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Running headline: Physical properties of honeys from two regions of Argentina 

 

ABSTRACT 

The rheological and textural properties of 26 eastern Argentinian honeys from two different 

regions (North and Central) were investigated. The viscosity curves of the samples were 

obtained using a rotational rheometer over a temperature range of 10 to 50ºC. The viscosity 

decreased with temperature and all honeys showed a Newtonian behaviour. The temperature 

dependence of viscosity was described using the Arrhenius, Williams– Landel–Ferry, 

Vogel–Taumman–Fulcher and Power Law models. The glass transition temperatures of 

honeys were measured with differential scanning calorimetry and values ranged from -42.63 

to -47.71ºC. The glass transition temperature was also predicted with the Williams– Landel–

Ferry model and no significant differences were observed with the experimental results. 

Rheological parameters were obtained by small amplitude oscillation experiments. Results 

indicated that the viscous modulus was higher than the storage modulus within all the 

frequency ranges assayed and honeys from the North region were more viscous. Results of 

the back extrusion test showed that honeys from the Central region are harder and both 

groups of honeys (North and Central) exhibited the same consistency and adhesivity. 
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PRACTICAL APPLICATION 

The honey chain production starts with the extraction of the product from the combs, 

pumping it through pipes and finishes at the packaging of the product. During all these 

stages, honey viscosity is a key parameter to ensure proper processing and quality control, 

preventing the waste of economic resources. Determining honey viscosity is of great 

importance for the industry to select the equipment such as pumps, mixers, filters, 

centrifuges, heat exchangers and optimization of industrial processes. The rheological and 

textural properties of honey are very important in terms of applications related to quality 

control and authenticity of honeys. Honey authenticity increases the trust of consumers to 

certified food products. Argentina is one of the leading honey producers and exporters in the 

world, but information on the rheological, thermal and textural characteristics of Argentinian 

honey is very poor in the scientific literature. 
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INTRODUCTION 

Chemically, honey is comprised of sugars (80–85%), water (15–20%), and other minor 

constituents such as minerals, proteins, phenolic compounds, organic acids, and free amino 

acids (Akbulut et al. 2012). The composition is influenced mainly by the dominant flora 

around the apiaries (Silvano et al. 2014) and furthermore by the geographic region 

(Patrignani et al. 2015), weather, and type of soil (Oroian et al. 2013a). Temperature and 

moisture content have a strong influence on honey viscosity; however, factors like its 

chemical composition, are also important. The honey chain production starts with the 

extraction of the product from the combs, pumping it through pipes and finishes at the 

packaging of the product. During all these stages, honey viscosity is a key parameter to 

ensure a proper process. When honey is subjected to steady shear viscosimetry experiments, 

a Newtonian fluid behaviour is often found. However, there are few reports describing 

thixotropic and dilatant characteristics (Juszczak and Fortuna 2006; Osés et al. 2017). 

Dynamic measurements are also useful tools to analyse the rheological characteristics of 

honey without much alteration in the internal network structure. Kayacier and Karaman 

(2008), Da Silva et al. (2016) and Ahmed et al. (2007) used small amplitude dynamic 

oscillatory measurements on honey samples and observed a liquid-like behaviour with loss 

modulus greater than storage modulus within all the frequency range assayed. 

As temperature increases, viscosity falls due to less molecular friction and reduced 

hydrodynamic forces (Juszczak and Fortuna 2006). Commonly, the Arrhenius equation has 

been used to describe temperature dependency of honey samples (Kayacier and Karaman 

2008 in Turkish honeys; Da Silva et al. 2016 in Brazilian honeys; Juszczak and Fortuna 2006 

in Polish honeys; Sopade et al. 2002 in Australian honeys; Belay et al. 2017 in Ethiopian 

honeys). However, this model renders a relatively higher value of activation energy (Al-
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Malah et al. 2001). On the other hand, models like the William-Landel-Ferry (WLF), Vogel–

Taumman–Fulcher (VTF) and Power Law, has been used successfully to describe the 

temperature dependence of honey viscosity (Sopade et al. 2002; Lazaridou et al. 2004; 

Juszczak and Fortuna 2006, Recondo et al. 2006, Oroian et al. 2013a,b). Glass transition is a 

phenomenon that occurs when a material changes from the rubbery state (viscous fluid) to 

the glassy state (mechanical solid) during cooling and it is a second order phase transition 

(Al-Malah et al. 2001; Sopade et al. 2002). The Tg can be experimentally determined by 

differential scanning calorimetry, but the high viscosity (10
7
 -10

14
 Pa.s, as reported by 

Sopade et al. 2002) of the glassy state makes the experimental determination of the ηTg 

impossible. However, it is possible to use some extrapolation procedures to estimate the 

value of the ηTg (Bhandari et al. 1999; Peleg 1992).  

Moisture in honeys is a parameter related to the climatic conditions, geographical origin, 

handling, storage and degree of maturity. The Codex Alimentarius (2017) establishes a 

maximum acceptable moisture content of 20g/100g. However, water in honey could be as 

high as 29g/100g or as low as 13g/100g (Junzheng and Changying, 1998; White, 1975) A 

1g/100 g change in water content has the same effect on honey viscosity as a 3.5ºC change in 

temperature (Juszczak and Fortuna 2006). Thus, the higher the water content the lower the 

honey viscosity. 

The objective of this study is to investigate the application of the viscosity-temperature 

describing models to honeys from two different phytogeographic regions of Argentina: The 

North and Central regions. The rheological behaviour at different temperatures and textural 

characteristics of honeys are also analysed.  
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MATERIALS AND METHODS 

 

Honey samples 

The present study was performed on 26 samples (13 from the East Central, Buenos Aires 

province and 13 from the North-East, Chaco province) of multiflora honeys. The selection of 

the beehives to obtain the samples was performed according to a simple random sampling 

design. Honey samples, harvested in January 2015, were obtained by cold extraction and 

immediately stored at 4ºC in plastic containers until analysis. Before all determinations, 

samples were heated in closed containers during 1 hour at 45ºC to melt any crystals that were 

present and to remove the air bubbles. 

 

Moisture content, Brix degrees and sugars profile analysis. 

Refractive index of honeys was measured at 20ºC using an Abbe refractometer and the 

corresponding moisture content was calculated from the Chatway Table (AOAC 1990).The 

Brix degrees (ºBrix) were measured with a portable refractometer (Hanna Instruments HI 

96801, USA). Sugar analysis was performed as described by Silvano et al. (2014). 

 

Differential scanning calorimetry 

The glass transition temperature (Tg) of honeys was determined using a differential scanning 

calorimeter (DSC) (Thermal Analysis Instruments, New Castle, Delaware, USA) calibrated 

with indium. Twelve samples (six from the North and six from the Central region) of about 

20 mg each were placed in aluminium DSC hermetic pans. . A sealed empty aluminium pan 

was used as a reference (Da Silva et al. 2018; Leo and Nollet, 2015). The experiment was 

performed as described by Lazaridou et al. 2004: the samples were heated from 20 to 50ºC at 
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a heating rate of 10ºC/min and kept at 50ºC for 5min to ensure the melting of any crystals. 

The samples were then quench–cooled with liquid N2 to -80ºC and reheated to 50ºC at the 

same heating rate. The Tg was determined, using the Tg command of the TA Instruments 

Universal Analysis 2000 software version 4.2E. 

 

Rheological measurements 

Rheological properties of honey were investigated with  a RS 600 controlled stress 

rheometer (Haake, Karlsruhe, Germany) using a 1.0 mm gap parallel plate geometry. 

Samples were placed on the lower plate and temperature was regulated by a Haake 

(Karlsruhe, Germany) circulating water bath. After loading the sample, a waiting period of 5 

min was necessary to allow the sample to recover and to reach the specified temperature. 

Small amplitude oscillation stress experiments were performed to obtain the storage (G’) and 

viscous (G’’) moduli and complex viscosity (η*) at a strain level of 0.5% (within the linear 

viscoelastic range) and a range of angular frequencies (ω) of 0.4-600 rad s
-1

 at 20ºC. The 

flow behaviour was studied by measuring steady shear viscosity (η) and shear stress (τ) over 

a range of shear rates (γ) of 0.1-400 s
-1

 at 10, 20, 30, 40 and 50ºC. For each sample, two 

independent replicates were assayed. 

Temperature effects on η were analysed using the following models: 

 

Arrhenius relationship: 

)/(
0

RTEae        (1) 

where η is the viscosity at temperature T, η0 is a pre-exponential factor, Ea is the activation 

energy for flow, R is the perfect gas constant and T is the absolute temperature. 
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Willian-Landel Ferry model (Willian et al. 1955): 

)](/[)]([)/log( 21 TgTCTgTCTg      (2) 

where Tg is the glass transition temperature, η is the viscosity at temperature T, ηTg is the 

viscosity of sample at Tg or glass viscosity and C1 and C2 are the WLF model constants. 

 

The Vogel–Taumman–Fulcher model (Sopade et al. 2002).  

       (  (    ))    (3)  

where A is the pre-exponential factor Tg is the glass transition temperature. A and B were 

calculated as the slope of the linearized form of Eq. 3. 

 

The Power Law model: 

mTgTK  )(        (4) 

where K and m are constants estimated from linearization of Eq. 4. 

 

Textural measurements: back extrusion 

Back extrusion tests were carried out as suggested by Conforti et al. (2006) using a 

TA.XT2 Texture analyser (Stable Micro Systems Ltd., Surrey, UK) with a cylindrical 

container of 45mm internal diameter filled with honey, in which the compression probe 

(35mm diameter) moved at a speed of 0.5 mm/ s until  30%  deformation. Sample hardness 

was defined as the maximum height of the peak of the force versus time/deformation curve. 

The area of first peak is the consistency of the sample. The negative force area obtained after 

the compression cycle is defined as the adhesivity (Figure 1). For each sample, three 

independent replicates were assayed. 
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Data analysis 

Rheological data were fitted using the software Origin Pro 8 v8.0724 (Origin Lab 

Corporation, MA, USA). 

Analysis of variance was performed and the least significant differences were calculated 

to compare the means of both groups of honeys (North and Central) at a 95% level using the 

Fisher test. A p-value of less than 0.05 was considered significant.  

Cluster analysis was performed on the standardised data to classify samples based on the 

similarities of their rheological and textural parameters and moisture content. Clusters were 

calculated using the Euclidian distance and the Ward technique. The Infostat software 2014e 

version (Córdoba National University, Córdoba, Argentina) was used. 

 

 

RESULTS AND DISCUSSION 

 

Rheological characteristics 

Fig. 1a,b shows the steady shear flow rheograms of selected honey samples at 20ºC. 

Generally, the η did not change and τ linearly increased with γ indicating a Newtonian 

behaviour similar to Kayacier and Karaman (2008), Da Silva et al. (2016), Sopade et al. 

(2002) and Belay et al. (2017). Fig. 1c illustrates the mechanical spectrum of selected honey 

samples at 20ºC. It was observed that G’’ was higher than G’ within all the frequency ranges 

assayed, except at very high frequencies in which both moduli have similar values. High 

values of G’’ confirm the viscous nature of honey and the low values of G’ suggest that there 

was no network formation in honey samples due to weak particle –particle interactions 
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(Ahmed et al. 2007). This response is typical of liquid-like materials, characterized as 

viscous fluids (Yamul and Lupano, 2009). As a result of the viscous nature of honey, 

changes in G’’ with frequency provide more information than G’ [Figure 1 here]. Honeys 

from the North region are more viscous (p < 0.05) than those from the Central as reflected by 

the results for η, G’’ and η* (Fig. 2 b,c,d). These differences could be attributed to natural 

variations in honey composition. The north of Argentina has a tropical climate with hot and 

wet summers, determining the flora of the area and, thus, the nectar composition used by 

bees to produce honey. In addition, higher temperatures and environmental moisture might 

also influence the maturation of honey in the beehive, affecting its physico-chemical 

properties and leading to differences in honeys from these different regions. 

Figure 2e shows that the values of η and η* of honeys from both regions are similar at 

equivalent numerical values of angular frequency and shear rate. This result suggests that 

these honeys follow the Cox-Merz rule (Cox and Merx 1958), which is expected for 

Newtonian liquids without particle–particle interactions. Lazaridou et al. (2004) reported a 

similar behaviour in Greek honeys. [Figure 2 here] 

Moisture, which is a parameter related to several climatic conditions, handling of honey 

by the producer and degree of maturity (Silvano et al. 2014), decreased the viscosity of 

honey (Fig. 3). Honeys from the North (Fig. 3a) show a weak linear fit between viscosity and 

honey moisture content with an r
2
 value of 0.6436, which is comparable to the r

2
 value of 

0.6369 obtained by Belay et al. (2017) in Ethiopian honeys. On the other hand, honeys from 

the Central region (Fig. 3b) show a greater dispersion of the data and it is not possible to fit 

them to a straight line with a satisfactory r
2
. It is interesting to note that Lazaridou et al. 

(2004) also found a decrease of the viscosity as water content increased but fitted data to a 

decreasing exponential function. [Figure 3 here]. 
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Moisture content, sugar analysis, Brix degree and glass transition temperature of 

honeys. 

The effect of moisture content on the Tg is shown in Table 1. Results show mean values 

of 17.95 gH2O/100g and 18.55 gH2O/100g for honeys from the North and Centre of the 

country, respectively. Samples shown in Table 1 agree with the requirements of the Codex 

Alimentarius (2017) which sets the maximum value of that parameter at 20 gH2O/100g. 

Water is a universal plasticizer, which decreases the Tg due to its ability to weaken non-

covalent interactions (Matveev et al. 2000). It is generally accepted that Tg is a function of 

both moisture and solid content. Sopade et al. (2002) and Lazaridou et al. (2004) found a 

strong dependence of Tg with water content in honeys from Australia and Greece, 

respectively. [Table 1 here] 

Table 2 shows the composition of the most abundant sugars identified in the honey 

samples. As expected, fructose and glucose represent the main sugars, covering more than 

65% of the total carbohydrates. Therefore,  all honeys were in agreement with the 

requirements of the Codex Alimentarius (2017). Honeys from the Central region has 

significantly (p ≤ 0.05) higher values of fructose and glucose content than honeys from the 

North, but no significant differences (p ≥ 0.05) were obtained in the content of the 

disaccharides sucrose and maltose. Fructose/Glucose ratio is an indicator of honey 

granulation because glucose is less water soluble than fructose (Bentabol Manzanares et al. 

2011). When this ratio is higher than 1.5 honey remains liquid for longer periods 

(Ouchemoukh. et al. 2010). Honeys from the northern region showed higher values of 

fructose/glucose ratio (1.54) suggesting that these honey samples remains liquid for longer 

times. [Table 2 here]. 
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The ºBrix is an estimation of the sugar (solid) content of an aqueous solution, thus, the 

higher the ºBrix the lower the water content and the higher the Tg. Ahmed et al. (2007) 

found higher Tg values in honeys with higher solid content. Results in Table 1 show no 

significant differences (p > 0.05) in the mean values of Tg of honeys from both regions. This 

is an expected result because honeys also show no significant differences (p > 0.05) in the 

moisture content and ºBrix. Venir et al. (2010), Recondo et al. (2006) and Oroian et al. 

(2013b) reported similar values of Tg at similar soluble solids content (80-81g/100g). In 

contrast, Ren et al. (2010) reported a lower value of Tg (-49.5ºC) in Chinese honey 

containing 75g/100g of soluble solids.  

 

Temperature dependence of viscosity: Arrhenius, VTF, Power law and WLF models. 

As a Newtonian liquid, honey viscosity substantially reduced when temperature was 

increased (Fig. 1d). Viscosity values were similar to those obtained by Da Silva et al. (2004) 

and Sopade et al. (2002) at the same temperatures. The Arrhenius relationship (Eq. (1)) is a 

useful tool to estimate the temperature dependence of viscosity. Many authors used this 

model for diverse types of honeys (Kayacier and Karaman 2008; Nayik et al. 2016; Oroian et 

al. 2013b; Recondo et al. 2006). The Ea, which is derived from the Arrhenius formalism 

(Lazaridou et al. 2004), reflects the sensitivity of viscosity to temperature changes. Table 3 

(supplementary material) shows no significant differences (p> 0.05) in the mean values of Ea 

suggesting that both types of honeys need the same energy to flow, in spite of the fact that 

honeys from the North are more viscous as suggested above. The mean values of Ea were 

79.61kJ mol
-1

and 82.09 kJ mol
-1

 for North and Centre, respectively. These were similar to 

those reported in the literature (Oroian et al. 2013b; Recondo et al. 2006; Lazaridou et al. 

2004; Sopade et al. 2002; Kayacier and Karaman 2008). The pre-exponential factor in the 
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Arrhenius equation, according to Al-Malah et al. (2001), represents viscosity at a 

temperature close to infinity. The values obtained were lower than those reported by Oroian 

et al. (2013b). 

The viscosity vs. temperature relationship was also described using the VTF and Power 

law models. The values of the constants of both models (A, B, K and m, Table 3 

supplementary material) were different from those reported by Recondo et al. (2006). The 

difference could be related to the fact that, these authors, used unifloral honey from Bulnesia 

sarmientoi (algarrobo), while we used multiflora honey. 

Concentrated sugar solutions obey the WLF equation (Soesanto and William 1981), thus, 

honey due to its high sugar content could be adequately described using this model. Prevoius 

results (Lazaridou et al. 2004; Recondo et al. 2006; Sopade et al. 2002; Juszczak and 

Fortuna 2006) indicate that the WLF model has been useful to describe viscosity-temperature 

data of honeys from different origins. Compared to the Arrhenius relationship, the WLF 

equation is a more appropriate model to describe viscosity-temperature dependence between 

Tg and about Tg +100ºC. Moreover, the WLF model specifies a much stronger temperature 

dependence of viscosity compared to that predicted by the Arrhenius formalism (Lazaridou 

et al. 2004). Viscosity data (η vs T) of 12 honey samples (6 from the North and 6 from the 

Centre region) were fitted to the WLF equation (Table 1). Using the universal values for the 

constants (C1= 17.44 and C2= 51.6 K; William et al. 1955), the results of the predicted Tg 

show good fits (r
2 
> 0.90) in almost all samples analysed. Al-Malah et al. (2001) and 

Lazaridou et al. (2004) obtained similar fit when describing the temperature dependence of 

honey viscosity using the WLF equation. The predicted Tg values are not significantly 

different (p > 0.05) with the values obtained experimentally by DSC (Table 1, mean values 

of Tg). On the other hand, Lazaridou et al. (2004) explain that the differences between the 
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experimental and predicted values could lie on the fact that Tg reflects a range of 

temperatures and, thus depends on the technique and experimental conditions used for its 

determination. Recondo et al. (2006) obtained a Tg value much lower (-59.7ºC, unifloral 

honey from Bulnesia sarmientoi) than our results (Table 1) probably due to the differences in 

the honeys analysed. However, when these authors used the reduced constants (i.e., constants 

calculated by the reduced model method, Recondo et al. 2006), they obtained a value of -

45.2ºC that is similar to our values of Tg. 

The predicted ηTg values ranged between 10
10.34

 and 10
11.96 

Pa.s for both regions and are 

similar to the values reported by Sopade et al. (2002) and lower than  the values reported by 

Recondo et al. 2006. In contrast with the Tg, which could be measured by different 

techniques, the glass viscosity could be only estimated from the model because such high 

values are not accessible for any existing rheometer (Lazaridou et al. 2004). 

The universal values for C1 and C2 are average values obtained from data on many glass-

forming liquids and sometimes their use might not be successful with other samples. Sopade 

et al. (2002) claimed that C1 and C2 should not be fixed constants for comparison of the 

temperature sensitivity among different samples of honey. When the constants were allowed 

to vary (without using the universal values), and Tg from the DSC was used as the reference 

temperature (Table 1), very good fits (r
2 
> 0.96) were obtained for C1 and C2, except for 3 

samples from the north region with r
2
 ranging from 0.77 to 0.88. The mean values of C1 and 

C2 (shown in Table 1) for both regions are comparable to those obtained by Lazaridou et al. 

(2004). On the other hand, values of the ηTg were much higher (10
18.29 

Pa.s North and 10
20.22 

Pa.s Centre) than those obtained using the universal values for C1 and C2 (10
11.12 

Pa.s North 

and 10
11.07 

Pa.s Central). These results do not likely represent the true values. Peleg (1992) 

reported that the magnitude of C1 and C2 might vary considerably from the universal values 
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depending on the material studied, the measured property and the reference temperature. In 

addition, it is interesting to note that, independent of the geographic origin of honeys, values 

of the predicted parameters using the WLF equation showed no significant differences (p > 

0.05). 

It is interesting to note that regardless of the model used some honeys from the North 

usually presented weaker fits to the models as reflected by those with  r
2
 values lower than 

0.85 (Table 3 supplementary material). 

 

Back extrusion test of honeys 

Rheological properties of fluids or semisolid foods are typically assayed in a rheometer; 

however, the texture analyser could be used in these types of foods to carry out the back 

extrusion test. In this test, the sample is placed in a cylindrical container and subjected to 

compression to obtain the force vs time curve, which could be used to calculate the 

maximum force and adhesivity of the sample. Conforti et al. (2006) used back extrusion and 

Oroian et al. (2016, 2017) used texture profile analysis to study the fluid properties of honey. 

Figure 4a shows that honeys from the Central region are harder than those from the North, 

which is in agreement with the rheology results. The higher hardness would be, as suggested 

by Conforti et al. (2006), the result of a higher sugar concentration in samples from the 

Central region. This fact could be confirmed with the results of Table 2. Table 4 

(supplementary material) shows a higher correlation between hardness and sugars (glucose, 

sucrose and maltose) in honeys from the Central region confirming the results above. The 

influence of fructose on hardness is insignificant in honeys from both regions. On the 

contrary, Oroian et al. (2016) found significant influence of fructose on textural parameters. 

It is interesting to note that maltose  has the highest correlation with  textural parameters of 
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honeys from both regions. Sugars depict a weak correlation with viscosity in honeys from 

both regions. The correlation of the ratio F/G with textural parameters is also higher in 

honeys from the Central region. The ratio F/G also has negative and positive  associations 

with the viscosity of honeys from the Centre and North respectively. Consistency, which is 

related to 'thickness' or 'viscosity' of a liquid or semi-solid fluid, is commonly the textural 

property of dairy products, sauces and syrups. It is interesting to note that consistency shows 

a weak correlation with viscosity but a high correlation with hardness (Table 4 

supplementary material). The results in Figure 4b show no significant differences (p > 0.05) 

in the consistency of honeys from both regions. Adhesivity is related to the negative 

extrusion force required for withdrawal of the probe away from the sample. Figure 4c shows 

that honey from both regions have no significant differences (p > 0.05) in their adhesive 

properties [Figure 4 here]. Figure 5a,b shows an inverse linear relationship obtained between 

the adhesivity and hardness of honey samples from both regions, with r
2
 values of -0.928 and 

-0.910 for the North and Central regions , respectively. These results are similar to the 

Pearson correlation between adhesivity and hardness (Table 4 supplementary material). On 

the other hand, Oroian et al. (2016) also obtained a high Pearson correlation between these 

textural parameters but positively influenced one by the other. Honeys might adhere to the 

surface of the probe due to interatomic forces and non-covalent interactions. It is possible 

that in harder honeys the interactions with the metal of the probe are weaker due to stronger 

interactions in the honey structure. Conforti et al. (2006) found that honeys with higher 

values of hardness have lower moisture contents, which could be attributed to the higher 

sugar concentration in non-crystallised honey. However, our results (Fig. 5c,d) show a 

scattered point distribution  with no clear trend between hardness and moisture 
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content.[Figure 5 here]. These results could be confirmed with the weak Pearson correlation 

obtained between hardness and moisture (Table 4 supplementary material). 

 

Cluster analysis 

The classification techniques based on groupings involves the distribution of study units 

in classes or categories in such a way that each class (conglomerate) brings together units 

whose similarity is recognizable under certain given criterion (Balzarini et al 2008). Figure 6 

shows the cluster analysis and, at  75% (15) of the total range distance, two clusters are 

observed. One of them includes the samples from the North region and, the other one, the 

samples from the Central region Centre region. From 23 samples, some of them were 

misclassified using the cluster analysis. Samples C6, C10, C11 and C12 were included in the 

group from the North region. On the other hand, N3 and N8 were grouped as Central region 

samples. [Figure 6 here] 

 

CONCLUSIONS 

Honeys from the North and Centre of eastern Argentina behaved as Newtonian fluids, 

although some differences in their rheological behaviours were found. Honeys from the 

North were more viscous than those from the Central region as reflected by their η, Ea, G’’ 

and η* values. Moisture content decreased the viscosity of honeys from the North region, but 

its effect on honeys from the Central region  was not well defined. Values of the glass 

transition temperature obtained from the DSC and those predicted by the WLF model were 

comparable for both regions. Arrhenius, WLF, VTF and Power Law models proved to be 

adequate to describe the viscous behaviour of honey as a function of temperature, except 

with some honeys from the North, which showed a weak fit to the models. The back-

A
cc

ep
te

d 
ar

tic
le

This article is protected by copyright. All rights reserved.



 
 

extrusion test could be useful to analyse the textural characteristics of viscous foods like 

honey. On the other hand, the effect of moisture on hardness was not very clear. Cluster 

analysis showed a weak classification of honey samples based on rheological and textural 

parameters. 
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Figure 1. a) shear stress (τ), (b) steady shear viscosity (η), and (c) a representative mechanical spectrum 
(G’: storage modulus and G’’: loss modulus) of four honey samples (3 and 7 from the North region and 14 

and 18 from the Central region) at 20ºC; d) temperature effect (from 10ºC to 50ºC) on steady shear 

viscosity (η) of a representative honey sample. γ (shear rate) and ω (angular frequency). Samples symbol: 
3(■), 7(●), 14(▲), 18(▼).  
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Figure 2. i) Storage modulus (G’); ii) Loss modulus (G’’); iii) Complex viscosity (η*) (measured at ω = 10rad 
s-1); iv), Steady shear viscosity (η); v) and vi) Comparative values of η and η* at 20ºC of honeys from both 

regions; η: bars with horizontal lines and η*: bars with vertical lines. Values with the same letter in the 

same graph are not significantly different (p > 0.05).  
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Figure 3. Linear fit showing the associations between steady shear viscosity (η) and moisture content of 
honeys. a) North region, b) Central region.  

A
cc

ep
te

d 
ar

tic
le

This article is protected by copyright. All rights reserved.



Figure 4. Textural parameters of honeys from both regions. Values with the same letter in the same graph 
are not significantly different (p > 0.05).  
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Figure 5. Linear fit showing the associations between adhesivity vs hardness (a and b) and hardness vs 
moisture content (c and d) of honeys. North region (a and c) and Central region (b and d).  
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Figure 6. Dendrogram of cluster analysis. N: North region, C: Central region. 
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Table 1. Moisture content, ºBrix, glass transition temperatures (Tg) and estimated parameters of the WLF model of honeys from North 

(N) and Central region (C) of Argentina. Values with the same letter in the same column are not significantly different (p > 0.05). 

 

Sample Moisture content 

(gH2O/100 g) 

ºBrix 

(g/100g) 

Tg, K (ºC) experimental 

data from DSC 

WLF using the universal values 

for C1 and C2 

WLF using Tg from DSC experimental 

data 

    Tg (K) (predicted)) log(ηTg) (Pa*s) r2 log(ηTg) (Pa*s) C1 C2 (K) r2 

N1 16.69 81.80 229,85(-43.15) 240.44(-32.56) 10.34 0.91 16.33 12.47 26.26 0.99 

N3 18.85 79.55 225,61(-47.39) 228.64(-44.36) 10.66 0.95 16.18 12.72 22.41 0.88 

N5 19.04 79.35 226,45(-46.55) 216.97 (-56.03) 11.31 0.90 15.56 13.03 18.03 0.85 

N7 17.79 80.65 230,2(-42.80) 208.01(-64.95) 11.96 0.81 16.36 13.69 17.17 0.77 

N9 17.51 80.95 228,27(-44.73) 223.68(-49.32) 11.89 0.98 22.11 15.64 29.61 0.99 

N11 17.84 80.60 229,66(-43.34) 229.82(-43.17) 10.58 0.99 23.19 14.97 35.10 0.98 

Mean value 17.95
a
 80.48

a
 228.34(-44.66)

a
 224.59(-48.46)

a
 11.12  18.29 13.75 24.76  

C14 18.48 80.00 226,6(-46.40) 227.65(-45.35) 10.45 0.99 21.37 14.46 32.13 0.99 

C16 19.39 79.05 225,51(-47.49) 222.46(-50.54) 10.96 0.97 19.83 14.47 26.49 0.99 

C18 18.14 80.35 224,45(-48.55) 211.50(-61.50) 11.52 0.91 19.62 14.83 23.38 0.98 

C20 18.48 80.00 227,2(-45.80) 229.44(-43.56) 10.34 0.98 19.61 13.89 28.85 0.96 

C22 18.67 79.80 225,29(-47.71) 204.34(-68.66) 11.77 0.92 20.70 15.36 25.04 0.99 

C24 18.14 80.35 230,37(-42.63) 227.09(-45.91) 11.35 0.97 20.19 14.77 26.17 0.99 

Mean value 18.55
a
 79.93

a
 226.57(-46.43)

a
 220.41(-52.59)

a
 11.07  20,22 14.63 27.01  A
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Table 2 

Sugar content of honeys from North (N) and Central region (C) of Argentina. Values 

with the same letter in the same column are not significantly different (p > 0.05). 

 

Sample N° Fructose 

(g/100g) 

Glucose 

(g/100g) 

Fructose/Glucose Sucrose 

(g/100g) 

Maltose (g/100g) 

N1 41.5 23.5 1.77 1.6 5.3 

N2 39.3 26.5 1.48 2.1 2.3 

N3 39.5 26.0 1.52 1.7 4.8 

N4 40.9 26.7 1.53 1.3 3.3 

N5 39.3 28.1 1.40 0.9 3.5 

N6 38.8 26.5 1.46 1.1 3.6 

N7 41.2 25.1 1.64 1.3 6.2 

N8 40.2 24.5 1.64 0.6 4.1 

N9 42.1 24.1 1.75 1.5 6.2 

N10 39.5 25.8 1.53 1.9 5.8 

N11 39.8 27.8 1.43 1.2 3.0 

N12 38.0 28.1 1.35 1.8 4.8 

N13 39.6 27.2 1.46 1.6 3.8 

Mean value 39.9
a
 26.1

a
 1.54

a
 1.4

a
 4.36

a
 

C14 43.2 31.9 1.35 1.5 4.4 

C15 43.6 33.6 1.30 1.4 5.2 

C16 43.3 33.0 1.31 1.6 3.0 

C17 43.6 32.6 1.34 1.7 5.7 

C18 43.0 32.0 1.34 1.7 4.9 

C19 44.2 34.8 1.27 1.4 5.0 

C20 43.2 33.0 1.31 0.9 3.7 

C21 42.8 32.6 1.31 0.8 5.9 

C22 43.9 34.6 1.27 1.2 2.3 

C23 43.5 33.4 1.30 1.2 5.4 

C24 43.0 33.1 1.29 1.1 3.1 

C25 43.1 33.9 1.27 2.2 4.2 

C26 43.4 33.2 1.31 1.4 6.3 

Mean value 43.5
b
 33.1

b
 1.31

b
 1.4

a
 4.35

a
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Table 3 

Parameters calculated through the linearization of Arrhenius, VTF and Power Law models, 

for honeys from both regions (North and Central region). Values with the same letter in the 

same column are not significantly different (p > 0.05). 

 

 

    Sample                              Arrhenius                               VTF                                           Power law 

 Ea  

(kJ mol
-1

) 

log η0     

(Pa*s) 

r
2
 B 

(K) 

 A 

(Pa*s) 

r
2
 m log K  

(Pa*s) 

r
2
 

N1 82.92 8.12 0.978 190.70 -1.41 0.997 -0,0283 3,33 0,923 

N3 72.30 8.22 0.625 169.82 -1.50 0.974 -0,0275 2,92 0,715 

N5 80.62 7.57 0.521 155.04 -1.34 0.954 -0,0255 2,73 0,601 

N7 81.78 7.92 0.776 169.15 -1.40 0.962 -0,0269 2,96 0,734 

N9 79.59 11.30 0.979 246.11 -2.64 0.996 -0,0365 3,48 0,991 

N11 80.47 11.9 0.912 257.53 -3.03 0.991 -0,0376 3,32 0,987 

Mean value 79.61
a
 10.06

a
  198.06

a
 -1.89

b
  -0.0304

a
 3.12

b
  

C14 87,59 10,91 0,983 229.16 -2.83 0.994 -0,0341 2,93 0,972 

C16 74,60 9,79 0,975 204.84 -2.59 0.997 -0,0304 2,55 0,988 

C18 83,53 9,44 0,999 193.24 -2.52 0.966 -0,0291 2,37 0,991 

C20 84,77 9,77 0,983 210.33 -2.57 0.981 -0,0306 2,66 0,993 

C22 75,14 10,04 0,962 210.18 -2.69 0.999 -0,0310 2,57 0,915 

C24 86,94 10,43 0,934 226.74 -2.57 0.997 -0,0333 3,09 0,976 

Mean value 82.09
a
 9.17

a
  212.42

a
 -2.63

a
  -0.0314

a
 2.69

a
  

 

 

 

 

 

 

 

 

 

A
cc

ep
te

d 
ar

tic
le

This article is protected by copyright. All rights reserved.



Table 4 

Pearson correlation of textural and some physicochemical parameters of honeys from the North region (lower half of the main diagonal of the 

matrix) and Central region (upper half of the main diagonal of the matrix). 

 

 Moisture Fructose Glucose Sucrose Maltose F/G Brix Viscosity Hardness Consistency Adhesivity 

Moisture 1 -0.23 -0.24 -0.59 0.28 0.22 -1.00 -0.44 0.20 0.25 0.03 

Fructose -0.46 1 0.72 0.07 -0.04 -0.41 0.23 0.23 -0.06 -0.18 -0.06 

Glucose 0.45 -0.76 1 0.01 -0.26 -0.92 0.25 0.47 -0.37 -0.47 -0.44 

Sucrose -0.23 -0.15 0.03 1 0.03 0.05 0.59 0.23 0.29 0.09 0.17 

Maltose -0.37 0.46 -0.60 0.14 1 0.35 -0.28 0.14 0.67 0.63 0.59 

F/G -0.50 0.89 -0.97 -0.08 0.59 1 -0.22 -0.52 0.49 0.55 0.56 

Brix -1.00 0.46 -0.45 0.23 0.37 0.50 1 0.44 -0.20 -0.25 -0.03 

Viscosity -0.82 0.22 -0.27 0.36 0.46 0.30 0.82 1 -0.02 -0.16 -0.01 

Hardness -0.43 -0.01 0.07 0.08 0.30 -0.02 0.43 0.37 1 0.95 -0.92 

Consistency -0.25 -0.05 0.09 0.29 0.24 -0.06 0.25 0.21 0.96 1 0.96 

Adhesivity -0.57 0.02 0.07 0.28 0.34 0.01 0.57 0.50 -0.93 0.86 1 
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