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TBB, 4,5,6,7-tetrabromobenzotriazole; CamKII, Calcium/Calmodulin-dependent 

protein kinase II; TMCB, 2-(4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-

benzo[d]imidazol-1-yl)acetic acid; TTP22, 3-[[5-(4-Methylphenyl)thieno[2,3-

d]pyrimidin-4-yl]thio]propanoic acid; His, Hexahistidine; 
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Abstract 

MutLα, a heterodimer consisting of MLH1 and PMS2, is a key player of DNA mismatch 

repair (MMR), yet little is known about its regulation. In this study, we used mass 

spectrometry to identify phosphorylated residues within MLH1 and PMS2. The most 

frequently detected phosphorylated amino acid was serine 477 of MLH1. 

Pharmacological treatment indicates that Casein kinase II (CK2) could be responsible 

for the phosphorylation of MLH1 at serine 477 in vivo. In vitro kinase assay verified 

MLH1 as a substrate of CK2. Most importantly, using in vitro MMR assay we could 

demonstrate that p-MLH1S477 lost MMR activity. Moreover, we found that levels of p-

MLH1S477 varied during the cell cycle. In summary, we identified that phosphorylation 

of MLH1 by CK2 at amino acid position 477 can switch off MMR activity in vitro. Since 

CK2 is overexpressed in many tumors and is able to inactivate MMR, the new 

mechanism here described could have an important impact on tumors overactive in 

CK2. This article is protected by copyright. All rights reserved 

Keywords: DNA mismatch repair; MLH1; MutLα; phosphorylation; CK2, Lynch 

syndrome. 
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Introduction 

The MMR system performs the postreplicative correction of base-base mismatches 

and insertion-deletion loops resulting from defective DNA replication. Dependent on 

the mismatch the recognition in humans is performed by MutSα (consisting of MSH2 

and MSH6 and mainly responsible for recognition of single base-base and small 

insertion deletion loops) or MutSβ (consisting of MSH2 and MSH3 and primarily 

responsible for the recognition of insertion-deletion loops containing up to 16 extra 

nucleotides in one strand) [1]. It has been shown, however, that there is a significant 

overlap between MutSα and MutSβ for the repair of insertion deletion mismatches, with 

MutSα playing a critical role in the repair of small (1-2) nucleotide insertion deletion 

mismatches [2]. After MMR initiation, MutLα (a human heterodimeric complex formed 

by MLH1 and PMS2) interacts with the MutS complex. MutLα, which harbors an 

endonuclease function, is likely to play an important role in both 5' and 3' directed MMR 

and is required for the recruitment of other proteins involved in further steps of the 

process [2,3].  

Germline mutations of MMR genes are responsible for the generation of Lynch 

syndrome, a disease mainly associated with colon cancer and one of the most common 

adult-onset hereditary tumor syndromes described so far [4]. One-third of the detected 

MLH1 gene alterations causing defective proteins are non-synonymous, non-

truncating variants, always missense variants, in the coding region [5,6]. In 12-17% of 

sporadic colon cancer patients, loss of MLH1 is induced by promoter hypermethylation. 

Although of great importance, the regulation of MMR proteins’ functionality is only 

poorly understood. The Casein kinase II (CK2) has been described to be involved in 

the phosphorylation of MSH2 and MSH6 which resulted in an increased binding to 

mismatches [7]. Romeo et al. demonstrated BRCA1 dependent phosphorylation and 
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instability of MLH1 which is attributed to Ataxia-telangiectasia-mutated/ataxia 

telangiectasia and Rad3-related (ATM/ATR) activity [8] and Jia et al. postulated a role 

of phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in phosphorylation and 

regulation of PMS2 stability [9]. Very recently, our group could show that 

phosphorylation-dependent degradation of PMS2 is mediated by its C-terminus and 

that treatment with the multi kinase inhibitor Sorafenib could inhibit this degradation 

process [10]. 

To get further insights into the regulation of MutLα we analyzed the phosphorylation of 

MLH1 and PMS2 in more detail, identified one highly promising phosphorylation site 

within MLH1 and determined its consequences for the function of MutLα in MMR. 

 

Material and Methods 

 

Cells 

HEK293 cells (ATCC® CRL-1573™), SW480 cells (CCL-228) and SW620 cells 

(CCL-227), purchased from the American Type Culture Collection (Rockville, MD), and 

HEK293T cells, obtained from Dr. Kurt Ballmer (Paul Scherrer Institute, Villigen, 

Switzerland), were grown in DMEM with 10% FCS. As previously described, MLH1 is 

not expressed in HEK293T [11].  

Sf9 cells (ATCC® CRL-1711™) were purchased from the American Type Culture 

Collection (Rockville, MD). 

 

Antibodies, recombinant Proteins and Plasmids  

Anti-MLH1 (G168-728) and anti-PMS2 (A16-4) were purchased from Pharmingen (BD 

Biosciences, Heidelberg, Germany), anti-beta Actin (Clone AC-15) was from Sigma-

Aldrich (Munich, Germany). Anti-phospho-AKT-substrate (23C8D2), hereinafter 
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referred to as anti-p-MLH1 and anti-Cyclin B1 (D5C10) were obtained from Cell 

Signaling (New England Biolabs GmbH, Frankfurt, Germany). Anti-MLH1 (N-20), anti-

PMS2 (E-19) and anti-Cyclin E (HE12) were from Santa Cruz (Santa Cruz 

Biotechnology, Heidelberg, Germany). Anti-fluorescence labeled goat anti-rabbit 

IRDye800CW and anti-fluorescence labeled goat anti-mouse IRDye680LT were from 

LI-COR (LI-COR Biosciences GmbH, Bad Homburg, Germany). 

Recombinant human CK2 alpha 1 subunit was purchased from Proteinkinase.biz 

(Biaffin GmbH & Co KG, Kassel, Germany). 

The pcDNA3.1+/MLH1 and pcDNA3.1+/PMS2 expression plasmids were described 

previously [12]. In addition, the MLH1-variants MLH1S477A, MLH1D478A and MLH1E480A 

were generated by site-directed mutagenesis (for detailed primer information see 

supplementary table 1) and overexpressed in HEK293T cells.  

All plasmids were confirmed by sequencing. All oligonucleotides were purchased from 

Sigma-Aldrich (Munich, Germany). 

pEGFP_C1 plasmid (negative control plasmid for the MMR assay) was purchased from 

Clontech Laboratories. 

 

Transient transfection and drug treatment 

Transient transfection or cotransfection of HEK293T cells was carried out as described 

previously [13]. In brief, HEK293T were cotransfected at 50-70% confluence with the 

following expression plasmids as indicated: pcDNA3.1+/MLH1 wild type (wt) or 

pcDNA3.1+/MLH1 variants together with pcDNA3.1+/PMS2 wt using 20 µl/ml of the 

cationic polymer polyethylenimine (Polysciences, Warrington, PA; stock solution 

1 mg/ml). 48 h post transfection cells were directly harvested or incubated for 8 h in 

Opti-MEM (Gibco) and treated as indicated for additional i) 16 h with Calyculin (50 nM) 

or 6 h with ii) CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) (75 μM), iii) AKT 
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inhibitor MK2206 (1 μM), iv) Calcium/Calmodulin-dependent protein kinase II (CamKII) 

inhibitor KN-93 (20 μM), v) CK2 inhibitor Emodin (75 μM), vi) CK2 inhibitor Silmitasertib 

(CX4945) (75 μM), vii) CK2 inhibitor 2-(4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-

benzo[d]imidazol-1-yl)acetic acid (TMCB) (75 μM), viii) CK2 inhibitor 3-[[5-(4-

Methylphenyl)thieno[2,3-d]pyrimidin-4-yl]thio]propanoic acid (TTP22) (50 μM) or ix) 

DMSO as a control. Finally, cells were harvested and protein extracts or 

immunoprecipitated proteins were analyzed by Western blotting. 

 

Western blotting 

Proteins were separated on 10% polyacrylamide gels, followed by Western blotting on 

nitrocellulose membranes and antibody detection using standard procedures or as 

described previously [13].  

If indicated the band intensity of the protein expression was quantified using Multi 

Gauge V3.2 program (Fujifilm, Tokyo, Japan). 

All experiments were performed at least three times. 

 

Phos-tag-PAGE  

For mobility shift detection of MLH1 and PMS2 phosphoprotein isotypes a Phos-tag-

PAGE was performed as described by Kinoshita et al. [14]. In brief, a gel consisting of 

a separating gel (7% w/v polyacrylamide and 357 mM Bis-tris-HCl, pH 6.8) and a 

stacking gel (4.0% w/v polyacrylamide and 357 mM Bis-tris-HCl, pH 6.8) was 

generated. The acrylamide-pendant Phos-tag ligand (Wako Pure Chemical, Osaka, 

Japan) (5 mM) and Zn(NO3)2 (10 mM) were added to the separating gel before 

polymerization. Gel electrophoresis was performed using the running buffer (pH 7.8) 

consisted of 50 mM Tris and 50 mM MOPS containing 0.1% w/v SDS and 5 mM sodium 
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bisulfite. After electrophoresis, the gel was soaked in a solution containing 25 mM Tris, 

192 mM glycine, 10% v/v MeOH and 1 mM EDTA for 10 min, and then soaked in the 

same solution but without EDTA.  

Wet Western blotting was carried out on PVDF membrane using 1xNuPAGE transfer 

buffer (Invitrogen, Carlsbad,CA, USA), containing 10% methanol and 0.5% sodium 

bisulfide (1 M). The proteins were blotted overnight in a cold room at 150 mA at least 

for 12 h. 

 

Immunoprecipitation 

Immunoprecipitations were carried out using 400-500 µg of whole cell extract from 

MutLα overexpressing HEK293T in a total volume of 500 µl precipitation buffer (50 mM 

HEPES-KOH (pH 7.6), 100 mM NaCl, 0.5 mM EDTA, 0.2 mM PMSF, 0.5 mM DTT, 1% 

Triton X-100) with 2 µg of anti-MLH1 (N-20), anti-MLH1 (G168-728) or anti-PMS2 

(A16-4). After one hour of agitated incubation at 4°C, 20 µl protein G sepharose (Santa 

Cruz Biotechnology, Heidelberg, Germany) were added and incubation continued for 

3 h. Precipitates were extensively washed in cold precipitation buffer using 

SigmaPrepTM spin columns (Sigma, Munich, Germany). Success of washing was 

always confirmed by running samples without antibody in parallel. The sepharose was 

boiled in SDS-PAGE sample buffer for 5 min and proteins were separated on 10% 

polyacrylamide gels, followed by Western blotting on nitrocellulose membranes and 

antibody detection using standard procedures.  

For immunoprecipitation of endogenous expressed MLH1 and confirming of 

endogenous p-MLH1S477 HEK293, SW480 and SW620 cells were applied by 

quadrupling the protocol as described above using anti-MLH1 (G168-728).  
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Peptide competition  

Non-specific binding of the used antibody anti-p-MLH1 (anti-phospho-AKT-substrate 

(23C8D2)) to epitopes others than MLH1 proteins was excluded by performing an 

immunizing peptide blocking experiment. Before proceeding with the staining protocol, 

the antibody was neutralized by adding 10 µg/ml of the blocking phosphopeptide C-

KRHREDpSDVEMVE (Davids Biotechnologie, Regensburg, Germany) that 

specifically corresponds to the p-epitope of MLH1. After overnight incubation on 4°C, 

which allows the blocking peptide to bind the antibody, Western blotting was carried 

out using standard procedures. By comparing the staining from the blocked antibody 

versus the antibody alone, we could show that the p-MLH1 staining was absent in the 

Western blot performed with the neutralized antibody and therefore specific for 

p-MLH1S477 binding. 

 

Production and purification of recombinant MutLα 

Recombinant Hexahistidine (His)-tagged MutLα, single MLH1 wt or MLH1S477A variant 

were generated as described [15]. In brief, Baculoviruses containing pFastBac HTB-

MLH1 wt, pFastBac HTB-MLH1S477A or pFastBac HTB-PMS2 vectors were produced 

in DH10BacTM competent cells (Invitrogen, Carlsbad, CA, USA), transfected into Sf9 

cells using EscortTM IV Transfection Reagent (Sigma-Aldrich, Munich, Germany) and 

virus titer was increased by three amplifications. Exponentially growing Sf9 cells 

(100 ml with 2x106 cells/ml) were infected with 10 ml virus supernatant and, if indicated, 

24 h after infection treated with Calyculin for 48 h. Whole cell extracts were harvested 

and incubated with 1 ml Ni-NTA agarose (Qiagen) for 1 h at 4°C. The agarose was 

washed ten times with 10 ml washing buffer (20 mM Hepes KOH, pH 7.6, 300 mM 

NaCl, 5 mM MgCl2, 0.1 mM ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic 

acid, 10 mM imidazole, 0.035% β-mercaptoethanol, 10% sucrose, and 0.5 mM PMSF) 
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and five times with washing buffer containing 100 mM NaCl. The bound protein was 

eluted in the same buffer without PMSF but with 250 mM imidazole. The success of 

protein purification was verified by Coomassie Brilliant Blue staining.  

 

Mass spectrometry analysis 

Calyculin treated phospho-enriched immunoprecipitated MutLα was analyzed by 

Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-

MS/MS) [16] and immunoprecipitated MutLα from untreated MutLα transfected 

HEK293T cells, which was expected to be only weakly phosphorylated as well as 

purified His-tagged MutLα from Calyculin treated Sf9 cells were analyzed by Nano 

liquid chromatography-electrospray ionization-tandem mass spectrometry (NanoLC-

ESI-MS/MS [17]. In brief, immunoprecipitated MLH1 and PMS2 samples were 

separated (for LC-ESI- as well as NanoLC-ESI-MS/MS) by SDS-PAGE and visualized 

by staining with Coomassie Brilliant Blue (exemplarily shown in supplementary figure 

1). Then, distinct MLH1 and PMS2 bands were cut out of the gel. The now following 

protocol for LC-ESI- and NanoLC-ESI-MS/MS differs in detail:  

For in-gel reduction of samples, which should be analyzed by LC-ESI-MS/MS, 100 µl 

of 100 mM 1:1 ammonium bicarbonate/acetonitrile (v/v) were added to each gel piece 

and incubated at RT for 30 min followed by adding of 500 µl of neat acetonitrile and 

incubation at RT until shrinking. Thereafter, the acetonitrile was removed and the gel 

pieces were in-gel digested with trypsin as described by Shevchenko et al. [18]. Finally, 

digested proteins were analyzed by LC-ESI-MS/MS as described by Funke et al. [16]. 

For samples which should be analyzed by NanoLC-ESI-MS/MS gel pieces were 

reduced with dithiothreitol and alkylated with iodoaceamide (both Sigma-Aldrich, 

Munich, Germany) and digested in-gel with trypsin (SERVA Electrophoresis GmbH, 

Heidelberg, Germany) in the presence of 0.1% RapiGest over night at 37°C. Phospho-
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peptides were then enriched by TiO2 chromatography (GL Sciences Inc., Tokyo, 

Japan) as described by Larsen et al. [19] followed by NanoLC-ESI-MS/MS analysis as 

described by Oellerich et al. [17]. 

 

Kinase assay 

To determine whether CK2 can directly phosphorylate MLH1 we used recombinant 

His-tagged MLH1 wt as well as His-tagged MLH1S477A variant generated in Sf9 cells 

and purchased recombinant CK2 alpha 1 (Biaffin GmbH & Co KG, Kassel, Germany). 

To ensure the use of completely unphosphorylated protein, 15-20 µg purified His-

tagged MLH wt or His-tagged MLH1S477A in a total volume of 60 µl were pre-incubated 

with 30 µl of Agarose-coupled-CIP (Sigma-Aldrich, Munich, Germany) for 1 h at 37°C 

and afterwards separated through centrifugation. Subsequently, in vitro kinase assay 

was carried out using 5 µl (1 µg) dephosphorylated MLH1 wt or MLH1S477A substrate, 

1.5 µl (80 units/0.6 µg) CK2 and 60 µM ATP in kinase buffer (105 mM Tris, 20 mM Mg2+, 

0.03% β-mercaptoethanol, 0.1 mg/ml BSA) in a total volume of 15 µl for 30 min at 

37°C. Reaction was stopped by adding 2x concentrated Laemmli buffer (Sigma 

Aldrich, Munich, Germany) and heating for 5 min at 95°C. Finally, SDS-PAGE and 

Western blot analysis were performed to visualize the generation of phosphorylated 

MLH1 and to verify CK2 activity. 

 

Measurement of MMR activity  

The MMR activity of MLH1 variants was scored in vitro as described previously [20,21]. 

Briefly, 5 μg protein extracts of transfected HEK293T cells or 0.2 µg of recombinant 

His-tagged MutLα were mixed with 50 μg nuclear extract and 35 ng of DNA substrate 

containing an intact AseI restriction site, a G-T mismatch in between an (not digestible) 

EcoRV restriction site and a 3′ single-strand nick at a distance of 83 bp to guide the 
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MMR direction. If the tested heterodimer is fully qualified for mismatch repair, then the 

G-T mismatch will be corrected and the EcoRV restriction site will be restored. After 

incubation at 37°C (30 min), the DNA substrate was purified and digested with AseI 

(5 units/15 µl) and EcoRV (10 units/15 µl). The restriction fragments were separated in 

agarose gels, analyzed using GelDoc XR plus detection and band intensities were 

quantified using Image Lab version 3.0 (Bio-Rad). If the substrate is efficiently repaired 

the AseI and EcoRV digestion will result in three bands: a 2.0 kb band corresponding 

to singly AseI cut (uncorrected and in excess added) DNA substrate, a 1.2 kb and a 

0.8 kb band caused by the successfully corrected and restricted EcoRV restriction site. 

The repair efficiency (e) was calculated as: e = (intensity of bands of repaired 

substrate)/(intensity of all bands of substrate). This result is independent of the amount 

of DNA recovered through plasmid purification. The repair efficiency (e) of MutLα 

variants was analyzed in direct comparison with MutLα wt that had been produced in 

parallel and calculated as e (relative) = e (variant)/e (wild-type) × 100.  

 

Cell cycle synchronization 

Endogenous MutLα expressing HEK293 cells were synchronized by treatment with 

5 µM nocodazole (Sigma-Aldrich, Munich, Germany) to induce G2/M phase arrest. 17 

h after incubation mitotic shake-off cells were obtained from gentle tapping, collected 

and washed twice with PBS to release cells from the nocodazole block. Thereafter, 

cells were resuspended in fresh media and allowed to progress with cell cycle activity. 

Cell harvesting was performed after 0 h, 2 h, 4 h, 8 h, 12 h and 24 h. To verify different 

cell cycle stages Cyclin E and Cyclin B1 expression was analyzed by Western blotting. 

The amount of p-MLH1S477 was detected after immunoprecipitation and quantified in 

correlation to total MLH1 levels using Multi Gauge V3.2. p-MLH1S477 levels were 
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calculated by setting the expression of total MLH1 to 100% and putting the amount of 

p-MLH1S477 in relation to it. 

In parallel to cyclin expression analysis, the success of cell synchronization was 

verified by FACS analysis. Therefore, synchronized HEK293 cells were harvested after 

0 h, 2 h, 4 h, 8 h, 12 h and 24 h, fixed with cold ethanol (70 %) for 30 min on ice and 

stained with 7-AAD (BD Biosciences, Heidelberg, Germany) for 10 min on ice. Cell 

cycle distribution was then analyzed on a LSRII/Fortessa flow cytometer (BD 

Biosciences, Heidelberg, Germany) using associated FACSDivaTM software. 

 

Structural analysis of MutLα 

Structural evaluation has been performed using a composition of MutLα domains 

crystal structures and homology models whose generation has been described in detail 

before [22]. 

 

Statistical analysis  

For comparison of the MMR assays all single values were calculated relative to the 

mean value of the positive control. Gaussian distribution was determined using Dallal-

Wilkinson-test. P-values of MMR-Assay were estimated by using unpaired t-test or 

Welch's t-test  for unequal variances, [23]. P-values of cell cycle dependent p-MLH1S477 

expression levels were determined using ANOVA test. A p-value of <0.05 was 

considered to indicate a statistically significant difference. Statistical analyses were 

performed with BIAS program [24]. 
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Results 

MLH1 and PMS2 can be phosphorylated and phosphorylation has no impact on 

MutLα dimerization 

To determine phosphorylation of the heterodimeric MutLα or its single components in 

detail we first enhanced the proportion of phosphorylated proteins by reducing the 

cellular phosphatases. Serine/threonine phosphatases were inhibited by using the 

selective and cell-permeable inhibitor Calyculin and tyrosine phosphatases were 

decreased by using the potent inhibitor Pervanadate. Subsequently, a special Phos-

tag-PAGE was performed to identify the mass difference between phosphorylated and 

unphosphorylated MLH1 and PMS2. In the case of the presence phosphorylated 

amino acids in the analyzed protein the Phos-tags will bind and require an increase of 

protein’s mass resulting in slower run on the Phos-tag-PAGE than the non-

phosphorylated control. As shown in figure 1 A (lane 2) Calyculin treatment induced a 

clear bandshift of MLH1 as well as PMS2 which implicates that both proteins could be 

phosphorylated by serine/threonine kinases. In contrast, Pervanadate (figure 1 A, 

lane 3) failed to induce a bandshift.  

Moreover, to assure that phosphorylation was responsible for the band shift we 

reversed the Calyculin induced process by subsequent treatment of protein extracts 

with Alkaline Phosphatase Calf Intestinal (CIP). CIP treatment restored the original 

protein size (figure 1 A, lane 4). 

MLH1 and PMS2 from Calyculin treated in comparison to untreated HEK293T cells 

showed a band shift also on SDS-PAGE (figure 1 A, lane 6).  

To exclude a phosphorylation-dependent effect on the dimerization of MutLα, co-

immunoprecipitation using anti-PMS2 antibody was performed with protein extracts of 

Calyculin or DMSO treated MutLα overexpressing HEK293T cells. The detected 
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p-MLH1, MLH1 and PMS2 levels validated that the phosphorylation state has no 

impact on the dimerization of MLH1 with PMS2 or the stability of the MutLα complex 

(figure 1 B). 

 

Mass Spec analysis detected phosphorylation of MLH1 at position S477 

To specify phosphorylation sites of MutLα we first used immunoprecipitated MutLα 

from Calyculin treated HEK293T cells and performed LC-ESI-MS/MS. Second, 

immunoprecipitated MutLα from untreated HEK293T cells and purified His-tagged 

MutLα from Calyculin treated Sf9 cells were analyzed using the more sensitive 

NanoLC-ESI-MS/MS analysis. With both methods and in all cell systems the phospho-

peptide HREDS*DVEMVEDDSR of MLH1 which harbors the phosphorylation at 

position S477 (figure 2 A-C) was detected in 100% of all identified phospho-peptides 

using LC-ESI-MS/MS and 61% of all detected phospho-peptides using NanoLC-ESI-

MS/MS (supplementary table 2). 

In addition, several other phospho-peptides were found in MLH1 using NanoLC-ESI-

MS/MS and PMS2 using LC-ESI-MS/MS and NanoLC-ESI-MS/MS to a much lower 

extent (supplementary table 2).  

Looking at the amino acid motif HREDSDVEMVEDDSR in MLH1 of other mammals, 

we found that this region is conserved which highlights the importance (figure 2 D). 

 

Phosphorylated MLH1S477 could be specifically detected and motif modifications 

reduce phosphorylation of MLH1 at position S477 

The detection of p-MLH1S477 was performed by Western blotting after 

immunoprecipitation of MLH1 from MutLα overexpressing HEK293T cells but also from 

endogenous MutLα expressing HEK293, SW480 as well as SW620 cells by using a 

specific antibody which recognizes the phospho-S477-motif RHREDS* of MLH1 (figure 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

16 
This article is protected by copyright. All rights reserved 

3 A). p-MLH1S477 was clearly detectable in all cell lines and disappeared after CIP 

treatment which, however, also induced a general reduction of MLH1 (figure 3 A). The 

specificity of p-MLH1S477 detection could be additionally confirmed by peptide 

competition (supplementary figure 2). 

As mentioned above the amino acid sequence surrounding site S477 of MLH1 is 

conserved in many mammalians (figure 2 D). A following stretch of acidic amino acids 

is often recognized by the corresponding kinase and extremely important for its 

enzymatic activity. To analyze whether the mutation of amino acid S477 or mutations 

of following acidic amino acids could avoid or significantly inhibit the phosphorylation 

at position S477, we generated three different MLH1 variants, MLH1S477A, MLH1D478A 

and MLH1E480A, overexpressed these constructs in HEK293T cells, 

immunoprecipitated them and determined the presence of p-MLH1S477. As shown in 

figure 3 B mutation of amino acids S477 resulted in loss of phosphorylation, MLH1E480A 

showed significantly less phosphorylation than the wildtype protein and the faint band 

of MLH1D478A was between the MLH1S477A and MLH1E480A phosphorylation levels. 

 

CK2 is responsible for the phosphorylation of MLH1 at position S477  

In silico analysis of MLH1 using several kinase predictors (prosite.expasy.org, 

phosida.com, phosphosite.org, phosphogrid.org) pointed out that serine 477 of MLH1 

is theoretically phosphorylatable by CK2, AKT as well as CamKII. To identify the 

actually responsible kinase we treated MutLα overexpressing HEK293T cells with the 

CK2 inhibitor TBB, the AKT inhibitor MK2206, the CamKII inhibitor KN-93 or DMSO 

(negative control) and determined the presence of p-MLH1S477 after 

immunoprecipitation with anti-MLH1 (figure 4 A) or anti-PMS2 (figure 4 B). While TBB 

was able to block the phosphorylation of MLH1 at position S477, MK2206 or KN-93 

had no or only little effect. The usage of four additional CK2 inhibitors, Emodin, 
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CX4945, TMCB and TPP22, which all lead to a significant reduction of p-MLH1S477 

could confirm the involvement of CK2 in the phosphorylation of MLH1 at position S477 

(figure 4 C).  

Moreover, SDS-PAGE analysis of the kinase assay demonstrated that CK2 can 

directly phosphorylate MLH1 in vitro while it failed to phosphorylate MLH1S477A mutant 

(figure 4 D). 

 

Phosphorylation of MLH1 at position S477 blocks MMR  

The influence of phosphorylation of MutLα on its MMR functionality was determined by 

using an in vitro MMR assay. Repair activity of MutLα from untreated MutLα 

overexpressing HEK293T cells served as positive control and was set to 100%, protein 

extracts from pEGFP_C1 transfected HEK293T cells were used as negative control. 

First, recombinant MutLα purified from untreated as well as Calyculin treated Sf9 cells 

was used and the MMR function of the unphosphorylated recombinant MutLα was 

compared to the hyper phosphorylated version of recombinant MutLα. As shown in 

figure 5 A, we found that untreated recombinant MutLα was fully active and showed 

repair activity like the positive control while Calyculin treated hyper phosphorylated 

recombinant MutLα was unable to repair. MMR results using recombinant MutLα from 

two different approaches are exemplarily shown (figure 5 A).  

Second, the relevance of phosphorylation of MLH1 at position S477 was determined 

by using protein extracts of MutLα overexpressing HEK293T cells and by comparing 

the MMR function of untreated and Calyculin treated MutLα wt or the MutLα variant 

consisting of MLH1S477A and PMS2 wt. Western blotting of used protein extracts 

verified equal amounts of protein in the different cell extracts (figure 5 B, upper panel). 

Calyculin treatment of MutLα wt led to severe restriction of MMR (mean 49% repair 

activity) but failed to prevent MMR if the MLH1S477A variant was used (mean 83% repair 
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activity). Furthermore, removal of phosphorylation by cotreatment with CIP in parallel 

to Calyculin clearly increased MMR function of MutLα wt (mean 70% repair activity) 

(figure 5 B, middle and lower panel).  

P-values which were calculated in relation to untreated MutLα wt verified that MMR 

activity of Calyculin treated MutLα was significantly decreased (p=0.001832). In 

contrast, the MMR activity of Calyculin treated MLH1S477A variant compared to 

Calyculin treated MutLα wt was significantly increased (p = 0.019343) (figure 5 B, lower 

panel). 

Non-specific MMR independent repair was detectable and is responsible for around 

30% of activity in the negative control (figure 5 A+B).  

All experiments were performed at least five times. 

 

Levels of p-MLH1S477 vary within the cell cycle 

The MMR activity of MLH1 is of great importance for post-replication repair. Since we 

found that phosphorylation inhibits the MMR efficiency of MLH1, one might imagine 

that MLH1 is regulated by phosphorylation during the cell cycle. Therefore, differences 

of p-MLH1S477 levels should be visible during the cell cycle.  

To determine the amount of p-MLH1S477 during the cell cycle, the endogenous level of 

p-MLH1S477 was analyzed at different time points in HEK293 cells after 

synchronization. 

Cyclin B1 and Cyclin E expression levels served as cell cycle control and were used 

to associate the analyzed time points (0 h, 2 h, 4 h, 8 h, 12 h, 24 h) according to cell 

cycle stages (G2, G2/M, G1, S) (figure 6 A). As shown in figure 6 B the p-MLH1S477 

levels compared to total MLH1 levels changed during the cell cycle. The amount of 

phosphorylated MLH1S477 (mean ±SD) was low during G2 phase 30(14) and reached 
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its maximum within M phase 58(40); 50(23). After reduction over G1 36(20) the 

p-MLH1S477 level increased again in S phase to 50(20); 51(45). 

P-values which were calculated by ANOVA test, however, didn’t show significant 

differences of p-MLH1S477 expression levels. 

 

Potential role of S477 for the protein structure and function of MLH1  

The protein structure of MLH1 and PMS2 is shown in figure 7. Both proteins contain 

N-terminal (NTD) and C-terminal (CTD) domains for which structures have been 

resolved. CTD and NTD are connected by a flexible, proline-rich linker region 

comprising approximately 200 residues. Constitutive dimerization is transmitted by the 

CTDs, while the NTDs have been shown to only transiently dimerize during the MutLα 

ATPase cycle (while ATP is bound) [25]. This transient dimerization, as well as an 

accompanying condensation between NTDs and CTDs, are intramolecular movements 

(depicted by the orange double head-arrows) which are enabled by the presence of 

the flexible linker region, in which serine 477 is located (figure 7).  

 

 

Discussion 

MLH1 plays a crucial role in MMR but has been also shown to participate in many other 

important cellular pathways. In the current study we identified that MLH1 can be 

posttranslationally phosphorylated at multiple sites but most dominantly at position 

S477. This finding is confirmed by phosphoproteomics screening data ([26], 

supplementary table 1).  

To assure that the used recombinant proteins are correctly modified, protein 

expression was almost exclusively performed in human cells. The phosphorylation 
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status of recombinant purified proteins from Sf9 insect cells, which were additionally 

utilized in one assay, was verified by mass spectrometry. 

Our present investigation demonstrated that the phosphorylation of MLH1 at position 

S477 is managed by CK2, an important kinase which is widely described to be involved 

in many different regulatory cell processes by playing a global role in the control of cell 

growth proliferation, cell death but also in DNA damage response and repair pathways 

[27]. In the latter case, it has been shown that CK2 is present in several nuclear protein 

complexes and has a role in chromatin remodeling and structure, transcription, or RNA 

metabolism [28], phosphorylates a number of proteins which are central in MMR, 

nucleotide excision repair, homologous and non-homologous end joining [27,29], 

localizes to double strand breaks [30] and was described to be relevant for the 

regulation of MMR initiation complex MutSα [7]. Thus, the identification of CK2 to be 

involved in the modification of the MMR protein MLH1 fits well with published data. 

The amino acid sequences surrounding CK2 phosphorylation sites are similar in most 

CK2 substrates [31] and the identified phosphorylated peptide 

HREDS*DVEMVEDDSR harboring serine 477 of MLH1 is located exactly in between 

such kind of CK2 substrate motif which is S*/T*DXE. Normally, CK2 phosphorylates 

serine or threonine residues followed by a stretch of acidic amino acids [31,32]. Our 

observation that substitutions of the acidic amino acids at position D478 and E480 

significantly reduce or avoid the amount of phosphorylation at serine 477 is consistent 

with the functional dependency of CK2 on acidic residues. A simply effect that the 

amino acid exchange abrogates antibody recognition can be excluded since the used 

anti-p-MLH1 is generated against the epitope RXRXXS*/T which is in front of the 

substituted amino acids and the antibody is described to be independent of the 

surrounding amino acid sequence [33]. 
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Analyzing the influence of phosphorylation on the functionality of MutLα one has to 

keep in mind that cellular Calyculin treatment induces the accumulation of 

phosphorylation in the whole proteome which might possibly interfere the reaction. 

Phosphorylation of e.g. MutSα has been described to affect mismatch-binding activity 

[7] and to regulate its stability and protein level [34] and Calyculin treatment has very 

previously been shown by us to promote loss of PMS2 [10]. Therefore, we first isolated 

highly phosphorylated recombinant MutLα from Calyculin treated Sf9 cells and tested 

its MMR function (in parallel to purified MutLα from untreated Sf9 cells) in an assay 

where we added nuclear extract from untreated MutLα deficient HEK293T cells. Thus, 

we could show that phosphorylation of MutLα alone switches off the MMR activity. The 

principle of phosphorylation inhibiting protein function has been described for many 

other proteins before [35] and the previously published phosphoproteomics data 

(which include phospho-motif KRHREDSDVEMVE of MLH1) suggest that detected 

phosphorylation inactivates appropriate proteins in mitotic cells [26]. Our further in vitro 

data (generated using a small amount of protein extract from Calyculin treated MutLα 

overexpressing HEK293T cells and nuclear extract from untreated MutLα deficient 

HEK293T cells) showed that Calyculin treated MutLα in comparison to untreated 

MutLα repaired mismatches only approximately half (49%; p=0.001832) efficient which 

is clearly below the defined limit that comprehensive analyses have established 

[36,37]. The minimum repair efficiency to be considered as real MMR activity has been 

70% [36] or 75% [37]. This minimum of repair efficiency in turn could be generated by 

using MLH1S477A variant where serine 477 is substituted to alanine which avoids 

phosphorylation (leading to 83% repair efficiency). In addition, cotreatment of MutLα 

with Calyculin and CIP removes existing phosphorylation and clearly increases MMR 

function of MutLα (70% repair efficiency). Therefore, p-MLH1S477 must be considered 

deleterious for the MMR activity of MutLα.  
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Although a cell cycle dependent regulation of the activity of the MMR proteins would 

be assumed, several investigators reported relatively constant MMR proteins levels 

throughout the cell cycle [38-40] which indicates that protein levels are not of 

relevance. One might rather assume a posttranslational regulation of these proteins. 

In line with this, we could demonstrate that the amount of p-MLH1S477 varied (even if 

only to a small extent) during different cell cycle stages whereas the total amount of 

MLH1 was less influenced. Therefore, phosphorylation could be indeed a regulatory 

element of the MMR system. 

The question is, how does phosphorylation of MLH1 switch off the MMR function of 

MutLα? Which are the consequences of phosphorylation? We hypothesize that 

phosphorylation at position S477 might inhibit the ability of MLH1 to interact with MMR 

process essential proteins. Although S477 is localized very close to the beginning of 

the MLH1-PMS2 interacting region [41,42] our data did not show any influence on 

PMS2 stability. PMS2 (coexpressed with MLH1) was well expressed despite Calyculin 

treatment indicating that dimerization of MutLα which is essential for PMS2 stabilization 

[43] is not impaired. In addition, we found that CIP treated non-phosphorylated 

samples contain less MLH1 suggesting that phosphorylation stabilizes, rather than 

destabilizes, MLH1. Therefore, phosphorylation of S477 seems not to disturb MLH1 

and PMS2 interaction. However, the region between amino acid 410 and 650 e.g. has 

been described to be relevant for interaction of MLH1 with exonuclease I [44] and 

exonuclease I interaction might be inhibited by phosphorylation and cause the 

observed loss of MMR.  

It is also conceivable, that phosphorylation of MLH1 led to allosteric conformational 

changes which inhibit the endonuclease activity of MutLα. Allosteric conformational 

changes are considered to be an essential intramolecular signaling event that confers 

regulation of the C-terminal endonucleolytic activity by the N-terminal ATPase and 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

23 
This article is protected by copyright. All rights reserved 

serves to transmit communications with the mismatch recognition factor MutS and a 

DNA clamp [45]. Inhibition of endonuclease function by phosphorylation has been 

previously described for yeast Holliday junction resolvase Yen1 [46].  

In summary, our results demonstrate, for the first time, that the MMR function of MLH1 

can be actively regulated by phosphorylation. Since dysregulation of CK2 has been 

reported in a number of disease states including autoimmune and inflammatory 

diseases and neurodegenerative disorders [47], a range of tumor types [48,49], but 

also in diabetes [50] and since overexpression of CK2 has been demonstrated in 

colorectal cancer [51] we believe that the regulation of MutLα by phosphorylation of 

MLH1 is an important mechanism in tumor progression.  

 

Accessibility of original data 

The mass spectrometry proteomics raw data have been deposited to the 

ProteomeXchange Consortium via the PRIDE [52] partner repository with the dataset 

identifier PXD009026 and PXD009524. 
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Figure Legends 

 

Figure 1  

Phosphorylation of MutLα and its impact on dimerization 

MLH1 and PMS2 were cotransfected and immunoprecipitation from Calyculin, 

Pervanadate or Calyculin and CIP treated HEK293T cells was performed and proteins 

were separated on a Phos-tag-PAGE. A clear band shift of MLH1 and PMS2 was 

visible after Calyulin (lane 2) but not after Pervanadate (lane 3) treatment suggesting 

serine/threonine phosphorylation. Cotreatment of Calyculin and CIP (lane 4) prevented 

the bandshift (A).  

An upshift smear after Calyculin treatment of both proteins could be also detected on 

SDS-PAGE (lane 6) (A).  

The impact of phosphorylation on dimerization and stability of MutLα was determined 

by performing co-immunoprecipitation of MutLα transfected HEK293T cells with anti-

PMS2 antibody. The increase of p-MLH1 validated the effect of Calyculin treatment 

and the detection of constant MLH1 and PMS2 levels confirmed that phosphorylation 

has no impact on the dimerization of MLH1 with PMS2 or the stability of MutLα complex 

(B). 

 

Figure 2 

Phospho-peptide identification 

Immunoprecipitated MLH1 was analyzed by mass spectrometry (MS). Around 80% of 

the detected phospho-peptides harbored phosphorylation at amino acid position S477. 

Amino acid S477 of MLH1 is located close to the beginning of the PSM2 interaction 

domain (A). The MS spectrum of MLH1 shows a promising phospho-peptide peak of 
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m/z 949,87 (zoom view of the monoisotopic peak m/z 949,87) (B). MS/MS spectrum of 

the m/z 949,87 precursor peptide leading to the identification of MLH1 peptide 

HREDS*DVEMVEDDSR (C). S477 surrounding amino acids of MLH1 are conserved 

in many mammalians which are exemplarily shown (D).  

 

Figure 3 

Phosphorylation of MLH1 at position S477 is detectable by Western blotting and 

depends on surrounding amino acids  

Using immunoprecipitated MutLα and a specific antibody which recognizes the 

phospho-S477-motif of MLH1 the expression of p-MLH1S477 was determined in MutLα 

overexpressing HEK293T and in endogenous MutLα expressing HEK293, SW480 and 

SW620 cells with or without CIP treatment (A). p-MLH1S477 was well detectable in all  

cell lines and disappeared after CIP treatment in HEK293 and HEK293T cells. 

The importance of surrounding amino acids of S477 was analyzed by comparing the 

amount of p-MLH1S477 after overexpressing MLH1 wt, MLH1S477A, MLH1D478A and 

MLH1E480A in HEK293T cells (B). While p-MLH1S477 was well detectable in MLH1 wt 

overexpressing cells, MLH1S477A could not be phosphorylated and MLH1D478A as well 

as MLH1E480A showed clearly reduced p-MLH1 levels. 

 

Figure 4 

CK2 is responsible for the phosphorylation of MLH1 at position S477 

In silico predicted kinases, CK2, AKT and CamKII were analyzed for their involvement 

of MLH1 phosphorylation at position S477. Using three different kinase inhibitors TBB, 

MK2206 and KN-93 immunoprecipitation of MutLα transfected, inhibitor treated 

HEK293T cells was performed by anti-MLH1 antibody (A) or anti-PMS2 antibody (B) 

and p-MLH1 expression was determined. 
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The inhibitory effect of TBB was validated by comparing five different CK2 inhibitors 

TBB, Emodin, CX4945, TMCB and TTP22 (C). 

In vitro kinase assay was performed by using recombinant CK2 alpha and recombinant 

MLH1 or MLH1S477A as a substrate. The generation of p-MLH1S477 was monitored by 

Western blotting (D). 

 

Figure 5 

Phosphorylation of MutLα inhibits its MMR activity 

The influence of phosphorylation of MutLα on its MMR activity was assessed by an in 

vitro MMR assay as detailed in Materials and Methods. MMR activity of protein extracts 

from MutLα transfected HEK293T cells served as positive control, the activity of 

pEGFP_C1 transfected HEK293T cell extracts was used as negative control (A+B; two 

left lanes). First, MMR activity of untreated recombinant MutLα and Calyculin treated 

recombinant MutLα, purified after expression in Sf9 cells, were compared (A). Second, 

MMR activity of HEK293T protein extracts from Calyculin treated MutLα, from Calyculin 

treated MLH1S477A/PMS2 variant as well as from Calyculin and CIP cotreated MutLα 

transfected HEK293Tcells were analyzed (B). 

Numerical values of at least five independent measurements of variants and 

treatments were quantified (mean S.D.) using Multi Gauge V3.2 program (B): 

untreated MutLα (positive control), 100(0); negative control (NC), 30(13); Calyculin 

treated MutLα, 49(17); Calyculin treated MLH1S477A/PMS2, 83(16); Calyculin and CIP 

cotreated MutLα, 70(20). P-values were calculated by unpaired t-test or Welch's t-test. 

*** p=0.000004; ** p=0.001832; * p=0.019343, n.s. = not significant 
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Figure 6  

Amount of phosphorylated MLH1S477 change during the cell cycle  

To investigate cell cycle dependent phosphorylation of MLH1S477 endogenous MutLα 

expressing HEK293 cells were synchronized by nocodazole. The success of 

synchronization was verified by determining the expression of Cyclin B1 and Cyclin E 

at different time points after nocodazole release (0 h, 2 h, 4 h, 8 h, 12 h and 24 h), 

controlled by beta Actin detection (A, upper panel). 

Cyclin B1 and Cyclin E levels at the different time points were compared to known cell 

cycle dependent cyclin expression and used to specify the cell cycle stages (A, lower 

panel). 

Immunoprecipitation was performed using the synchronized HEK293 cells followed by 

MLH1 and p-MLH1 detection (B, upper panel). The p-MLH1S477 levels varied during 

different cell cycle stages, whereby the highest amount of p-MLH1S477 was detectable 

during mitosis 58(40); 50(23). Moderate p-MLH1S477 expression could be detected in 

S phase 50(20); 51(45) and a reduction of MLH1 phosphorylation was observed in G1 

phase 36(20) and early G2 phase 30(14) (B, lower panel).  

Expression levels of three independent experiments were quantified (mean S.D.) 

using Multi Gauge V3.2 program and normalized in relation to the highest value (A) or 

to total MLH1 levels (B). 

The cell cycle profiles obtained by flow cytometry verified the different stages of 

synchronized HEK293 cells after nocodazole release (C).  
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Figure 7 

Potential structural of p-MLH1S477 / PMS2 heterodimer 

The biologically active structural form of MLH1 (blue) in its heterodimeric form with 

PMS2 (green) is shown. Serine 477 of MLH1 is located in the flexible linker region and 

is indicated as light blue ball (shown on the left side). 

NTD: N-terminal domain; CTD: C-terminal domain; orange double head-arrows: 

intramolecular movements. 

 

Supplementary Table 1  

List of primers used in this study for site directed mutagenesis 

 

Supplementary Figure 1 

Coomassie blue staining of immunoprecipitates 

LC-ESI - and NanoLC-ESI mass spectrometry were carried out using 

immunoprecipitated MutLα. The success of purification was analyzed first by 

Coomassie Brilliant Blue staining of SDS-gels (exemplarily shown here) followed by 

cutting and separation of corresponding bands for mass spectrometry. 

 

Supplementary Table 2 

Identified phosphorylation sites of MLH1 and PMS2 by mass spectrometry 

 

Supplementary Figure 2 

Peptide competition avoids p-MLH1S477 detection 

A peptide competition was performed to verify the specificity of p-MLH1S477 detection 

by the used phospho-antibody which in principle could detect several different epitopes 
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harboring the amino acid sequence RXRXXS*/T*. Phosphopeptide 

C-KRHREDpSDVEMVE, which is exactly fitting with the corresponding MLH1 

sequence was able to block the antibody binding.  
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