
Accepted Manuscript

Title: Bioallethrin degradation by photo-Fenton process in
acetonitrile/water and aqueous �-cyclodextrin solutions

Authors: David Possetto, José Natera, Matı́as I. Sancho,
Norman A. Garcı́a, Walter A. Massad

PII: S1010-6030(18)30267-3
DOI: https://doi.org/10.1016/j.jphotochem.2018.07.036
Reference: JPC 11402

To appear in: Journal of Photochemistry and Photobiology A: Chemistry

Received date: 27-2-2018
Revised date: 3-7-2018
Accepted date: 23-7-2018

Please cite this article as: Possetto D, Natera J, Sancho MI, Garcı́a NA, Massad WA,
Bioallethrin degradation by photo-Fenton process in acetonitrile/water and aqueous
�-cyclodextrin solutions, Journal of Photochemistry and Photobiology, A: Chemistry
(2018), https://doi.org/10.1016/j.jphotochem.2018.07.036

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.jphotochem.2018.07.036
https://doi.org/10.1016/j.jphotochem.2018.07.036


1 

 

Bioallethrin degradation by photo-Fenton process in acetonitrile/water 

and aqueous -cyclodextrin solutions 

 

David Possettoa, José Nateraa, Matías I. Sanchob, Norman A. Garcíaa and Walter A. 

Massada* 

 
aDepartamento de Química, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, 
Argentina 
 
bIMIBIO – CONICET – Fac. de Química, Bioquímica y Farmacia, Área de Química Física. 
UNSL.  5700 San Luis, Argentina. 
 
(*) Corresponding author: wmassad@exa.unrc.edu.ar 

 
Graphical abstract 
 

 
 
 
 
 

ACCEPTED M
ANUSCRIP

T



2 

 

Highlights 

 

 Bioallethrin  degradation was studied by photo-Fenton and modified photo-Fenton 

processes 

 Bioallethrin  is degraded by photo-Fenton in water, acetonitrile / water mixture and 

in aqueous solution of-cyclodextrin 

 The association constant of Bioallethrin  to -cyclodextrin  was measured to be 

1933±300 M-1  

 The degradation rate of Bioallethrin by photo-Fenton is similar in water than in an 

aqueous solution of -cyclodextrin 

 

 

Abstract 

Bioallethrin (Bio) is an insecticide that chemically and functionally belongs to the family of 

the synthetic insecticides named pyrethroids. In this work the degradation of Bio is studied 

by the photo-Fenton and photo-Fenton-modified processes. The first one produces the 

complete mineralization of Bio in less than one hour of irradiation. However, due to the low 

solubility of Bio in water, different modifications of the photo-Fenton process were tested. 

First, the photo-Fenton process was carried out in mixtures of different acetonitrile/water 

proportions. Although acetonitrile deactivates the hydroxyl radical, the main oxidizing agent 

in the photo-Fenton process, a Bio degradation greater than 90% is achieved in 80 min of 

reaction. Second, degradation of Bio was evaluated by photo-Fenton in a medium with -

cyclodextrin (-CD), where the Bio solubility could be increased at least thirty-five times. 

The association constant of Bio to -CD was measured to be 1933±300 M-1 and molecular 

simulation results indicate a 1:1 inclusion complex stabilized by the formation of 
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intermolecular H-bonds. The Bio degradation rate in this medium was similar to that 

observed in aqueous media. The use of -CD presents a friendly alternative to the 

environment for the degradation of the pyrethroid insecticide. 
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Introduction 

Pyrethroids (Pyr) are synthetic  derivatives of pyrethrins developed in order to 

maintain the effective insecticidal activity of the pyrethrins while increasing stability to light 

and residence time in the environment [1].  However, they are more toxic to mammals than 

natural insecticides and are widely employed in urban areas for the control of pests in 

residential premises, on industrial sites and in rural regions to protect a variety of 

agricultural crops. The application of synthetic pyrethroid insecticides has increased 

substantially over the last few decades, concomitant with the decline in use of 

organophosphate pesticides that are far more toxic to birds and mammals [2–4]. Therefore, 

the occurrence and potential environmental impact of Pyr have taken considerable 

attention [4,5]. The intensive use of these Pyr has resulted in environmental contamination 

of surface and groundwater [4,6]. Bioaccumulation of Pyr in edible river fish samples has 

also been recently reported [7]. 

 Bio (Figure 1) is the mixture of two allethrin isomers, [1R,trans;1R] and [1R,trans;1S] in an 

approximate ratio of 1:1, the first potent synthetic pyrethroid [8,9]. Its chemical structure is 

composed by the chrysanthemic acid and 2-cyclopenten-1-one moieties. 

 The presence of these compounds in aqueous media motivates the need of developing 

methods for their elimination. When no complete removal of certain compounds can be 

guaranteed, conventional wastewater treatment plants themselves become major sources 

of water contamination [10,11]. To overcome this issues, Advanced Oxidations Processes 

(AOPs) are considered a viable alternative due to its ability to oxidize organic pollutants 

reaching high levels of mineralization [12,13] [13].   
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 The Fenton process is in one of the most reported AOPs and appears as an attractive 

alternative for removing organic contaminants [14,15]. According to a simplified 

mechanism, the active species can be generated by the reaction of hydrogen peroxide with 

ferrous  and ferric ions as shown in reactions (1) and (2) [16,17]: 

 

Fe2+ + H2O2 + H+  Fe3+ + HO + H2O k1 = 58 mol-1 dm3 s-1 (1) 

Fe3+ + H2O2  Fe2+ + HOO + H+ k2 = 0.02 mol-1 dm3 s-1 (2) 

 

 The hydroxyl radical formed in reaction (1) can react with organic compounds by H 

abstraction or addition to alkenes, alkynes or aromatic rings. However, since the reaction 

rate constant of reaction (2) is much lower than that of reaction (1), the transformation 

between the ferric ions and the ferrous ions and the production of active species are limited 

by reaction (2). 

 It was found that UV irradiation of the Fenton system enhanced significantly the 

degradation rate of many organic substances [14,16,18–20] due the direct of HO radical 

formation and Fe2+ regeneration from photolysis of the complex [Fe(OH)]2+ (reaction 3) 

[10]: 

Fe(OH)2+ + h  Fe2+ + HO  0.017 a 360 nm 
0.14 a 313 nm 

(3) 

 

 Furthermore, Fenton and photo-Fenton processes are preferably employed in aqueous 

media because the hydroxyl radical reacts with a diffusion-controlled rate constant with 

most organic solvents [21]. This diminishes the efficiency of the process or, worse, it can 
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cause that the process is impracticable in organic solvents. In order to increase the 

solubility of organic compounds to be degraded, different strategies have been reported: 

Chen et.al. [16] have studied the degradation by photo-Fenton of methyl orange in 

methanol solution. Lindsey et.al. [19] have employed -cyclodextrin (-CD) or 

carboxymethyl--cyclodextrin to improve the effectiveness and selectivity of Fenton 

degradation of hydrophobic organic compounds. While Mousset et.al. [22] have used two 

solubilizing agents (hydroxypropyl-beta-cyclodextrin and Tween 80) in order to degrade 

phenanthrene by electro-Fenton. The effectiveness and selectivity of Fenton degradation 

to organic compounds are attributed to the simultaneous complexation of Fe2+ and organic 

compound with -CD or derivatized cyclodextrin via formation of a ternary pollutant-

cyclodextrin-iron complex [19,22].  

With regard to the use of the photo-Fenton process for the pyrethroids degradation, the 

Fenton oxidation of 3-phenoxybenzyl acetate as a model of synthetic pyrethroids was 

examined in aqueous acetonitrile [23].  Colombo et al. [3] studied the degradation of a 

synthetic pyrethroid, Esfenvalerate [(S)-α-cyano-3-phenoxybenzyl-(S)-2-(4-chlorophenyl)-

3-methylbutyrate], by the classic photo-Fenton process and using ferrioxalate as a source 

of Fe(II). This latter variant proved to be much more efficient, however, complete 

mineralization was not achieved due to the formation of recalcitrant organic by-products 

[3]. However, the pyrethroids studied by Katagi [23] and Colombo [3] have a 3-

phenoxybenzyl residue, which is not present in Bio.   

Due to the low solubility of bioallethrin, herein a comparative study of the degradation of 

Bio by photo-Fenton in acetonitrile/water mixtures and in aqueous solutions of -

cyclodextrin was carried out. 
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Materials and Methods  

Materials 

Bioallethrin 97% (Bio) was purchased from Aldrich. Ferrous sulphate hexahydrate, 

hydrogen peroxide 30 % w/v and acetic acid were from Cicarelli. Perchloric acid 70-72 % 

was from Merck. All chemicals were used as received. Water was triply distilled. Methanol 

(MeOH), acetonitrile (ACN) and chloroform, all HPLC quality, were provided by Sintorgan.  

Solution pH was adjusted by addition of concentrated perchloric acid.  

Steady-State photolysis 

The photo-Fenton experiments were performed in a photochemical reactor chamber 

(Rayonet RPR-200) containing eight  6-W fluorescent black lamps with emission centred 

at 354 nm. The lamps were warmed up for 10 min before irradiation to reach constant 

output.  

Absorption measurements 

Ground state absorption spectra were registered employing a Hewlett Packard 8452A 

diode array spectrophotometer provided with a ChemStation advanced software for 

multicomponent analysis (MCA). 

Determination of the association constant (Kas) between Bioallethrin and β-CD 

 The association constant (Kas), was evaluated through the Scoot method [24,25] , using 

Eq. 1. 
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[𝐵𝑖𝑜
𝑡
][𝛽 − 𝐶𝐷𝑡]𝐿

Δ𝐴
=  

1

Δ𝜀
[𝛽 − 𝐶𝐷𝑡] +

1

𝐾𝑎𝑠Δ𝜀
 

Eq. 1 

 

where ΔA is the difference in absorbance between Bio in the absence and presence of the 

-CD at 230 nm, Δε is the difference in the molar absorptivity between the free and included 

insecticide and L is the path length.  

Measurement of the solubility of Bio in water and in H2O:ACN (10:90) system 

The solubility of Bio in the different media was measured by UV-Vis absorption 

spectroscopy [26]  

Photo-Fenton reaction in acetonitrile/water system  

Since the absorption spectrum of Bio overlaps with the absorption spectra of the Fenton 

reagents, the MCA method was used to monitor Bio consumption under different reaction 

conditions. 

Experimental determination of reactive rate constant of Bio with HO (kOH·) 

The rate constants for the reaction between Bio and HO  in different media (reaction 4) 

were determined using competitive kinetics according to Haag et al.  [27] 

Bio + HO  Products kHO· (4) 

 

The kOH· value was determined by: 

𝑘𝐻𝑂· = 𝑘𝐻𝑂·
𝑃ℎ𝑒

𝐿𝑛([𝐵𝑖𝑜]
0
/[𝐵𝑖𝑜]

𝑡
)

𝐿𝑛([𝑃ℎ𝑒]
0
/[𝑃ℎ𝑒]

𝑡
)
  

Eq. 2 
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 𝑘𝐻𝑂· y 𝑘𝐻𝑂·
𝐵𝑖𝑜 are the rate constants for the reference compound an substrate, respectively. 

Phenol (Phe) was used as reference (𝑘𝐻𝑂·
𝑃ℎ𝑒 = 8.41 x 109 M-1s-1) [28]. 

 CG-MS experiments 

The chloroform extract of the aqueous photo-Fenton degradation of Bio was measured by 

CG-MS. A MS-GC Hewlett Packard 5890 Gas Chromatograph, 5972 Mass Selective 

detector, Column HP-5 (Crosslinked 5% PH ME Silicone, 30 m x 0.32 mm) was used in 

chromatography analysis. 

The ionization energy was 70 eV. Injector temperature was 200 °C and the oven 

temperature was programmed as follows: initial temperature 120 °C, final temperature 200 

°C, heating rate 10 °C / min. Helium was used as a carrier gas with a constant flow of 0.8 

ml / min.  

HPLC experiments 

The Bio degradation was determined by HPLC analysis employing a Waters 1525 

equipment coupled to a UV-Vis detector (Waters 2489). A stainless steel analytical column 

(Varian SP-C8-IP-5 5m 4 x 150 mm) was used for the chromatographic analysis. The 

mobile phase consisted of H2O:ACN (10:90); the aqueous medium used to prepare the 

mobile phase was an 1% v/v solution of acetic acid. The flow rate was adjusted to 1 mL·min-

1. The detection wavelength was 230 nm.  

TOC analysis  

Total organic carbon (TOC) was determined spectrophotometrically after persulphate 

oxidation of carbon to carbon dioxide and colour change of a pH indicator (Hach, DR/2500, 

Method 10129).  
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Molecular Modeling 

A relaxed potential energy surface was calculated at PM6 (Parametric Model 6) level of 

theory on the molecular geometry of bioallethrin.  The scanned parameter was the dihedral 

angle ω in a 0°-360° range, with a step size of 10° (Figure 1). For  -CD the initial geometry 

was constructed according to crystallographic data [29]. A previously adopted procedure 

was followed to simulate the inclusion process, [25] and two possible orientations were 

considered: the “Head Up” and “Head Down” orientations, in which bioallethrin initially 

points toward the primary and the secondary hydroxyls of β-CD, respectively. A total of 18 

structures for each orientation were calculated, in order to ensure that the guest drug 

passes completely through the β-CD cavity. The PM6 optimized geometries of minimum 

energy were further optimized using the DFT B3LYP/6-31G(d) level of theory.  In order to 

quantify the strength of relevant intermolecular interactions in the inclusion complex a NBO 

analysis was performed on the most stable structure. The stabilization energy (∆Eij) was 

calculated using the following equation: 

   Δ𝐸𝑖𝑗 =
𝑞𝑖𝐹𝑖𝑗

(𝜀𝑗−𝜀𝑖)
         Eq. 3 

Where qi is the donor orbital occupancy, εi and εj are the energies of the interacting orbitals, 

and Fij is the off-diagonal NBO Fock matrix element [30]. The ∆Eij values are useful to 

estimate the energy of a donor-acceptor interactions, like H-bonds. All the calculations 

were performed with GAUSSIAN 09 software packages. 

 

Results and discussion  

Photo-Fenton degradation of Bio in H2O 
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The objective of this work is to evaluate the degradation of Bio by the process of photo-

Fenton in different media. Bio degradation by photo-Fenton in aqueous solution was 

studied as a first step using typical concentrations ([Fe2+] = 5 x10-5 M; [H2O2] = 10-2 M and 

pH = 3) for the photo-Fenton reagents according to what has been reported for the 

degradation of different pesticides [3,31] and organics contaminants [32,33].  

According to Wang et al. [34] several papers have studied a minimum theoretical dose of 

H2O2 to guarantee the complete mineralization of the pollutant. For example for the 

following reaction: 

CaHbNcOd+ (2a + 
1

2
b+

5

2
c-d) H2O2 → a CO2+(2a+b+2c-d) H2O2+c HNO3 (5) 

 

one mole of CaHbNcOd requires (2a + (1/2)b + (5/2)c – d) moles de H2O2. In the case of Bio 

the minimum dose of H2O2 is 2.4 x 10-3 M, whereby the concentration chosen (10-2 M) 

ensure the complete degradation of Bio. 

Figure 2 shows the degradation of Bio by the process of photo-Fenton, where it can be 

observed that after 40 min of irradiation Bio was completely degraded. In the 

measurements of CG-MS at different reaction times, only the decrease of a peak at 14 

minutes corresponding to the Bio was detected (data not shown). By means of HPLC or 

CG-MS measurements, the appearance of products was not observed. A complete 

mineralization of Bio is achieved after 60 min of reaction (see TOC, Figure 2 Inset A).  

 

A comparison of Bio photodegradation-rate with those of the archetypal surface-water-

contaminant phenol (Inset B, Figure 2) indicates that Bio degradation occurs in a moderately 

fast fashion than the model contaminants, within a common overall time-scale.The primary 
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photoprocesses initiating the degradation, via HO involvement, seems to be quite similar 

for the two compounds. The natural degradation of Bio by reaction with HOappears as a 

plausible process, as evaluated under simulated environmental conditions. Additionally, 

from the competitive method a value of (1.1±0.1) x 1010 M-1s-1 was determined reaction (4) 

in aqueous solution (Inset B, Figure 2). 

 

Photodegradation of Bio in ACN/H2O mixtures 

Since no previous information was available concerning the behaviour of Bio during the 

photo-Fenton treatment in a non-aqueous media, an initial study of the ACN effect on was 

carried out, for which the concentration of reactants ([Fe2+] = 10-5 M and [H2O2]= 10-3 M) 

were chosen arbitrarily. The pH value of 3.0 for the reaction mixture was chosen according 

to a literature report. Although there is not an optimal pH-value, a pH-range from 2.0 to 4.0 

is reported as the optimum in Fenton processes. [14,34] 

The addition of ACN allows the dissolution of Bio in the Fenton reaction medium.  For 

example, the use of 10% acetonitrile in water allows to increase the solubility from 2.3 x 

10-5 M to 7.3 x 10-5 M (Inset Figure 3). Figure 3 shows the Bio degradation in different 

ACN/Water proportions and the following photo-Fenton conditions: [Fe2+] = 5 x 10-5 M; 

[H2O2] = 10-2 M and pH = 3.  For the irradiation times investigated there is no significant 

variation in the degradation of Bio for the different proportions of ACN used (10-40%). The 

decrease in the percentage degradation of Bio with respect an aqueous solution can be 

attributed to reaction (6): 

HO  + ACN   products k4 = 3.7 x 107 M-1s-1 [21] (6) 
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From these results, a 10% ACN / water mixture was chosen as the solvent for further 

assays. Then, experiments at pH 3 were designed using [Bio] = 6 x 10-6 M and the effect 

of the two independent variables [H2O2] (Inset Figure 4) and [Fe2+] (Figure 4) were 

evaluated. The photo-Fenton process was carried out using [Fe2+] in the range from 10-5 

M to 10-4 M and H2O2 concentrations from 5 10-4 M to 10-2 M. The %Bio degradation at 60 

min irradiation and the pseudo-first order rate constants are shown in Table 1. 

  

 

The results show that for a [Fe2+]= 50 x 10-6 M the variation of the H2O2 concentration in a 

10 % ACN/water mixture produces changes of 40% in the rate of degradation of Bio. The 

highest value of Bio degradation is obtained at the lowest concentration of H2O2, probably 

as a consequence of the reaction: 

HO  + H2O2   HO2
 + H2O k5 = 1.7 - 4.5 x 107 M-1s-1 [35] (7) 

 

In contrast, the variation of [Fe2+] has a more pronounced effect on the degradation rate of 

Bio, the degradation rate of Bio vary from 8.6 to 39.5 for [Fe2+] of 10 x 10-6 M  and 50 x 10-

6 M respectively. However, with the increase of [Fe2+] to 10-4 M there is a decrease in the 

rate and % degradation. This can be attributed to the reaction of Fe2+ with HO, as reported 

for the Fenton system in aqueous solution [35]: 

Fe2+ + HO  OH- + Fe3+ k6 = 2.5 – 5 x 108 M-1s-1 (8) 
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Once the photo-Fenton system was characterized in a medium with 10% ACN, we decided 

to work under the following conditions: [Fe2+] = 50 x 10-3 M, [H2O2] = 0.01 M and pH=3. In 

order to evaluate the effect of ACN under these conditions, the same experiments were 

performed in the photo-Fenton process without acetonitrile and without light (Fenton 

reaction). Results are shown in Table 2. 

 

In all cases it was observed that the degradation rate of Bio is much lower in the Fenton 

process compared to the photo-Fenton system.  This is attributed to the lower steady-state 

concentration of HO since the contribution of HO from the reaction (3) does not occur. In 

addition, the percentage of degradation is slightly lower in an ACN/H2O medium due to 

reaction (6). The degradation rate of Bio increases by 35 in the photo-Fenton process 

performed in water, whereas it is enhanced 17 times when the medium has 10% ACN. It 

is also noted that the % degradation of Bio is much higher in the photoinduced processes 

and the addition of ACN causes an increment by factor of two in the degradation time and 

halves the value of k. This correlates with the value of (3.1±0.3) x 109 M-1s-1 obtained for 

kHO· (reaction (4) in a medium with 10% ACN (Inset B, Figure 2) which correspond to 30% 

of the value found in water.   

 

Photo-Fenton in -cyclodextrin media 

As Bio has a low solubility in water, a -CD solution was used as a means to increase its 

solubility. From Figure 5, as the -CD concentration increases there are spectral changes 

in the Bio spectrum attributable to the formation of an inclusion complex between -CD 

and Bio (-CD-Bio). Using the Scott method, described in the materials and methods 
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section, the association constant (Kas) between Bio and -CD (Figure 5) was determined 

obtaining a value of (1933 ± 300) M-1. 

-CD + Bio ⇌ -CD-Bio Kas = (1933 ± 300) M-1 (9) 

 

The -CD-Bio formation increased the solubility of Bio to 1.1 x 10-4 M (Figure 3, inset) for 

a [-CD] =  5 x 10-3 M,  a typical -CD concentration used in Bio degradation by photo-

Fenton. Moreover, by a simple calculation taking into account the Kas and the solubility of 

Bio  in water an increase in 38 times in Bio solubility was estimated. 

Results of Bio degradation by Fenton and photo-Fenton processes with and without -CD 

under typical conditions for the photo-Fenton process are shown in Figure 6 (Inset) and 

Table 2. As shown in Figure 6 (Inset), the addition of -CD practically does not modify the 

rate of the Fenton reaction, whereas in the case of photo-Fenton the incorporation of -CD 

produces a decrease in the rate of the photo-Fenton process, from 0.14 min-1 without -

CD to 0.091 min-1 with -CD. But the percentage degradation of Bio achieved does not 

change. 

Regarding the interaction of Fe2+ with -CD, Lindsey et al. [19] reported a value of 120±10 

for the association constant for the -CD-Fe2+ (reaction (10)) complex, which has been 

determined by a spectroscopic method [19]. 

-CD + Fe2+ ⇌ -CD-Fe2+  KCD-Fe = (120 ± 10) M-1 (10) 

 

In the typical conditions for the photo-Fenton process ([H2O2]=0.01 M, [Fe(II)] = 50 x 10-6 

M, [Bio] = 6 x 10-6 M, pH=3) and [-CD] = 10-3 M almost 100 % of Bio is included in the -

CD forming the -CD-Bio complex and the 99 % of Fe2+ is bound to -CD. However, for 
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this -CD concentration, 5 % of the -CD molecules are forming a -CD-Bio complex, 0.6 

% of the -CD molecules are bonded to Fe2+ and the remainder are free in solution. 

Therefore, assuming that the -CD-Bio association processes and the -CD-Fe2+ are 

independent, there would be only 0.03 % of the -CD (5 % of Bio) as a ternary complex.  

 

In order to modify these ratios photo-Fenton experiments with different concentrations of 

Fe (II) were made, the results are shown in Figure 6, where it is observed that in the system 

with and without -CD there is an increase in the rate of degradation of Bio with the 

increase of [Fe2+]. This can be attributed to the increase in the concentration of the ternary 

complex, for a [Fe2+] = 500 x 10-6 M the probability of formation of the ternary complex is 

0.3% which implies that 50% of Bio is forming part of the complex. For all [Fe(II)] there is 

a small decrease in the rate of degradation of Bio in presence of -CD, but always a 

degradation of 95% of Bio is observed. This small difference can be attributed to a 

decrease in efficiency due to the reaction of HO with -CD. For the concentration of -CD 

(10-3 M) used in this experiment, taking a value 4.2 x 109 M-1s-1 reported for the rate 

constant between HO and -CD,  HO is expected to be consumed with a pseudo first 

order rate constant of 4.2 x 106 s-1. This value is greater than the pseudo-first order 

constant of 5 x 104 s-1 obtained for Bio under these conditions. 

Molecular Modeling 

The structure of the -CD-Bio inclusion complex was also investigated using Quantum 

Mechanics simulations. The stabilization energy (ΔE) of the inclusion complex formation 

was calculated at PM6 level of theory with the equation 
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∆𝐸 =  𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝐸𝑏𝑖𝑜𝑎𝑙𝑙𝑒𝑡ℎ𝑟𝑖𝑛 + 𝐸𝛽𝐶𝐷)       Eq. 4 

The obtained results for the two possible orientations are reported in Table 3. It is observed 

that the head down orientation is energetically favorable by almost 14 kJ mol-1. This energy 

difference is increased at 34.9 kJ/mol when is calculated with the B3LYP/6-31G(d) level of 

theory. In fact, at this level of theory the head up complex has an unfavorable (positive) 

ΔE.  The DFT optimized structure of the -CD-Bio complex in head down orientation is 

illustrated in Figure 7. 

 

It can be observed that the alkyl-cyclopropane moiety of Bio is completely embedded in 

the CD cavity while the allyl-cyclopentenone remains outside. In addition, the relative 

position of the carbonyl group favours the interaction with the primary hydroxyls of β-CD. 

Particularly, two intermolecular hydrogen bonds are formed between the C=O of Bio and 

OH groups of β-CD. The bond length and angles of these interactions are 1.789 Å and 170 

° for the first one and 1.918 Å and 152 ° for the second one, respectively. According to the 

NBO analysis, the stabilization energies of the H-bonds (∆Eij in Eq. 3) were 82.96 and 18.45 

kJ mol-1, indicating that these are strong interactions that stabilize the complex formation. 

 

CONCLUSION 

In typical conditions of the photo-Fenton process, the mineralization of Bio in aqueous 

solution in 60 min is achieved. However, the low solubility of Bio makes the use of this 

technique complicated or impractical for the treatment of large amounts of this insecticide. 

Although the use of acetonitrile/water solutions allows a higher Bio concentration, the 

reaction of HO with acetonitrile makes the degradation rate of Bio slower. But at sufficiently 
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long irradiation times a degradation percentage of Bio similar to that obtained in aqueous 

medium is achieved. This system has the intrinsic disadvantage that incorporates not 

environmentally-friendly solvent. 

On the other hand, the employment of aqueous -CD as a solvent presents a friendly 

system that allows to increase the solubility of Bio and degradation of the insecticide at a 

similar rate that in water. Molecular simulation results indicate that -CD forms a 1:1 

inclusion complex with bioallethrin, and that this complex is stabilized by the formation of 

intermolecular H-bonds. 
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Figure captions 

 

 

Figure 1: Chemical structure of Bioallethrin (Bio) 
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Figure 2: % Degradation of Bioallethrin by photo-Fenton in aqueous media at different 

irradiation times. [Bio]0 = 6 x 10-6 M [Fe2+] = 5 x 10-5 M, [H2O2] = 10-2 M and pH =3. Inset 

A: TOC variation of the photo-Fenton process in aqueous media. [Bio]0 = 6 x 10-6 M [Fe2+] 

= 5 x 10-5 M, [H2O2] = 10-2 M and pH = 3. Inset B: kHO· determination for Bio in different 

media: (▲) 10% ACN/water, (▼) [-CD] = 10-3 M, (●) water. (■) [Phenol] = 10-5 M in water 
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Figure 3: Percent degradation as a function of irradiation time of Bio at different ACN/water 

mixtures, [Fe2+] = 50 x 10-6 M, [H2O2] = 10 x 10-3 M, pH = 3;  (a) 0 % ACN (b)  10 % ACN  

(c) 20% ACN (d) 40% ACN. Inset: Normalized absorbance of the supernatants of Bio in : 

(■) Water; (●) 10 % ACN and (▲) 5 x 10-3 M -CD. The error bars are within the dots ACCEPTED M
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Figure 4: Percent degradation of Bio as a function of irradiation time at different 

concentrations of Fe (II) in 10% ACN/water. [H2O2] = 10-2 M, pH = 3;  (■) [Fe2+] = 10 x 

M, (●) [Fe2+] = 50 x 10-6 M, (▲) [Fe2+] = 100 x 10-6 M. Inset: %Bio degradation at 

different [H2O2] in 10% ACN/water, [Fe2+] = 50 x 10-6 M, pH = 3. (▼) [H2O2] =  0.5 x 10-3 M, 

(♦) [H2O2] = 5 x 10-3 M, (◄) [H2O2] = 10 x 10-3 M. 
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Figure 5: Absorbance spectra of Bio (10 x 10-6 Mat different concentrations of β-CD in 

water. (___) [β-CD] = 0.8 x 10-3 M, (_ _) [β-CD] = 1 x 10-3 M, (• • •) [β-CD] = 3 x 10-3 M, (_ • _) 

[β-CD] = 5 x 10-3 M, (_ • • _) [β-CD] = 7 x 10-3 M, (----) [β-CD] = 9 x 10-3 M, (........) [β-CD] = 10 

x 10-3 M. Inset: Plot of [Bio][-CD]/Abs against [-CD] obtained with Bio solutions 

containing -CD. 
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Figure 6:  Percent degradation of Bio as a function of irradiation time by photo-Fenton in 

aqueous solutions (open symbols, [Bio] = 6 x 10-6 M, [H2O2]= 10-2 M, pH = 3): (□) [Fe2+] = 

50 x 10-6 M, (○) [Fe2+] = 100 x 10-6 M, () [Fe2+] = 500 x 10-6 M. %Bio degradation as a 

function of irradiation time in the photo-Fenton system in aqueous -CD solution (filled 

symbols, [Bio] = 6 x 10-6 M, [H2O2]= 10-2 M, [-CD] = 10-3 M, pH = 3): (■) [Fe2+] = 50 x 10-6 

M, (●) [Fe2+] = 100 x 10-6 M,   () [Fe2+] = 500 x 10-6 M.  Inset: Bio degradation by differently 

different methodologies, for all solutions [Fe2+] = 50 x 10-6 M, [Bio] = 6 x 10-6 M, [H2O2]= 

10-2 M, pH = 3: ( ■ ) Fenton in aqueous solution,  (●) Fenton in -CD media ([-CD] = 10-3 

M) () Photo-Fenton in aqueous solution, (▼) Photo-Fenton in -CD media ([-CD] = 10-

3 M). The error bars are within the dots for the main Figure and the inset. 
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Figure 7:  Structure of -CD-Bio complex in head down orientation calculated at B3LYP/6-

31G(d) level of theory. Left view is perpendicular to the cavity axis and right view is along 

the cavity axis. 
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Table 

 

Table 1. %Bio degradation at 60 min irradiation and the pseudo-first order rate constants 

for different photo-Fenton conditions in water and ACN/Walter 10%. *The k values have a 

10% error. 

 

Factors 
Bio Degradation% 

at 60 min First-order reaction kinetics 

    k (min-1)*  

 [Fe2+]       x 
10-6 M 

[H2O2]   
x10-3 M 

 H2O ACN/Water 
10% 

R2 

 10 10 9±1 0.0023 0.00171 0.969 

 50 10 39±3 0.066 0.00834 0.993 

 100 10 28±3 0.029 0.00645 0.989 

 50 0.5 35±2  0.0076 0.992 

 50 5 26±2  0.0051 0.998 

 50 10 28±4  0.0063 0.981 

 

Table 2. [Bio] = [Fe2+] = 50 x 10-6 M, [H2O2] = 0.01 M and pH = 3. The k values are 

expressed in min-1 and have a 10% error. 

 H2O ACN/H2O (10:90) -CD (0.001 M) 

 k % K % k % 

Fenton 0.004 23 % (40 min) 0.004 19% (40 min) 0.004 15 % (40 min) 

Photo-

Fenton 
0.14 

> 90 % (40 

min) 
0.067 

90 % (80 

min) 
0.091 

> 90 % (40 

min) 
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Table 3. Energy differences of the bioallethrin inclusion complexes with β-CD in kJ/mol.  

-CD-Bio ΔE (PM6) ΔE (B3LYP) 

Head Up -81.93 1.34 

Head Down -96.31 -33.56 
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