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Abstract 26 

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are relevant to fetal and infant growth 27 

and development. Objective: to assess whether long-term exposure to dietary ω-3 PUFA 28 

imbalance alters pre- and/or postnatal pups’ development and reproductive function later in 29 

life. Mice dams were fed with ω-3 PUFA Control (soybean oil, 7%), Deficient (sunflower 30 

oil, 7%) or Excess (blend oil; 4.2% cod-liver + 2.8% soybean) diet before conception and 31 

throughout gestation-lactation and later on, their pups received the same diet from weaning 32 

to adulthood. Offspring somatic, neurobiological and reproductive parameters were 33 

evaluated. Excess pups were lighter during the preweaning period and shorter in length 34 

from postnatal day (PND) 7 to 49, compared to Control pups (P<.05). On PND14, the 35 

percentage of pups with eye opening in Excess group was lower than those from Control 36 

and Deficient groups (P<.05). In Excess female offspring, puberty onset (vaginal opening 37 

and first estrus) occurred significantly later and the percentage of parthenogenetic oocytes 38 

on PND63 was higher than Control and Deficient ones (P<.05). Deficient pups were 39 

shorter in length (males: on PND14, 21, 35 and 49; females: on PND14, 21 and 42) 40 

compared with Control pups (P<.05). Deficient offspring exhibited higher percentage of 41 

bending spermatozoa compared to Control and Excess offspring (P<.05). These results 42 

show that either an excessively high or insufficient ω-3 PUFA consumption prior to 43 

conception until adulthood, seems inadvisable because of the potential risks of short-term 44 

adverse effects on growth and development of the progeny or long-lasting effects on their 45 

reproductive maturation and function. 46 

Keywords: ω-3 PUFA; perinatal development; neurobehavior; reproductive function; fish 47 

oil; sunflower oil. 48 

 49 

 50 



3 
 

 

1. Introduction 51 

The interaction of genetics and environment, nature, and nurture is the foundation 52 

for health and disease. Nutrition is an environmental factor of major importance. Currently, 53 

the type and amount of polyunsaturated fatty acids (PUFAs) in the diets are being intensely 54 

studied because most of the Western countries have diminished their consumption, leading 55 

to a dietary ω-6/ω-3 ratio higher than that one on which humans evolved and for which 56 

their genetic patrons were established [1]. 57 

Linoleic acid (LA) and α-linolenic acid (ALA) are precursors of the omega-6 (ω-6) 58 

and omega-3 (ω-3) PUFA family, respectively. In mammals, LA and ALA cannot be 59 

synthesized de novo and therefore, these compounds have to be obtained from the diet [2]. 60 

Members from both ω-6 and ω-3 series are not interchangeable and compete for the same 61 

enzymatic system to provide longer and more unsaturated products [1,2]. Therefore, a 62 

balanced ω-6/ω-3 ratio is crucial for homeostasis and normal development throughout the 63 

whole life cycle [1,3]. For rodents, an optimal ratio between 1 and 6 has been suggested 64 

[4]. 65 

Studies in mice have provided strong evidence about the effects of prenatal 66 

exposure to environmental factors on postnatal phenotypes [5]. The greatest epigenetic 67 

plasticity takes place during gamete maturation and embryogenesis, and the consequences 68 

can last for part or the whole life of the exposed generation, and even be transmitted to 69 

subsequent generations [6,7]. The Barker’s or “Fetal Programming” hypothesis suggests 70 

that fetal and neonatal conditions may program organ growth and favor diseases later in 71 

life [8]. 72 

In this context, it is well known that ω-3 PUFAs are relevant for growth, 73 

development and health during pregnancy, lactation and infancy [9,10]. There is a 74 

relationship between maternal dietary ω-3 consumption with gestation length and birth 75 
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weight [11,12], and several animal and human studies have suggested that ω-3 PUFA 76 

intake has a significant impact on growth, vision and brain functions [13-17]. For example, 77 

the ω-3 PUFA content of preterm and term infant diets has been associated with improved 78 

cognitive capability [15,18] and visual outcome [17,19]. 79 

Regarding the reproductive processes, ω-3 PUFAs can modify the biosynthetic 80 

pathways involved in both prostaglandin (PG) synthesis and steroidogenesis [2,20,21]. 81 

Furthermore, the PUFA composition of the membrane may affect cellular responses 82 

through changes in membrane fluidity, receptor binding characteristics or downstream 83 

activation [21]. Studies in men [22] and boars [23] have demonstrated the benefits of ω-3 84 

PUFA consumption on male reproductive capacity; yet, other studies in different species 85 

have reported no effects [24-26]. Studies conducted in female rats have also highlighted 86 

the positive effects of diets rich in ω-3 PUFAs on gestational performance [27]. Fish oils, 87 

rich in ω-3 PUFAs, may also benefit fertility in cattle and reduce the risk of preterm labor 88 

in women [21,28]; however, in both cases, current evidence to support these observations 89 

is inconclusive. Differential effects of ω-3 and ω-6 PUFAs on ovarian function and oocyte 90 

quality have also been reported [29], yet the literature to date has been inconsistent. 91 

Maternal ω-3 PUFA deficiency could adversely affect fetal and postnatal 92 

development. Conversely, an increased maternal intake could minimize such risks [30, 31]. 93 

On the other hand, excessive intake of all essential dietary nutrients are associated with 94 

adverse effects, but in the case of ω-3 PUFAs, few health risks are ascribed to this 95 

condition and its long-term consequences remain unclear [32-35]. As insufficient data is 96 

available to establish an upper level where the toxic effects of ω-3 PUFAs might be 97 

observed, the practice has been deemed as safe [35].  98 

The present study was designed to assess whether long-term exposure to variable 99 

ω-3 PUFA dietary contents, alters pre- and/or postnatal pups' development and their 100 
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reproductive function later in life. We hypothesized that excessive or deficient 101 

consumption of ω-3 PUFAs by mice dams before conception, during pregnancy and 102 

lactation, and subsequently by these pups from weaning until adulthood could modify the 103 

offspring’s somatic, neurobiological and reproductive development and function. 104 

 105 

2. Materials and methods 106 

2.1. Animals and study design 107 

Sexually mature albino Swiss mice (N:NIH) were housed in standard opaque cages 108 

with wood shavings as substrate. The animals were maintained under a 14/10 h light/dark 109 

photoperiod, room controlled temperature (24±2°C) and free access to food and water. The 110 

protocol and animal treatments used in this study were approved by the Animal Care and 111 

Use Committee of the Facultad de Ciencias Médicas, Universidad Nacional de Córdoba 112 

(protocol number 37/17, Committee UNC-RHCS 674/09). The timeline of experiments is 113 

shown in Figure 1. 114 

Female mice (10 weeks old, 24-26 g body weight), were stratified by body weight 115 

and randomly assigned to one of the three diets using a random number generator, two 116 

weeks prior to copulation. After this acclimatization period, females were individually 117 

paired with a male and monitored daily to detect the vaginal plug; once it was observed 118 

(considered as gestational day 0 [GD0]), females were relocated in individual cages. 119 

Dams continued receiving the same diet throughout the entire pregnancy and 120 

lactation periods. Maternal body weight was determined on GD1, 7, 14 and 17 and once a 121 

week during lactation. Delivery day was recorded as postnatal day 0 (PND0). The number 122 

of pups per litter was registered on this day by simple observation without handling the 123 

pups. On PND1, pups were weighed, sexed and each litter was reduced to eight pups (four 124 

males and four females, when possible) to avoid the potential confounding effect of litter 125 
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size. Physical, behavioral and reproductive preweaning development was assessed as 126 

described by Santillán et al. (2010) [9]. After weaning (three weeks old), the pups were 127 

assigned to the same diet as their mother until adulthood (PND63). In this period, physical 128 

characteristics and reproductive functions were evaluated in each offspring. When the 129 

variables were not sex-dependent, the experimental unit considered was the entire litter. 130 

 131 

Figure 1. Timeline (weeks) of diet exposure. 0-2 weeks: Diet acclimatization. The day after 132 

birth, (postnatal day 1, PND1) pups were weighed and sexed and the litter was reduced to 133 

eight animals each. During lactation, physical, neurobiological and reproductive milestones 134 

were registered. After this period, assessment of growth and reproductive function was 135 

performed. At adulthood, ovulation rate and oocyte quality were evaluated in half of the 136 

female offspring, and plasma progesterone concentration was evaluated in the other half 137 

(all litters were represented in each parameter). At the same time, semen characteristics 138 

and plasma testosterone concentration were evaluated in the male offspring. 139 

 140 

2.2. Diets 141 

The composition of the Control diet, a modification of the AIN-93G purified diet 142 

[4], as well as the Deficient and Excess ω-3 PUFA conditions, are presented in Table 1. 143 

Total dietary energy and percentage of kilocalories as fat in each diet are also presented in 144 

Table 1. All three diets were produced in-house using raw components purchased from 145 
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local markets. AIN-93G standards have determined the ideal fatty acid (FA) composition 146 

and ω-6/ω-3 ratio for growth, pregnancy and lactational phases in rodents. The Control diet 147 

was made with soybean oil (7% w/w), whereas the Deficient ω-3 PUFA diet contained 148 

sunflower oil. The Excess ω-3 PUFA diet contained a blend oil (4.2% cod-liver + 2.8% 149 

soybean= 7% in total). Soybean and sunflower oils were supplied by Aceitera General 150 

Deheza (Córdoba, Argentina) and cod- liver oil by Parafarm (Buenos Aires, Argentina). 151 

The FA composition of each diet was determined using gas chromatography and is 152 

provided in Table 2. We used the naturally occurring FA profiles of fish, soybean and 153 

sunflower oils. The oils used in this study were selected because they are usually 154 

consumed by humans, especially soybean and sunflower oils, and they are also used in 155 

clinical and animal studies. All three diets contained butylated hydroxytoluene (200 mg/kg 156 

of oil) to prevent oxidation. Diets were stored at 4°C and to further protect against 157 

oxidation, a fresh amount was provided three times a week. 158 

 159 

Table 1 

Composition of the -3 fatty acid Control, Deficient and Excess diet (g/kg of food) 

Ingredient  Control Deficient -3 Excess -3 

Fat    

Soybean oil 70.0  28.0 

Sunflower oil  70.0  
Cod-liver oil   42.0 

Protein    

Casein 160.0 160.0 160.0 
Carbohydrate    

Cornstarch  382.5 382.5 382.5 

Sucrose 320.0 320.0 320.0 
Fiber 20.0 20.0 20.0 

Vitamin     

AIN-93 vitamin mix 10.0 10.0 10.0 
Mineral    

AIN-93 mineral mix 35.0 35.0 35.0 

Choline bitartrate  2.5 2.5 2.5 
Total energy, kcal 4080.0 4080.0 4080.0 

% as fat 15.4 15.4 15.4 

% as protein 15.7 15.7 15.7 
% as carbohydrate 68.9 68.9 68.9 
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 160 

2.3. Physical parameters 161 

Pups’ body weight (g) and length (cm, from the middle of the head to the base of 162 

the tail) were weekly measured from PND7 to PND63. Other physical parameters 163 

monitored were: fur appearance (the emergence of immature hair); pinna detachment (the 164 

bilateral unfolding of external ear); lower incisor eruption (emergence from the gingiva) 165 

and eye opening (separation of the upper and lower eyelid in both eyes) [9,36]. In 166 

agreement with Santillán et al. [9], to determine the appropriate day to evaluate these 167 

parameters and to avoid excessive animal handling, a preliminary study was performed in 168 

six litters without any treatment. The day on which approximately 75% of the animals 169 

acquired the parameter was defined as the reference day for such parameter. 170 

 171 

Table 2 

Fatty acid composition of treatment diets (g/100 g of food) 

Fatty acid Control Deficient -3 Excess -3 

Saturated    

14:0 - - 0.21 
16:0 0.80 0.52 0.99 

18:0 0.21 0.25 1.31 

20:0 0.06 - - 
22:0 0.05 0.09 - 

Others  0.09 0.07 

Total 1.12 0.94 2.58 

Monounsaturated    

16:1 - - 0.30 

18:1 2.03 2.58 0.93 
20:1 - - 0.13 

22:1 - - 0.06 

Total  2.03 2.58 1.42 

Polyunsaturated     

18:2-6 3.27 3.48 1.58 

18:3-3 0.57 - 0.31 

18:4-3 - - 0.09 

20:5-3 - - 0.43 

22:5-3 - - 0.09 

22:6-3 - - 0.32 

Others - - 0.18 

Total  3.85 3.48 3.00 

Total -6 PUFAs  3.27 3.48 1.61 

Total -3 PUFAs 0.57 - 1.25 

-6/-3 ratio 5.70 - 1.29 

Fat sources: Control diet, 7% soybean oil; Deficient -3 diet, 7% sunflower 

oil; Excess -3 diet, 7% blend oil (60% cod-liver + 40% soybean). 

Rodent requirements of: 18:2-6 (linoleic acid), 1.2%; 18:3-3 (alpha-

linolenic acid), 0.2-0.4%; -6/-3 ratio, 1-6. 

Fatty acid accounting for less than 0.05% are not shown but included in 

“others”. 
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2.4. Neurobiological tests 172 

Three tests were performed to assess the neurobiological development during the 173 

lactation phase. To reduce bias, data were recorded by two different operators at the same 174 

time (to avoid excessive animal handling and training influence) and the average data were 175 

reported. The reference day was determined as previously described for the physical 176 

parameters. 177 

2.4.1. Surface righting reflex: on PND7, each pup was placed on its back over a flat 178 

surface during four seconds and then released. The time required to repose all four paws in 179 

contact with the surface was recorded with a stopwatch. The number of animals with 180 

successful response in less than two seconds was registered [9,36]. 181 

2.4.2. Cliff avoidance: on PND7, each pup was placed over a top box surface with the 182 

forepaws and nose over the edge (20 cm height). The time required to complete backing 183 

and turning away from the edge was recorded and the number of animals with successful 184 

response within 30 seconds was registered [9,36]. 185 

2.4.3. Negative geotaxis: on PND8, each pup was placed in a head-down position on a 45-186 

degree inclined cardboard surface. The time taken to complete a 180-degree turn was 187 

recorded, and the number of animals with successful response in less than 30 seconds was 188 

registered [9,36]. 189 

 190 

2.5. Male puberty onset 191 

Male pups were observed daily from PND17 and puberty onset was determined as 192 

the day when both testes were descended into the scrotum [9]. 193 

 194 

2.6. Female puberty onset and characteristics of the estrous cycle 195 
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Female pups were inspected daily for vaginal opening starting on PND21. 196 

Thereafter, vaginal cytology was daily examined to detect the first estrus and to assess the 197 

sexual cycle length as well as the duration of each phase. Five complete cycles were 198 

studied in each animal [37]. 199 

 200 

2.7. Ovulation rate and oocyte quality (nuclear maturity, parthenogenetic activation and 201 

degeneration) 202 

Half of the adult female offspring (PND63; all litters represented) were induced to 203 

superovulate using 5 IU of pregnant mare serum gonadotropin (i.p.) followed, 48 h later, 204 

by 10 IU of human chorionic gonadotropin (hCG; i.p.) [20]. Animals were euthanized by 205 

cervical dislocation 17-18 h after hCG administration. The cumulus-oocyte complexes 206 

were collected by puncturing both oviduct ampullae, placed into center-well dishes with 1 207 

ml of modified Tyrode’s solution [38] and counted to determine the ovulation rate. One 208 

third of the oocytes harvested from each animal were used to integrate a pool per treatment 209 

to evaluate maturity. Cumulus complexes were removed with hyaluronidase and the 210 

absence of the germinal vesicle (GV), as a sign of oocyte maturity, was assessed under an 211 

inverted microscope at 200x [36]. The other two thirds of the cumulus-oocyte complexes 212 

harvested from each animal were kept on separate center-well dishes (one per animal), 213 

incubated at 37°C (5% CO2; 95% air) for 24 h and finally evaluated under inverted 214 

microscope at 200x to determine the degenerated or activated ova percentage. 215 

Parthenogenetic oocytes were classified as pronuclear stage, two cells or more than two 216 

cells [20]. 217 

 218 

2.8. Hormonal determinations 219 
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Animals were euthanized by decapitation and blood was collected in heparinized 220 

tubes and centrifuged at 150 g for 30 min. The supernatant was separated and stored at -221 

20°C until processing [20]. Progesterone concentration was determined in the metestrus 222 

phase in the other half of the adult female offspring (not induced to superovulate; all litters 223 

represented) and testosterone concentration was determined in the male offspring. 224 

Progesterone determinations were performed using a commercial 
125

I-progesterone 225 

radioimmunoassay kit (Coat-A-Count Progesterone, Siemens). The antiserum had less than 226 

3.5% cross-reactivity with other steroids, except for 5-α-pregnan-3,20-dione (9%) (data 227 

provided by the company). The assay sensitivity was 0.1-40 ng/ml. Intra-assay coefficient 228 

of variation was less than 10%. All samples were assayed on the same day in order to 229 

avoid inter-assay variation. 230 

Testosterone concentration was determined by enzyme immunoassay using a 231 

polyclonal anti-testosterone antibody, testosterone standard and their corresponding 232 

horseradish peroxidase conjugate (testosterone R156/7, Department of Population Health 233 

and Reproduction, C. Munro, UC Davis, CA, USA). Briefly, flat bottom microtiter plates 234 

(Nunc Maxisorp, VWR, Mississauga, ON, Canada) were first coated with 50 μl of the anti-235 

testosterone antibody diluted in coating buffer (50mM bicarbonate buffer, pH 9.6; 236 

1:10500), covered with acetate sealers to prevent evaporation and incubated overnight at 237 

4°C. After 16-24 h, plates were washed to remove any unbound antibody with 0.02% 238 

Tween 20 solution using a Bio-Tek ELx 405VR microplate washer (Bio-Tek Instruments). 239 

Immediately after washing, 50 μl of plasma samples, standards, and controls were added in 240 

duplicates, followed by 50 μl of horseradish peroxidase conjugate diluted in EIA buffer 241 

(1:20000). Plates were then covered and incubated at room temperature for 2 h. Following 242 

incubation, the plates were washed and blotted dry, and 100 μl of substrate solution 243 

(50mM citrate, 1.6mM hydrogen peroxide, and 0.4mM 2,20-azino-di-(3-ethylbenz-244 
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thiazoline sulfonic acid) diammonium salt, pH 4.0) were added to each well [39,40]. 245 

Absorbance was measured at 405 nm using a microplate reader (Thermo Electron 246 

Corporation, USA). The assay sensitivity was 0.047 ng/ml. Intra-assay and inter-assay 247 

coefficient of variation were less than 10% and 15%, respectively. Cross-reactivity values 248 

were: 5-α-dihydrotestosterone (57.4%), androstenedione (0.27%), androsterone (0.04 %), 249 

cholesterol (0.03%) and <0.02 % with all other steroids tested. 250 

 251 

2.9. Semen characteristics and testicular weight 252 

In a subgroup of adult male offspring (all litters represented), both testicles were 253 

dissected and weighed [41]. The cauda epididymis was removed and sperm samples were 254 

assessed for concentration, motility, maturity, viability, response to hypoosmotic shock and 255 

acrosomal integrity as previously described in Puechagut et al. (2012) [41]. 256 

 257 

2.10. Statistical analysis 258 

Data were expressed as mean ± standard error of the mean (SEM), as the median 259 

(quartile 1 and 3; Q1-Q3), or as percentage, as appropriate. Dams’ and pups’ body weight 260 

and length were analyzed by two-way repeated-measures ANOVA followed by LSD post 261 

hoc test. Physical and neurobiological parameters, puberty onset, characteristics of the 262 

estrous cycle, ovulation rate, nuclear oocyte maturity, testicular weight, semen 263 

characteristics and plasma hormone levels were analyzed by one-way ANOVA followed 264 

by LSD post hoc analysis or nonparametric Kruskal-Wallis test, as appropriate. The 265 

following data were log transformed before applying the ANOVA model: male/female 266 

ratio at birth, vaginal opening, non-progressive sperm, immotile sperm, bending forms and 267 

sperm with both signs of immaturity, and plasma progesterone concentration. The effect of 268 

dietary treatment on oocyte parthenogenesis and degeneration was assessed using the Chi-269 



13 
 

 

square test. Statistics Graph Pad Prism 5.0 (Graph Pad Software, Inc., San Diego, CA, 270 

USA) and Dell Statistica 13, Dell Inc. (2015) were used to perform graphical and statistical 271 

analysis, respectively. P values <.05 were considered statistically significant. 272 

 273 

3. Results 274 

3.1. Maternal body weight and gestational outcomes 275 

There were no significant differences in dams’ body weight during gestation and 276 

lactation in any of the treated groups (Figure 2), except on GD17, in which the Excess 277 

group dams were heavier than the Deficient ones (P<.05). As expected, a progressive 278 

increase in maternal body weight was observed throughout gestation (F(3,63)=410.87, 279 

P<.05) and a time effect was also detected throughout lactation (F(3,63)=13.99, P<.05). 280 

However, neither a diet effect nor a diet×time interaction were detected in both periods 281 

(P>.05). No group differences in gestational length, litter size, sex ratio or pups’ weight at 282 

birth were observed (Table 3). 283 

 284 

Figure 2. Body weight during gestation or lactation in murine dams fed with variable levels 285 

of -3 PUFAs. GD, gestation day; LD, lactation day. Results are expressed as mean ± 286 

SEM. n=8 dams per diet. 287 
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  P<.05 versus Deficient -3 in a two-way ANOVA for repeated measures followed by a 288 

LSD post hoc analysis. 289 

 290 

3.2. Offspring’s physical and neurobiological milestones 291 

The Excess diet induced a reduction in the offspring body weight during the pre-292 

weaning period, compared with the other two groups (P<.05), and an increase in this 293 

variable from PND49 to PND56 in pups of both sexes, compared with the Deficient group 294 

(P<.05) (Figures 3 and 4). On PND63, this difference was not evident in female pups but 295 

remained in the males. 296 

Pups in the Excess group were shorter in length than those under Control diet from 297 

PND7 to PND49 in both sexes (P<.05) while Deficient offspring were shorter than Control 298 

ones on PND14 and PND21 (P<.05) (Figures 3 and 4). 299 

From this time onwards, there were some differences according to gender: 300 

Deficient males on PND35 and PND49 and females on PND42 were shorter than those 301 

under the Control diet (P<.05). Despite these differences during the postweaning period, 302 

all groups reached similar values on PND56. Growth was observed over time (female 303 

offspring weight F(8,712)=6103.03, P<.05; female offspring length F(8,712)=5095.13, 304 

P<.05; male offspring weight F(8,728)=5595.16, P<.05; male offspring length 305 

F(8,728)=5427.75, P<.05) and a diet×time interaction was detected (female offspring 306 

weight F(16,712)=7.72, P<.05; female offspring length F(16,712)=6.64, P<.05; male 307 

offspring weight F(16,728)=5.22, P<.05; male offspring length F(16,728)=6.94, P<.05). 308 

Table 3  

Maternal and birthing outcomes of mice fed with a Control, Deficient or Excess -3 fatty acid diet 

 Control Deficient -3               Excess -3 

Gestational length (d) 19.00 (19.00-19.00) 19.00 (19.00-19.00) 19.00 (19.00-19.00) 

Number of pups/litter 10.25 ± 0.31  10.00 ± 0.76                10.88 ± 0.55 

Male/female ratio at birth   1.12 ± 0.23    1.14 ± 0.32     1.18 ± 0.20 

Litter weight at birth (g) 15.62 ± 0.56  15.16 ± 0.94   16.52 ± 0.81 

Pup body weight at birth (g)   1.52 ± 0.03    1.53 ± 0.04     1.52 ± 0.03 

Results are expressed as median (Q1-Q3; quartile 1 and 3 respectively) or as mean ± SEM. n=8 dams per diet. 
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The percentage of eye opening in PND14 was lower in the Excess group compared with 309 

the other two groups (P<.05). There were no significant differences in the acquisition of 310 

the remaining physical or neurobiological parameters evaluated (Table 4). 311 

 312 

Figure 3. Changes in body weight (a) and length (b) of female albino Swiss offspring 313 

exposed to different dietary levels of -3 PUFAs prior to gestation until adulthood. 314 

n=number of animals. Results are expressed as mean ± SEM. Two-way ANOVA for 315 

repeated measures followed by a LSD post hoc analysis was used to compare group and 316 

time effects. 317 

  P<.05 versus Control. 318 

  P<.05 versus Deficient -3. 319 

 320 
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Figure 4. Changes in body weight (a) and length (b) of male albino Swiss offspring 321 

exposed to different dietary levels of -3 PUFAs prior to gestation until adulthood. 322 

n=number of animals. Results are expressed as mean ± SEM. Two-way ANOVA for 323 

repeated measures followed by a LSD post hoc analysis was used to compare group and 324 

time effects. 325 

   P<.05 versus Control. 326 

  P<.05 versus Deficient -3. 327 

 328 

3.3. Puberty onset and characteristics of the estrous cycles 329 

Descent of both testes occurred on PND19 in all groups. Vaginal opening and first 330 

estrus in the Excess group occurred later than in the other two groups (P<.05). The female 331 

sexual maturation had a negative correlation with the pup’s body weight on PND7, 14, 21 332 

and 28. When considering the length of the estrous cycle and each phase separately, the 333 

analysis showed no significant differences. However, the Excess condition induced higher 334 

percentage of the diestrus length out of the whole cycle compared to the other dietary 335 

groups (P<.05) (Table 5). 336 

 

Table 4 

Physical and behavioral development in albino Swiss offspring from dams exposed to Control, Deficient -3 or Excess -3 diet 

Parameter              Control Deficient -3 Excess -3 

Physical parameters (%)     

Fur appearance (PND2)  100.00 (75.00-100.00) 50.00 (0.00-100.00) 100.00 (0.00-100.00)  

Pinna detachment (PND4) 100.00 (100.00-100.00) 100.00 (100.00-100.00)  100.00 (100.00-100.00)  

Incisor eruption (PND11) 100.00 (87.50-100.00) 100.00 (87.50-100.00)  100.00 (100.00-100.00)  

Eye opening (PND14)  100.00 (75.00-100.00) 100.00 (87.50-100.00) 62.50 (50.00-75.00) 

Behavioral tests (%)     

Surface righting reflex (PND7) 82.81 ± 5.25 76.56 ± 6.44 68.75 ± 7.09  

Cliff avoidance (PND7) 87.50 (75.00-100.00) 87.50 (87.50-100.00) 100.00 (62.50-100.00)  

Negative geotaxis (PND8) 93.75 (62.50-100.00) 81.25 (62.50-87.50) 75.00 (50.00-87.50)  

Postnatal day (PND) in parentheses is the reference day for that parameter. Results are expressed as median (Q1-Q3; quartile 1 
and 3 respectively) or as mean ± SEM. n=8 litters per diet; 8 pups each.   

   P<.05 versus Control in a Kruskal-Wallis test. 

P<.05 versus Deficient -3 in a Kruskal-Wallis test.   
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 337 

3.4. Ovulation rate and oocyte quality  338 

There were no significant differences among groups in terms of ovulation rate and 339 

percentages of mature oocytes and degenerated forms. After 24 h of cumulus-enclosed 340 

oocytes incubation, the percentage of spontaneous parthenogenetic activation was higher in 341 

the Excess group compared with the other two groups (P<.05) (Table 6). 342 

 343 

3.5. Plasma progesterone concentration 344 

There were no significant differences in plasma progesterone concentration (ng/ml) 345 

among groups, despite an observed trend towards decreased progesterone level in the 346 

Table 6  
Ovulation rate and oocyte quality in albino Swiss offspring exposed to variable dietary levels of ω-3 fatty acids from conception to 

adulthood 

Parameter          Control    Deficient -3          Excess -3 

Number of animals       13*       15      13* 

Ovulation rate1 30.62 ± 2.88 26.19 ± 3.07 31.86 ± 3.33 

Maturity (%)2 100,00 (100,00-100,00) 100,00 (100,00-100,00) 100,00 (95,00-100,00) 

Number of incubated oocytes (24h)  269 271 300 

Spontaneous activation (%)3   34.36 33.71                                     43.20   

           Pronuclear stage (%)4   3.37 1.12 1.57 

           2 cells (%)4 62.92  61.80                                48.82                       

           More than 2 cells (%)4  33.71   37.08                                 49.61   

Degenerated (%)5    3.72 2.58 2.00 

1 Ovulation rate: number of oocytes recovered from both oviductal ampullae. Results are expressed as mean ± SEM and comparisons 

between groups were performed with one-way ANOVA. 2 Results are expressed as median (Q1-Q3; quartile 1 and 3, respectively) 
and comparisons between groups were made by Kruskal-Wallis test. 3 Percentage of incubated oocytes excluding degenerated 

oocytes. 4 Percentage of activated oocytes. 5 Percentage of incubated oocytes. 3, 4, 5 Data were analyzed by Chi-square test. * There 

were two Control and two Excess females not included because of oocytes absence in the ampullae after hormonal induction. 

   P<.05 versus Control.  

P<.05 versus Deficient -3.  

Table 5  

Puberty onset and characteristics of estrous cycles in albino Swiss pups exposed to variable dietary levels of ω-3 fatty acids 

Parameter Control Deficient -3 Excess -3 

Number of animals                28 (8 litters)                32 (8 litters) 31* (8 litters) 

Vaginal opening (PND)1                29.86 ± 0.45               29.94 ± 0.44 32.74 ± 0.64 

First estrus (PND)2    30.00 (29.00-33.00)   30.50 (29.00-33.00) 34.00 (32.00-38.00) 

Length of estrous cycles (days)2        5.00 (4.80-5.20)        5.00 (4.80-5.20)      5.00 (4.80-5.40) 

Length of estrus phase (days)2        1.20 (1.00-1.20)        1.20 (1.00-1.20)      1.20 (1.00-1.20) 

Length of diestrus phase (days)2        2.40 (2.20-2.60)        2.40 (2.00-2.60)      2.80 (2.20-3.00) 

Length of estrus/length of cycle (%)2   22.41 (20.69-24.00)   20.83 (19.23-23.08) 20.87 (20.00-23.81) 

Length of diestrus/length of cycle (%)1               46.95 ± 1.05               47.67 ± 1.03 52.19 ± 1.39 

PND, postnatal day. Results are expressed as median (Q1-Q3; quartile 1 and 3 respectively) or as mean ± SEM. 
Comparisons between groups were made by one-way ANOVA (1) or Kruskal-Wallis test (2). A total of 5 cycles were 

evaluated in each mouse after vaginal opening. * There was one Excess female not included due to lack of estrous cyclicity.    

  P<.05 versus Control.  

P<.05 versus Deficient -3.  
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Excess group: Control 11.08 ± 2.11 (n=10); Deficient 13.35 ± 1.63 (n=14); Excess 8.65 ± 347 

0.88 (n=16); P=.07. The number of plasma samples used for progesterone measurements 348 

was lower than the number of females not induced to ovulate in the Control and Deficient 349 

groups (n=13 and n=17, respectively). This is because plasma samples from all three 350 

dietary groups were used to perform two hormonal determinations and in the cases in 351 

which the volume was not enough to perform both, corticosterone was prioritized (results 352 

not included in this report).    353 

 354 

3.6. Plasma testosterone concentration 355 

No significant differences were observed in testosterone levels (ng/ml) between any 356 

of the groups: Control 0.49 ± 0.13 (n=19); Deficient 0.32 ± 0.10 (n=23); Excess 0.23 ± 357 

0.15 (n=10). 358 

 359 

3.7. Semen characteristics and testicular weight 360 

There were no significant differences in sperm concentration and motility among 361 

groups. However, the Deficient group exhibited a higher percentage of bending immature 362 

gametes compared to the Control group (P<.05). No significant differences were observed 363 

in sperm viability, tail swelling after hypoosmotic shock, acrosomal integrity or testicular 364 

weight between any dietary groups (Table 7). 365 
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 366 

4. Discussion 367 

The aim of this study was to assess the effects of long-term exposure to dietary ω-3 368 

PUFA imbalance before conception to adulthood, on the somatic, neurobiological and 369 

reproductive development and function of mice. Our results show that an excess in ω-3 370 

PUFAs leads to the impairment of several physical developmental parameters in the 371 

lactating offspring and delays growth in length over the lactation and postweaning periods, 372 

in addition to female reproductive development. On the other hand, the ω-3 PUFA 373 

deficiency also delays growth in length during the lactation and postweaning periods and 374 

produces a higher count of bending spermatozoa (a sign of gamete immaturity). 375 

In lactating pups from dams fed with the Excess diet, we observed lower body 376 

weight and length and delayed eye opening, but no differences were observed in body 377 

weight at birth. These results are in accordance with previous studies reporting adverse 378 

consequences in postnatal growth and development after maternal dietary excess of ω-3 379 

PUFAs during pregnancy and lactation [42-47]. Nevertheless, some of these studies cannot 380 

rule out if the adverse effects are due to very low level of ω-6 PUFAs or elevated level of 381 

Table 7 

Functional activity of caudal epididymal sperm and testicular weight from albino Swiss offspring exposed to variable levels of ω-3 
fatty acids from conception to adulthood 

Parameter          Control          Deficient -3          Excess -3 

Number of animals          15           19            15 

Sperm concentration (x 106/mL)                           26.18 ± 2.07          21.51 ± 1.87         26.72 ± 2.98 

Motile (%) 84.00 (74.00-89.00) 84.00 (78.00-89.00) 79.00 (73.00-88.00) 

Progressive (%)          84.00 (74.00-88.00) 80.00 (78.00-89.00) 75.00 (73.00-84.00) 

Non-progressive (%)             0.77 ± 0.48            3.11 ± 1.82           2.77 ± 1.48 

Immotile (%)                  18.00 ± 1.90          18.08 ± 2.30          0.27 ± 2.35 

Immature features       

  Bending (%)             3.93 ± 0.81                8.11 ± 1.36             5.87 ± 0.93 

Cytoplasmic drop (%)           14.07 ± 2.34          14.55 ± 2.26         15.00 ± 3.17 

Viable spermatozoa (%)   86.00 (79.00-80.00)        81.00 (73.00-85.00) 81.00 (71.00-86.00) 

Hypoosmotic tail swelling (%)              76.87 ± 2.14            77.37 ± 1.25         75.13 ± 2.84 

Acrosomal integrity (%) 90.00 (84.00-92.00) 90.00 (80.00-93.00) 86.00 (78.00-92.00) 

Testicular weight (g)               0.18 ± 0.003              0.17 ± 0.003             0.17 ± 0.010 

Results are expressed as mean ± SEM or as median (Q1-Q3; quartile 1 and 3 respectively). 

   P<.05 versus Control in a one-way ANOVA followed by LSD post hoc analysis. 
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ω-3 PUFAs, since they used fish oil (very rich in ω-3 PUFAs but extremely poor in ω-6 382 

PUFAs) as the only lipid source to create the excessive condition [46,47]. 383 

Lactation could be considered a more susceptible period to the harmful effects of 384 

an increased maternal consumption of ω-3 PUFAs [44,47], probably because changes 385 

induced by diet in the FA profile of maternal milk are less compensated in the Excess than 386 

in the Deficient situation, in which the mobilization from maternal fat stores could 387 

maintain milk FA composition [44,47]. Moreover, Excess diet is able to inhibit the 388 

development of mammary tissue and thus milk production by reducing LA to arachidonic 389 

acid (AA) conversion [48]. In rodent studies, intrauterine exposure to excessive ω-3 390 

PUFAs affected brain myelination and neurobehavioral function in the pups [47,49]. 391 

Therefore, the acquisition of the suckling reflex and the pups’ ability to feed could be 392 

affected. Nevertheless, the neurobiological evaluation performed later did not show any 393 

significant change. 394 

In rat offspring exposed to ω-3 PUFA excess through their mothers, a delay in 395 

pinna detachment was observed [46,47]. In the present study, in lactating mice exposed to 396 

the Excess diet, eye opening was delayed. These results suggest that ω-3 PUFA excess 397 

may lead to alterations in tissue maturation. Oppositely, when the same parameters were 398 

evaluated in offspring exposed to ω-6 excess diet, there was an advancement [9], 399 

suggesting that ω-6 net content and ω-6/ω-3 ratio on diet are relevant for these 400 

developmental milestones. 401 

The recovery in body weight observed in the Excess pups after weaning may be 402 

attributable to their own access to the dam food, as suggested by Wainwright et al. [43]. 403 

Interestingly, in the late phase of the evaluated period, the Excess group reached a higher 404 

body weight than the Deficient group. 405 
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In mice offspring exposed to ω-3 PUFA excess, body length recovery followed a 406 

slower rhythm after weaning. This suggests the persistence of some mechanisms of 407 

nutritional toxicity on longitudinal growth speed [47,50], at least until PND56, when this 408 

differences disappeared. In pups exposed to Deficient diet, a reduction in body length was 409 

observed but the postweaning recovery was faster than in the Excess condition. One work 410 

has suggested that offspring from dams fed with high or low ω-3 PUFA diets may have 411 

altered skeletal growth [46]. In a previous study, we observed a reduction in the pups’ 412 

length at weaning after maternal exposure to a high ω-6/low ω-3 PUFA diet [9]. Taken 413 

together, these results highlight the relevance of ω-3 PUFA content on dam diet to the 414 

progeny growth. 415 

Neither the Excess nor the Deficient conditions had significant effects on maternal 416 

body weight during gestation and lactation, gestational length, litter size, sex ratio, birth 417 

weight, or the developmental and neurobehavioral milestones of fur appearance, pinna 418 

detachment, teeth eruption, surface righting reflex, cliff avoidance and negative geotaxis. 419 

These findings are consistent with previous studies on maternal deficiency and excess of 420 

dietary ω-3 PUFAs [42,46,47,51-54] and contrast with those reporting prolonged 421 

gestational age [55] or reduced birth weight [47,55] after the exposure to high ω-3 PUFA 422 

levels. 423 

The female mice exposed to excessive ω-3 PUFAs had delayed puberty onset. 424 

Smith et al. reported immaturity in hypothalamic and ovarian components of the 425 

reproductive axis due to LA deficiency and the subsequent reduced availability of AA for 426 

synthesis of bioactive metabolites, especially PGE2 [56]. The ω-3 PUFA excess may 427 

displace and reduce the tissular bioavailability of AA. Moreover, AA and its derived PG 428 

depletion can inhibit the steroidogenic acute regulatory protein and sexual steroid 429 

synthesis, which are necessary to the maturation of internal and external genital organs 430 
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[21,57]. The low body weight of Excess female pups during lactation is also able to delay 431 

the timing of puberty [58]. Correlation analysis showed that the lower body weight, the 432 

later sexual maturation. 433 

The length of the estrous cycle as well as each composing phase was not modified 434 

by dietary ω-3 PUFA levels. These may respond to an adequate provision of LA by all the 435 

diets [56]. In offspring exposed to the Excess diet, a relative prolongation of diestrus at the 436 

expense of proestrus and/or metestrus was registered. Metestrus depends on the corpus 437 

luteum activity and excessive ω-3 PUFAs may reduce luteotrophic PG, shortening this 438 

phase [59]. In reference to ovulation rate, we found no differences between our dietary 439 

groups, in accordance with other investigations [60,61]. Higher PUFA concentrations than 440 

those used in the present study are necessary to produce variations in this parameter [62]. 441 

Cumulus-enclosed oocytes from mice exposed to the Excess diet showed lower 442 

quality than other dietary groups, since they were spontaneously activated and expressed 443 

advanced transition timing between activation stages [63]. Cumulus cells play an important 444 

role in oocyte nutrition and activation process [63,64]. An increasing proportion of ω-3 445 

PUFAs in the diet and later in the cells may reduce PGE synthesis by the mouse oocyte-446 

cumulus complex, and this reduction has been associated with high parthenogenetic 447 

activation rates [63,65]. In relation to the other oocyte quality parameters evaluated in this 448 

study, diets did not modify neither the percentage of oocyte maturity (GV stage absence) 449 

nor the percentage of degenerated ova. Another work studied the oocyte quality using other 450 

methods and, similarly, did not found any effect after the administration of linseed oil 451 

(56% ALA) [60]. 452 

The adult male mice exposed to ω-3 PUFA deficient diet had higher percentages of 453 

bending spermatozoa in samples obtained from the cauda epididymis. This alteration may 454 

hinder the normal sperm migration through the female tract [66]. It is well known that 455 
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PUFA levels are relevant to membrane constitution and maturation during spermatogenesis 456 

[67,68] and epididymal transit. During the latter, PUFA to saturated FA ratio increases 457 

[69]. Another characteristic of mature cauda spermatozoa is the higher presence of 458 

disulfide bonds in proteins and the reduction of this feature is associated with an increased 459 

count of bending gametes [69]. The PUFA content in the sperm membrane modifies redox 460 

status [21] and in turn, could alter the production of double bonds by glutathione 461 

peroxidase [70]. Further studies are necessary to determine the impact of ω-3 PUFA 462 

deficiency on sperm redox status and disulfide-bridging events. 463 

Diets did not induce modifications neither in female progesterone nor in male 464 

testosterone plasmatic concentrations. Likewise, other studies showed no variations due to 465 

dietary ω-3 PUFA level on progesterone [60,71] or testosterone concentrations [72,73]. 466 

The supplementation and fortification of foods is an attractive strategy to increase 467 

ω-3 PUFA intake [21] and this is considered to be a safe practice [35]; however, there are 468 

still some controversies regarding the effects of ω-3 PUFA supplementation on the 469 

inhibition of ω-6 PUFA metabolic pathways and on postnatal development [74]. Our 470 

observations are in accordance with the ω-6 displacement hypothesis and show that excess 471 

of ω-3 PUFAs in dams diet would be more harmful to the offspring growth and 472 

development than deficiency, probably because the mothers may counteract this situation 473 

at expense of their own body stores. These findings may have significant implications for 474 

nutrient supplement practices during pregnancy and lactation. 475 

In conclusion, these results taken together with those obtained by our group in 476 

previous studies using ω-6 PUFA exceeded diets in a similar protocol, show that the 477 

consumption of either large or inadequate amounts of ω-3 or ω-6 PUFAs by mothers 478 

during pregnancy and lactation, and by their offspring after weaning, seems inadvisable 479 
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because of the potential adverse effects on growth and development, female sexual 480 

maturation, as well as male and female fertility at adulthood.  481 
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