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ABSTRACT 

The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied 

in relation to possible applications in molecular electronics. In this work, the effect on the 

electronic structure of an additional anchor to the S−Au bond using 6-mercaptopurine as a model 

system has been investigated. Results from XPS, NEXAFS and DFT confirm that this molecule 

adsorbs on Au(111) with S−Au and iminic N−Au bonds.  Combined UPS and DFT data reveal 

that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular 

to the surface with negative charges residing at the metal/monolayer interface and positive 

charges at the monolayer/vacuum interface which lowers the substrate work function. STM 

shows two surface molecular domains: a well-ordered rectangular lattice where molecules are 

tilted in average 30○ with respect to the substrate and aligned 6MP islands where molecules are 

standing upright.  Finally, we found a new electronic state located at -1.7 eV with respect to the 

Fermi level that corresponds to a localized π molecular state while the state corresponding to the 

N−Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV). 
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 3

INTRODUCTION 

Purines are heterocyclic compounds consisting of an imidazole ring fused with a pyrimidine 

ring. These aromatic molecules are present in diverse biological systems and take part in the core 

structure of guanine and adenine. One of the most important purines is 6-mercaptopurine (6MP), 

a synthetic nitrogen containing heterocyclic thiol that is very effective for the treatment of 

leukemia, autoimmune disorders and other diseases.1,2 

The adsorption of 6MP on solid substrates have attracted considerable attention because some 

of the problems found in the pharmacological treatment could be circumvent using 6MP 

functionalized nanoparticles as carriers.3–5  As a consequence, the structural properties of 6MP 

over solid surfaces were studied over the past years.  6MP chemisorbs strongly on Au surfaces 

after the formation of S−Au thiolate and iminic N−Au bonds, i.e. it forms a double anchor to Au 

substrates.6  The molecule self-assembles on Au(111) single crystal surfaces lifting the substrate 

reconstruction.7 Interestingly, these ordered structures do not contain staple moieties 

(RS−Auad−SR) which are a proposed adsorption model for thiol based self-assembled 

monolayers (SAMs).8  Chemisorption of the molecule on Au(111) yields short-range ordered 

two dimensional lattices whereas chemisorption on Au(001) results in long-range well-ordered 

SAMs.9  6MP molecules bind to silver surfaces with a tilted molecular plane,10,11 whereas they 

adsorb with a flat lying geometry over graphene layers.12 Vibrational spectroscopic 

measurements suggest that 6MP molecules bind on Au surfaces with the molecular plane 

standing upright.13  Although the molecular structure of the adsorbate has been studied on 

different substrates, its electronic structure has only been measured on graphene surfaces using 

photoemission spectroscopy.12 Furthermore, little is known about the electronic structure of thiol 
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 4

SAMs with an additional N−Au interaction.  Thus, the study of the electronic density of states of 

6MP on Au is both relevant and interesting.  

In this work we present a detailed study of the valence electronic structure of 6MP self-

assembled monolayers on Au(111) surfaces. New insights arise from the combination of 

photoemission measurements, and density functional theory (DFT) calculations.  Furthermore, 

near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and scanning tunneling 

microscopy (STM) measurements combined with DFT calculations provide a clear description of 

the molecular adsorption geometry. 

 

EXPERIMENTAL SECTION 

Materials. Photoelectron and near edge X-ray absorption fine structure spectroscopy 

measurements were carried out using a Au(111) single crystal (MaTecK GmbH). 6-

Mercaptopurine was obtained from Sigma-Aldrich and used as received. Absolute ethanol of 

analytical grade was used to prepare solutions.  

Sample Preparation. The Au(111) crystal was Ar+ sputtered and annealed until no impurities 

are detected by XPS. Self-assembled monolayer formation was performed under ultrapure Ar 

atmosphere in a ultrahigh vacuum (UHV) chamber equipped with a transfer system that allows 

transferring the Au(111) sample between UHV and the atmospheric liquid reactor attached to the 

UHV chamber (described fully elsewhere).14 The clean Au crystal was placed in contact with a 1 

mM solution of 6-mercaptopurine in ethanol at room temperature overnight.  This was followed 

by copious rinsing with ethanol and drying with an Ar stream.  Afterwards the functionalized 

Page 4 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5

surface is transferred back to the UHV analysis chamber.  Note that we tried varying the 

molecular coverage by changing the immersion time from 30 min to 24 hours observing the 

same coverage in all cases. 

Photoelectron Spectroscopies. X-ray Photoelectron Spectroscopy (XPS) measurements were 

performed using an UHV chamber (base pressure 5x10-10 mbar) with a SPECS spectrometer 

system equipped with a 150 mm mean radius hemispherical electron energy analyzer and a nine 

channeltron detector. XP spectra were acquired at a constant pass energy of 20 eV using a 

monochromatic Al Kα (1486.6 eV) source operated at 15 kV and 20 mA at a detection angle of 

20° with respect to the sample normal. Binding energies are referred to the Au 4f7/2 emission at 

84 eV. Ultraviolet Photoelectron Spectroscopy (UPS) spectra were acquired using a He I 

radiation source (21.21 eV) with normal detection using a constant pass energy of 2 eV.  

Samples were biased -10 V in order to resolve the secondary electron cut-off in the UPS spectra.  

Work function values were determined from the width of the UPS spectra as discussed below. 

Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS) measurements were 

carried out at the Brazilian Synchrotron Light Source (LNLS), Campinas, Brazil using the planar 

grating monochromator (PGM) beamline for soft X-ray spectroscopy (100-1500 eV) as the 

monochromatic photon source. Experiments were performed using the photoemission end station 

with a base pressure of 10-10 mbar. NEXAFS spectra were obtained by measuring the total 

electron yield (electron current at the sample) simultaneously with a photon flux monitor 

(electron current at a Au mesh). The final data were normalized with respect to the Au mesh 

electron current to correct for fluctuations in the beam intensity. NEXAFS spectra were recorded 

at 90°, 70°, 50° and 30° photon incidence angle with respect to the sample surface. All angle 

dependent geometry effects (for example sampling a different number of surface species) are 
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 6

eliminated by normalizing the resonant intensities to the angle-independent K-edge jump in all 

spectra.15  

Scanning Tunneling Miscroscopy.  STM imaging was done in air in the constant current 

mode with a Nanoscope IIIa microscope from Veeco Instruments (Santa Barbara, CA) with 

mechanically cut Pt-Ir tips (80:20%, Goodfellow, UK). Typical tunneling currents, bias voltages, 

and scan rates were 0.3 to 0.5 nA, 200-500 mV, and 1-5 Hz, respectively.  Evaporated Au films 

on glass with (111) preferred orientation (AF 45 Berliner Glass KG, Germany) were used as 

substrates. After annealing for 5 min using a hydrogen flame, the Au substrates exhibit 

atomically smooth (111) terraces (usually 100-500 nm wide) separated by monatomic high steps. 

Computational methods.  Electronic structure calculations were performed using density 

functional theory (DFT) with the periodic plane-wave basis set code VASP 5.2.12.16 We have 

followed the scheme of non-local functional proposed by Dion et al.17, vdW-DF, and the 

optimized Becke88 exchange functional optB88-vdW18 to take into account van der Waals 

(vdW) interactions. The projector augmented plane wave (PAW) method has been used to 

represent the atomic cores with PBE potential.19 The electronic wave functions were expanded in 

a plane-wave basis set with a 420 eV cutoff energy. Optimal grid of Monkhorst-Pack20 k-points 

7×3×1 has been used for numerical integration in the reciprocal space of the �2 0
3 6� unit cell. 

The Au(111)-(1×1) substrates were represented by a five atomic layer and a vacuum of ~17 Å 

that separates two successive slabs. Surface relaxation is allowed in the three uppermost Au 

layers of the slab and the atomic coordinates of the adsorbed species were allowed to relax 

without further constraints. The atomic positions were relaxed until the force on the 

unconstrained atoms was less than 0.03 eV Å-1. Two 6MP radicals (without the H atom on the 
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 7

−SH group) per unit cell are placed just on one side of the slab and all calculations include a 

dipole correction. Radical 6MP species were optimized in an asymmetric box of 20 Å × 20 Å × 

40 Å.  

 

RESULTS AND DISCUSSION 

Figure 1a-d shows the C 1s, N 1s, S 2p and Au 4f XPS spectra corresponding to the initial 

Au(111) surface (bottom spectra) and the 6MP modified surface (top spectra).  Initially there is 

no C, S or N present on the surface and only Au related signals are observed. After formation of 

the 6MP self-assembled monolayer XPS shows the expected presence of C, N and S on the 

surface as well as the attenuation of the Au signal. The corrected XPS C:N:S ratio is 5.3:4.1:1 

which is in very good agreement with the expected 5:4:1 stoichiometric ratio (see Figure 1 top).  

The C 1s spectrum shown in Figure 1a could be fitted with three components positioned at 284.2, 

285.5 and 286.0 eV. The relative area of the peaks is 1:3:1 in excellent agreement with the 

assignment of Boland et al.:7 the 284.2 eV component is due to C5, the 285.5 eV component is 

due to C2, C4 and C8 and the 286 eV component is due to C6.7,21  The S 2p XPS region 

corresponding to the 6MP SAM displayed in Figure 1b shows the characteristic doublet with the 

S 2p3/2 at ∼162 eV and the S 2p1/2 at 163.3 eV with the expected 2:1 intensity ratio.22  The 

binding energy values indicate formation of thiolate S−Au bonds and the absence of thione or 

thiol groups on the surface,23 i.e. all S atoms on the molecule form a thiolate bond with Au. 

The N 1s spectrum of 6MP SAMs requires further considerations.  6MP has several possible 

thione (S=C–)/thiol (HS–C–) tautomeric configurations that differ in the number of iminic (=N–) 

and aminic (–NH–) nitrogens.24,25 In the thione tautomer the molecules have two aminic and two 
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 8

iminic nitrogens, whereas in the thiol tautomer the molecules have one aminic and three iminic 

nitrogens (Figure 1 top).  Consequently, the N 1s XPS spectrum shown in Figure 1c contains two 

contributions: the low binding energy component at 398.4 eV is due to iminic nitrogens whereas 

the high binding energy component at 400.2 eV is due to aminic nitrogens.26  In agreement with 

Boland et al.7 we observe a 3:1 ratio between the iminic and aminic N components.  This 

suggests that the molecule is adsorbed in the thiol form with 3 iminic and 1 aminic nitrogens.  

Our DFT calculations indicates that one of the iminic nitrogens interacts with Au, however we 

do not expect this interaction to shift the N 1s binding energy position as SAMs with amine head 

and anchor groups have very similar N 1s binding energies.27–29  Thus our XPS measurements 

suggest that the molecule binds in the thiol form, with three iminic nitrogens and one aminic 

nitrogen ruling out the possible mixture of tautomers in the 6MP SAM under the conditions we 

employed for the formation of the monolayer. 

The Au 4f spectra in Figure 1d show the characteristic Au 4f7/2 (84.0 eV) and Au 4f5/2 (87.7 

eV) doublet with a 4:3 intensity ratio. The thickness (d) of the 6MP self-assembled monolayer 

can be estimated using the following equation: I = I0 exp(−d /λ cosθ), where I is the substrate 

intensity of the SAM-covered surface and I0 is that of the bare substrate, θ is the angle of 

detection with respect to the surface normal and λ is the photoelectron attenuation length (λ is 

equal to 42 Å for electrons with 1402 eV kinetic energy and self-assembled alkane chains).30 The 

estimated thickness is approximately 0.6 nm suggesting a monolayer of upright standing 

molecules.  Finally we can use the S:Au ratio to estimate the molecular coverage in the SAM.6  

This yields a coverage of 0.25 6MP molecules per Au surface atom (3.5 × 1014 molecules cm-2) 

in excellent agreement with estimations based on the electrochemical reductive desorption of 

6MP SAMs on Au(111).6 
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 9

 

Figure 1.  XPS spectra of the initial and of the 6MP modified Au(111) surface: (a) C1s, (b) S 2p, 

(c) N 1s and (d) Au 4f. Top: thiol and thione 6MP tautomers. 
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 10

The adsorption geometry of 6MP over Au(111) was determined using near edge X-ray 

absorption fine structure spectroscopy (NEXAFS).  Figure 2a shows the adsorption step-edge 

normalized N K-edge NEXAFS spectra measured at 90°, 70°, 50° and 30° photon incidence 

angle with respect to the sample surface.  The spectra display two main resonances: a N 1s to π* 

transition at 398.7 eV31 and a N 1s to σ* transition at 407.1 eV.12  Note that the π* resonance is 

attenuated probably due to intermolecular interactions or interactions with the substrate.32,33  The 

N 1s to π* transition is larger for normal incidence whereas the N 1s to σ* transition is larger for 

grazing incidence.  The observed normalized transition intensity dependence with photon 

incidence angle (θ) shown in Figure 2b indicates a tilted molecular plane in line with the dipole 

selection rules.15  Figure 2b also shows the calculated normalized π* curves for different angles 

between the vector π* orbital and the surface normal (α).15  Comparison of the experimental and 

calculated intensities as a function of photon incidence angle indicates a tilt angle between the 

molecular plane and the surface of 61° in line with the proposed vertical adsorption geometry on 

Au surfaces.13 
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 11

 

Figure 2. (a) N K-edge NEXAFS spectra taken from 6MP self-assembled monolayer on Au(111) 

as a function of photon incidence angle.  (b) Normalized N 1s to π* transition intensity as a 

function of photon incidence angle.  Also shown are the theoretical curves corresponding to a π 

system on a threefold symmetry substrate (dashed lines). 

 

The electronic structure of the 6MP SAM on Au(111) was studied using UPS. Figure 3 shows 

the UPS spectra corresponding to the bare Au(111) surface (red curve) and to the 6MP SAM on 

Au(111) (black).  Figure 3a shows the secondary electron cut-off and Figure 3b shows the 

occupied density of states below the Fermi Edge.  The UPS spectrum corresponding to the 

Au(111) surface shows the well-known electronic structure with a broad and flat 6s band below 

the Fermi edge and the intense 5d band showing one of the peaks at 2.84 eV.34 From the width 
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 12

(W) of the UPS spectrum we can calculate the work function (Φ) of our Au(111) substrate: Φ = 

21.21 eV – W = 5.35 eV which is in excellent agreement with values reported for this crystalline 

surface.35   

 

Figure 3. UPS spectra of the bare Au(111) substrate (red) and 6MP SAM on Au(111) (black). 

(a) shows work function changes (∆Φ) calculated from the secondary electron cut-off and (b) 

shows the occupied states.  Molecular states are highlighted in the 6MP/Au(111) minus Au(111) 

blue spectrum. 

 

The secondary electron cut-off shift observed in Figure 3a implies that formation of the 6MP 

self-assembled monolayer decreases the work function of Au(111) by -0.9 eV in agreement with 

the DFT calculations discussed below.  Thus, 6MP molecules form a dipole layer with negative 

charges at the SAM/metal interface and positive at the vacuum/SAM interface.36,37  We 
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 13

estimated a component of the molecular dipole perpendicular to the surface38 equal to 1.05 D 

from the work function change, using a surface density of 3.47 nm-2 and a relative dielectric 

constant of the SAM equal to 1.5.39  

When the 6MP monolayer is present on the Au(111) surface the Au 5d and 6s bands decrease 

in intensity as the adsorbate attenuates the photoelectrons.  Moreover, a new electronic state is 

observed at −1.7 eV below the Fermi edge which can be clearly seen when the Au(111) spectrum 

is subtracted from the 6MP spectrum (blue curve). No electronic states are typically observed in 

the region up to -1.5 eV below the Fermi edge in the UPS spectra of C2-C18 alkanethiol self-

assembled monolayers.34,40,41 However, Alloway et al found a very weak UPS band at −1.4 eV 

after formation of a C3 alkanethiol SAM on Au(111). This state was attributed to ionization of 

the S−Au orbital.42  Furthermore, benzenethiol SAMs on Au(111) also show a very weak UPS 

band at −1.4 eV attributed to photoemission from a S−Au orbital.43  In line with the above, our 

DFT calculations discussed below indicate that 6MP on Au(111) has a very weak electronic state 

at round −1.2 eV below the Fermi level which is due to the S−Au bond.  Thus the newly 

observed electronic state for 6MP on Au(111) at −1.7 eV cannot be attributed to photoemission 

from the S−Au orbital. 
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 14

 

Figure 4. Optimized structure of the �2 0
3 6� lattice on the unreconstructed Au(111) surface with 

two 6MP molecules per unit cell: (a) top view; (b)and (c) lateral view. Color of the atoms: 

yellow, Au; green, S; gray, C; blue: N; white, H. The unit cell is outlined. 

 

Density functional theory (DFT) calculations were carried out to analyze the electronic properties of 

the 6MP self-assembled monolayer on Au(111) and to gain molecular insight into the experimental 

results. The surface structure was modeled with a �2 0
3 6� unit cell, (2×3√3) in Wood notation, 

based on the short range ordered structure observed in the STM results discussed below (see 

Figure 8). The optimized structure is presented in Figure 4. It contains two 6MP moieties per unit 

cell, which corresponds to a surface coverage of 0.17 per unit cell (2.2×1014 molecules cm-2). For 

this coverage, we found that each 6MP molecular plane in the unit cell is tilted 34.8º and 27.4º 

with respect to the Au surface, i.e. a lower tilt angle than the estimated by NEXAFS (61º).  A 

likely reason for this discrepancy will be presented below when discussing the STM results.  The 

total thickness of the SAM resulting from the structure relaxation is nearly 0.3 nm, i.e. smaller 
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than the calculated from XPS measurements (0.6 nm).  This difference will also be discussed 

below.  The optimized molecular structure calculated with DFT involves a thiolate (S–Au) bond 

and a bond between an iminic nitrogen (=N7–) and a Au surface atom in line with the XPS 

observed 3:1 iminic:aminic ratio which rules out other adsorbed thione tautomers. 

The difference between the DFT calculated potential in the vacuum region and the Fermi level 

can be used to estimate the work function.35  Indeed, our DFT calculations yield a Au(111) work 

function of 5.4 eV in excellent accord with our UPS measurement (5.35 eV).  Formation of the 

6MP SAM changes the potential in the direction perpendicular to the surface yielding a work 

function value of 4.7 eV (Figure 5). 

 

Figure 5. Plane averaged electrostatic potential of a slab comprising five layers of Au atoms and 

one layer of 6MP. The Fermi energy level (EF = 0) is indicated by a green line. The work 

function of the clean and the adsorbed surfaces are indicated with respect to the EF. 
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 16

 

Therefore, the shift with respect to the clean surface is -0.7 eV. This result is in good agreement 

with the shift obtained from our UPS data (-0.9 eV). The smaller shift found in the calculations, 

by about -0.2 eV, may be related to the fact that the surface coverage modeled with DFT was 

30% smaller than in the experimental measurements. As discussed above, from the estimated 

work function change we can calculate the component of the molecular dipole perpendicular to 

the surface resulting in a value equal to µ⊥ = 1.12 D. 

 

Figure 6. (a) Total density of states of Au(111) surface and 6MP molecule gas phase (the energy 

level of the HOMO is set at 0 eV). (b) 6MP adsorbed on Au(111). Projected density of states on 

the S and N atoms are shown in different colours.  

 

Figure 6a depicts the total density of states (DOS) for the clean Au(111) surface and the DOS of 

6MP molecules in the gas phase (in this case the energy level of the HOMO (highest orbital 
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 17

molecular orbital) is set at 0 eV).  The main features observed in the clean Au(111) DOS are a 

broad and flat signal below the Fermi edge that corresponds to the 6s band followed by a sharper 

signal which corresponds to the 5d states. These features are in general agreement with the UPS 

spectrum of the clean surface presented in Figure 3. Figure 6b shows the total density of states 

after formation of the 6MP SAM over Au(111).  Projected density of states on the S and N atoms 

are shown using different colors. 

We also analyzed the electronic structure of the 6MP radical in the gas phase. DFT does not 

yield the correct HOMO−LUMO gap (it is underestimated) nor the precise HOMO and LUMO 

energy location with respect to the Fermi level. However, major trends can be discussed using 

the shape of the frontier orbitals. After adsorption of 6MP on the Au(111) surface the electronic 

states can be stabilized and shifted to lower energies. Keep in mind that after breaking the S−H 

bond the highest molecular orbital is single occupied (SOMO) and can accept charge from the 

Au surface. We have determined the surface plots of the 6MP radical frontier orbitals (insets in 

Figure 6b). The highest charge density in this orbital is on the S atom and has the correct shape 

to interact with the broad Au s band giving a hybridized electronic state at around -1.2 eV below 

the Fermi level. This fact is in excellent agreement with previous UPS measurements of alkyl 

and aromatic thiol SAMs.42–44 Here we should note that this band is too weak to be observed in 

our UPS spectrum. 

It is also clear in Figure 6b that a new sharp band appears at around −1.7 eV in excellent 

agreement with the UPS spectrum shown in Figure 3. Its narrow shape suggests a strongly 

localized state.  This state can be correlated with the HOMO-1 state of the 6MP radical which 

has a charge density of π character and is delocalized in the bicyclic system. The projected DOS 
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shows that the major electronic contribution to this band comes from the pyrimidine ring.  This is 

clearly seen in Figure 7 which shows the density of states integrated between -1.6 and -2 eV with 

larger charge densities in the pyrimidine ring N1 and N3 nitrogens.  On the other hand, the 

iminic nitrogen involved in the N−Au bond (N7) is strongly stabilized at -3 eV and is hybridized 

with the Au 5d band.  Finally, we expect a weak electronic coupling of the π electrons of the 

6MP aromatic structure to the metal substrate due to its adsorption geometry. 

 

Figure 7.  Charge density isosurfaces integrated between -1.6 and -2 eV for both 6MP molecules 

in the unit cell tilted 34.8° and 27.4° with respect to the Au surface. 

 

The electronic structure of the 6MP monolayer on Au(111) calculated with DFT agrees very well 

with that measured experimentally both in terms of the dipole layer formed and the valence band 

structure.  Furthermore, the molecular structure calculated with DFT is in line with the 
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 19

photoemission data predicting a thiolate bond and an iminic nitrogen bond with the Au(111) 

surface.  However, DFT predicts an average tilt angle of 31.1º between the molecular plane and 

the Au surface whereas NEXAFS estimates a 60º tilt angle.  In order to understand this 

discrepancy we carry out STM measurements of the 6MP SAM on Au(111).  

 

Figure 8.  (a) STM image corresponding to 6MP SAM on Au(111). (b-c) Zoom-in of image a, 

showing the two 6MP structures on the surface: (b) agglomerates and (c) 2D lattice. Molecule 

position in the lattice are indicated as blue dots. (d) Cross sections of the lines 1 and 2 indicated 

in the images. 

 

Figure 8a shows a large area STM image corresponding to a 6MP self-assembled monolayer on 

Au(111).  The surface coverage is 0.25 6MP molecules per Au surface atom, i.e. the same 

coverage employed in the photoemission experiments discussed above.  Smaller size images 

(Figure 8b-c) reveal that there are two distinctive regions on the surface: aligned bright spots 

(islands) coexisting with short range well-ordered molecular structures.  Figure 8c shows the 

short range well-ordered rectangular lattice present in the regions not covered by the aligned 
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6MP islands.  The lattice has a �2 0
3 6� structure as previously determined.6,9  Line cross sections 

of the aligned 6MP islands shown in Figure 8a and the well-ordered molecular structures shown 

in Figure 8c indicate that the apparent height of the former is at least three times as large.  Given 

that our DFT calculations indicate that the 6MP molecules form an average angle of 31.1° with 

respect to the surface in the well-ordered molecular structures, the larger apparent height of the 

aligned islands suggest that they are composed of standing upright 6MP molecules which are 

presumably interacting via π−π stacking. Note that the higher 6MP islands could be interacting 

with Au adatoms.  Recall that in our DFT model the 6MP surface coverage is around 30% 

smaller than the experimental surface coverage. In a denser monolayer, the π molecular rings 

would tend to stand upright in order to accommodate more molecules.  Note that the transition 

from flat lying to upright standing that takes place while increasing the molecular coverage has 

been observed for other aromatic molecules.45  Thus, the molecular aggregates observed with 

STM account for the different tilt angle estimations obtained from NEXAFS measurements and 

DFT calculations.  NEXAFS suggests a larger tilt angle as we observe the average between the 

standing upright molecules in the islands and the flatter molecules in the well-ordered structures.  

Consequently, the experimentally estimated monolayer thickness is larger than the DFT 

calculated thickness. 

 

CONCLUSIONS 

Photoemission measurements and DFT calculations show that 6MP molecules self-assemble on 

Au(111) bonding to the substrate via S−Au thiolate and iminic N−Au bonds.  The molecule 

binds to the metal surface in the thiol form with three iminic and one aminic nitrogens.  The 
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SAM forms a dipole layer with negative charges residing at the metal/monolayer interface and 

positive charges at the monolayer/vacuum interface.  This results in a work function decrease of -

0.9/-0.7 eV with respect to that of clean Au(111) surface depending of surface coverage.  DFT 

calculations show that the S−Au bond has a weak band in the total density of states located -1.2 

eV below the Fermi edge whereas the iminic nitrogen involved in bonding is stabilized at -3 eV 

and is hybridized with the Au 5d band.  Photoemission measurements show the presence of a 

new electronic state located at -1.7 eV that corresponds to a π localized molecular state with 

major electronic contributions in the pyrimidine ring.  STM measurements show that dense 6MP 

monolayers exhibit two molecular domains.  The first one corresponds to short range well-

ordered molecular structures where DFT estimates a 31º average angle between the 6MP 

molecular plane and the surface plane.  Whereas, the second domain consists of aligned 6MP 

islands. Height profiles suggest that 6MP molecules in the latter domain are upright standing 

presumably interacting via π−π stacking.  The coexistence of both molecular structures is in 

agreement with the 61º adsorption angle between the molecular plane and the substrate estimated 

from the NEXAFS measurements.  Our results provide new physical insight into the molecular 

and electronic structure of self-assembled monolayers bound to gold surfaces with two surface 

anchors. 
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