.00 9.06 1022 0.96 

0.3 144.85 3.52 1015 0.92 

0.4 235.42 8.51 1024 0.99 

0.5 193.52 1.95 1019 0.99 

0.6 117.93 3.18 1010 0.99 

0.7 246.79 7.82 1021 0.98 

0.8 192.54 1.32 1010 0.90 

0.9 205.96 3.30 1008 0.98 

Average 189.74+ 41.13 9.57 1023  

 

Grape marc 

0.1 98.08 6.90 1016 0.99 

0.2 81.63 7.01 1013 0.97 

0.3 100.31 1.42 1016 0.99 

0.4 99.69 6.94 1015 0.99 

0.5 160.61 4.36 1015 0.99 

0.6 144.23 5.42 1013 0.92 

0.7 169.27 8.09 1015 0.98 

0.8 87.60 2.17 1007 0.99 

0.9 166.66 3.39 1011 0.99 

Average 123.10+ 34.69 9.96 1019  
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Table 7. Minimum fluidization velocity for marc and stalk at different conditions 

Geldart Group B 

 

Particle 

Biomass/Biomass+Sand 

% vol. 

Lbed/Dbed   𝑥𝑏 𝛿  

(g/cm3) 
�̅�𝑝 

(mm) 

𝑈𝑚𝑓𝑒𝑥𝑝.𝑖 

(m/s) 

  

Marc 

 

100 

 

 

0.5 1 1.10 0.81 0.40 

0.75 1 1.10 0.81 0.44 

  

Stalk 

0.5 1 0.95 0.87 0.53 

0.75 1 0.95 0.87 0.56 

  

Marc 

 

75 

  

  

  

0.5 0.585 1.41 0.59 0.32 

0.75 0.585 1.41 0.59 0.33 

  

Stalk 

0.5 0.549 1.30 0.62 0.27 

0.75 0.549 1.30 0.62 0.30 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T


