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 ABSTRACT 

 

Manganese(III) cationic ortho N-substituted pyridylporphyrins (MnP) act as efficient 

antioxidants catalyzing superoxide dismutation and accelerating peroxynitrite reduction. 

Importantly, MnP can reach mitochondria thereby offer protection against reactive 

species in different animal models of disease. Although an LC-MS/MS-based method 

for MnP quantitation and subcellular distribution has been reported, a direct method 

capable of evaluating both the uptake and the redox state of MnP in living cells has not 

yet been developed. In the present work we applied resonance Raman (RR) 

spectroscopy to analyze the intracellular accumulation of two potent MnP-based 

lipophilic SOD mimics, MnTnBuOE-2-PyP
5+ 

and MnTnHex-2-PyP
5+

 within endothelial 

cells. RR experiments with isolated mitochondria revealed that the reduction of 

Mn(III)P was affected by inhibitors of the electron transport chain, supporting the action 

of MnP as efficient redox active compounds in mitochondria. Indeed, RR spectra 

confirmed that MnP added in the Mn(III) state can be incorporated into the cells, readily 

reduced by intracellular components to the Mn(II) state and oxidized by peroxynitrite. 

To assess the combined impact of reactivity and bioavailability, we studied the kinetics 

of Mn(III)TnBuOE-2-PyP
5+

 with peroxynitrite and evaluated the cytoprotective 

capacity of MnP by exposing the endothelial cells to nitro-oxidative stress induced by 

peroxynitrite. We observed a preservation of normal mitochondrial function, attenuation 

of cell damage and prevention of apoptotic cell death. These data introduce a novel 

application of RR spectroscopy for the direct detection of MnP and their redox states 

inside living cells, and helps to rationalize their antioxidant capacity in biological 

systems. 

Graphical abstract 
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ABBREVIATIONS  

1
The abbreviations used are: Manganese porphyrins (MnPorphyrins or MnP); 

Mn(III)TnHex-2-PyP
5+

, manganese(III) meso-tetrakis((N-n-hexyl)pyridinium-2-

yl)porphyrin; Mn(III)TnBuOE-2-PyP
5+

, manganese(III) meso-tetrakis(N-n-

butoxyethylpyridinium-2-yl)porphyrin (BMX-001); BAEC, bovine aortic endothelial 

cells; RR, Resonance Raman; SIN-1, 1,3-morpholinosydnonimine; Fl-B, Fluorescein-

based boronate; NOC-7, 3-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-

propanamine; FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; AA, 

antimycin A; R, rotenone. 

 

Keywords: Manganese porphyrin; Peroxynitrite; Endothelial cells; Mitochondria; 

Resonance Raman 
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INTRODUCTION 

 

Several metalloporphyrins have been identified as potent catalysts of numerous redox 

reactions; in particular, manganese porphyrins (MnP) were found very early to act as 

efficient catalytic antioxidants (1,2). For instance, they can act as superoxide dismutase 

(SOD) mimics catalyzing the dismutation of superoxide (O2
•
‾) (3-6). They can react fast 

with carbonate radical (CO3
•
‾) (8) and also catalyze the dismutation of H2O2 with much 

lower rate constant (7). Among synthetic scavengers, MnP are the fastest reductants of 

peroxynitrite
3
 (9-12), a powerful oxidizing and nitrating agent, that can be formed in 

vivo by the diffusion-controlled reaction between the free radicals nitric oxide (
•
NO) 

and O2
•
‾. Those cationic MnP that are potent SOD mimics have electron-deficient Mn 

site. The presence of charges close to the Mn site in the ortho positions of the pyridyl 

rings makes them electron-deficient and affords both thermodynamic and kinetic 

facilitation for the reactions with electron-rich anionic reactive species, such as O2
•
‾, 

CO3
•
‾ and also peroxynitrite (3,4,13).  

 

Mn(III)P can reduce peroxynitrite by one or two-electron mechanisms. One-electron 

reduction leads to the formation of nitrogen dioxide radical (
•
NO2) and 

O=Mn(IV)Porphyrin, with rate constants in the ~ 10
5
 - 10

7
 M

-1
 s

-1
 range at pH 7.4 and 

37 ºC (8,14). The oxidized manganese complex O=Mn(IV)P can be fast reversed to 

Mn(III)P by the available endogenous reductants e.g. ascorbate, urate or glutathione, 

completing a catalytic cycle of peroxynitrite reduction (eq. 1-2) (9-12,15). Although this 

                                                           
3
 The term peroxynitrite is used to refer to the sum of peroxynitrite anion (ONOO

−
) and 

peroxynitrous acid (ONOOH, pKa ~ 6.8). IUPAC recommended names are 

 x pe  x  it ate(1−) a d hyd   e   x pe  x  it ate,  espectively. 
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cycle is very efficient, it does not inactivate the oxidizing power of peroxynitrite but 

deviates it towards the formation of two oxidants, O=Mn(IV)P and
 •

NO2 which can 

mediate pro-oxidant actions, for instance tyrosine nitration. 

 

Mn(III)P
5+

 + ONOO
   
 → O=Mn(IV)P

4+
 + 

•
NO2    (1) 

O=Mn(IV)P
4+

 + RedH + H
+
 → M (   )P

5+
 + 

•
Red + H2O   (2) 

 

Moreover, Mn(III)P can be reduced by several biological reductants (RedH) such as 

glutathione, ascorbate, tetrahydrobiopterin, or enzymatically by oxidoreductases, and 

most notably flavoenzymes such as succinate dehydrogenase and NADH 

dehydrogenase of the mitochondrial electron transport chain (16-18). The resulting 

Mn(II)P can promote the two-electron reduction of peroxynitrite to nitrite (NO2
   

) 

instead of 
•
NO2 (eq. 3), protecting sensitive targets from peroxynitrite or its radical 

derived-mediated damage. 

 

Mn(II)P
4+

 + ONOO
  
  → O=M ( V)P

4+
 + NO2

     
(3) 

 

Under basal physiological conditions, mitochondria represents a major source of 

oxidants, rendering it one of the key subcellular compartments where peroxynitrite is 

generated (19,20). Intramitochondrial peroxynitrite formation is inhibited by superoxide 

dismutase (MnSOD) and, once formed, decomposed by peroxidatic enzymes such as 

peroxiredoxins 3 and 5, which constitute the key defensive lines in protecting the cell 

from oxidative damage (21-23). However, if an increase in the mitochondrial generation 

of reactive species surpasses the antioxidant protection, relevant consequences include 

peroxynitrite-triggered nitro-oxidative modifications. These modifications on target 
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biomolecules such as oxidation and inactivation of proteins and lipid components, 

depending on the extent of the chemical modifications, can cause alterations of 

mitochondrial homeostasis, potentially leading to cell death (20,24-26). Therefore, 

modulation of oxidants formation can limit the initiation and progression of different 

diseases related to mitochondrial dysfunction (27-31). In this sense, overexpression of 

antioxidant enzymes and the development of mitochondrially-targeted antioxidants have 

been reported to play protective effects against the toxicity of reactive species (27-32). 

Among synthetic scavengers, MnP were found to exert strong protective effects against 

peroxynitrite-mediated cytotoxicity, and have been successfully used in different 

pathophysiological conditions, for example in models of vascular and neuronal 

degeneration involving peroxynitrite formation (33,34). Also, in a model of LPS-

induced sepsis in rats, MnP were able to ameliorate mitochondrial and diaphragmatic 

dysfunction, preventing organ failure during severe sepsis (35). It is important to note 

that in addition to the fast reaction with peroxynitrite, O2
•
‾ and CO3

•
‾, the antioxidant 

efficiency of MnP observed in vivo depends on their bioavailability, i.e. tissue, cellular, 

and subcellular distribution, which in turn depends on the nature of N-pyridyl 

substituents that may modify the bulkiness (size and shape), charge and lipophilicity 

(36-38). With the aim to enhance the biodistribution of MnP, the original structure of 

the Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin) (MnTE-2-PyP
5+

) was 

adjusted lengthening the alkyl chains on the porphyrin substituents, resulting in a new 

generation of lipophilic analogs. Among them, the Mn(III)meso-tetrakis((N-n-

hexyl)pyridinium-2-yl)porphyrin (Mn(III)TnHex-2-PyP
5+

) has been frequently MnP 

studied (38-42). More recently, the synthesis of new MnP with the insertion of oxygen 

atoms within the alkyl chains, resulted in Mn(III)meso-tetrakis(N-n-

butoxyethylpyridinium-2-yl)porphyrin (Mn(III)TnBuOE-2-PyP
5+

), which showed less 
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toxicity while maintaining high lipophilicity (43). Importantly, MnTnBuOE-2-PyP
5+

 is 

currently in Phase I/II clinical trials as a radioprotector of normal tissues in cancer 

patients (glioma, head and neck and anal cancer patients) (44,45). The remarkable 

efficacy of MnP protection on a variety of oxidative stress-related disease models may 

be at least in part attributed to their ability to cross cell membranes and accumulate in 

mitochondria, mimicking location and function of the mitochondrial enzyme, MnSOD 

(46-48). Also, MnP colocalization with mitochondrial redox partners would activate 

their function as catalytic antioxidants in the same location where oxidants, and 

particularly peroxynitrite, can be formed (33,38,42,49-56).  

 

Efforts have been made in order to develop methodologies to assess tissue and 

subcellular distributions of MnP. One of the analytical methods reported involves 

subcellular fractionation, substitution of the porphyrin Mn(II) site with Zn(II), followed 

by fluorimetric detection and LC-MS/MS quantification (57-59). Previous studies on 

cell incorporation, have observed the effect of MnP on SOD-deficient bacteria and 

yeast, which grow very poorly in the presence of oxygen. Since some MnP possess high 

SOD activity, they are able to rescue and support the aerobic growth and thus, their 

beneficial effect can be associated with its facile incorporation and high reactivity (60-

64). Although these assays provide valuable information, a direct method to evaluate 

the uptake and redox state of MnP in living cells has not been yet developed. With this 

need in mind, here we explore the potential of Raman spectroscopy as an alternative 

method. In this technique the vibrational spectrum of a sample is obtained from the 

inelastic scattering of an incident laser beam. In sharp contrast to vibrational 

spectroscopies based on infrared light absorption, water is essentially Raman inactive, 

thus making this method particularly suited for biological samples. Moreover, if the 
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excitation is in resonance with an electronic transition of a chromophoric unit in the 

sample, the intensity of the resulting resonance Raman (RR) spectrum solely of this 

chromophore is enhanced by several orders of magnitude over the background spectrum 

of non-resonant molecules. In this way, the choice of the laser excitation line represents 

a simple and effective means to achieve high sensitivity and molecular selectivity in 

complex samples. Interestingly, RR measurements are rapid, non-destructive, non-

invasive and can be easily adapted to different sampling schemes, from simple quartz 

cuvettes to remote optical fiber probes or confocal microscopes, among others. RR 

spectroscopy has long been employed for the detection and characterization of heme 

proteins (65-68) and free porphyrins (69-72) due to the very high RR cross-section of 

porphyrins, particularly when excited in resonance with the Soret absorption band, and 

because the spectra allow to discriminate the redox state, spin and coordination of the 

central metal ion.  

 

In the present study, we have employed RR spectroscopy in order to detect the 

intracellular accumulation of MnTnBuOE-2-PyP
5+

 and MnTnHex-2-PyP
5+

 within 

bovine aortic endothelial cells (BAEC) and also monitored in real time their reduction 

by intracellular components, in particular those of the mitochondrial electron transport 

chain. In addition, RR allowed distinguishing the redox state changes of MnP in 

endothelial cells or isolated mitochondria exposed to peroxynitrite. We have also 

characterized the reaction kinetics of MnTnBuOE-2-PyP
5+

 with peroxynitrite and 

evaluated the antioxidant cytoprotective capacity of these compounds in biological 

systems.  

 

EXPERIMENTAL PROCEDURES 
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Reagents. 

Reagents were purchased from Sigma-Aldrich (St. Louis, MO) and used as received 

unless otherwise indicated. The manganese porphyrins used: MnTnHex-2-PyP
5+

, 

manganese(III) meso-tetrakis((N-n-hexyl)pyridinium-2-yl)porphyrin and MnTnBuOE-

2-PyP
5+

, manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin were 

synthesized as described previously (40,43,73). Culture medium 199 (M199) and fetal 

bovine serum (FBS) were obtained from GIBCO (Invitrogen, Grand Island NY). 

Fluorescein boronate-based probe (Fl-B) was synthesized as reported previously (74). 

Annexin-V-FITC Alexa fluor 488 was obtained from Molecular Probes-Invitrogen 

(Eugene, OR) and propidium iodide was from Calbiochem. Peroxynitrite was 

synthesized from hydrogen peroxide and sodium nitrite under acidic conditions in a 

quenched flow reactor as described previously (75,76). Excess hydrogen peroxide was 

removed by treatment with manganese dioxide. Peroxynitrite concentration was 

determined at 302 nm ( = 1670 M
-1

 cm
-1

 (77)) and nitrite contamination was typically 

less than 25 % with respect to peroxynitrite. Stock solutions were stored at -80 °C and 

diluted in 0.1 M NaOH immediately before use.  

 

Spectroscopic methods. 

Resonance Raman (RR) spectra were acquired in backscattering geometry using a 

confocal microscope (Olympus BX41) equipped with a long working distance objective 

(Nikon 20x. N.A. 0.35) and coupled to a single stage spectrograph (Jobin Yvon XY-

800) equipped with 1800 lines/mm grating and liquid nitrogen cooled back illuminated 

CCD detector. Rayleigh radiation was rejected using a razor edge filter (Semrock). 

Typically ca. 100 L of sample were placed in a cylindrical quartz cell that was rotated 

under the laser beam at about 5 Hz to prevent laser-induced damage. Spectra were 
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acquired with the 457.9 nm line of an argon ion laser (Coherent Innova 70c), i.e. in 

 es  a ce with the S  et ba d  f the p  phy i s, usi   lase  p we s at sample ≤ 5 mW 

to avoid laser-induced damage. The spectrometer was calibrated employing Hg and Na 

calibration lamps (Newport) as an internal spectroscopic standard to ensure 

reproducibility. The reported RR spectra represent an average of 4-10 individual spectra 

and were measured with accumulation times of 20-60 s and increments per data point of 

0.35 cm
-1

. 

 

Kinetics of peroxynitrite reaction with MnPorphyrin. 

Oxidation of Mn(III)TnBuOE-2-PyP
5+

 with peroxynitrite was carried out under pseudo-

first-order conditions with peroxynitrite in excess over the MnP. In all cases, 

peroxynitrite (dissolved in a NaOH) was mixed with Mn(III)TnBuOE-2-PyP
5+

 

dissolved in sodium phosphate buffer. The final concentration of Mn(III)TnBuOE-2-

PyP
5+

 after mixing was 0.5 M, peroxynitrite was in excess by at least 10-fold, and 

sodium phosphate buffer concentration was 50 mM, at different pH values from 5.23 to 

7.20, containing diethylenetriaminepentaacetic acid (DTPA, 0.1 mM) to eliminate 

potential metal trace interference. The temperature was maintained constant at 37.0 ± 

0.1 °C, and the pH of the reaction mixtures was measured at the outlet of the stopped 

flow. The reaction was monitored by the change in absorbance in the Soret band of 

Mn(III)TnBuOE-2-PyP
5+

 at 455 nm, and the apparent rate constants (kobs), were 

determined by fitting stopped-flow data to a single exponential function with the 

software provided with the instrument. The second-order rate constant was determined 

from the slope of the plot of kobs versus peroxynitrite concentrations. All kinetic runs 

were performed in a stopped-flow spectrophotometer (SX20, Applied Photophysics) 
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with a mixing time of <2 ms. Reported values are the average of at least seven separate 

determinations.  

 

Cell culture. 

BAEC were obtained as described previously (78,79). Briefly, bovine thoracic aortas 

were acquired from a local slaughterhouse (Frigorífico Carlos Schneck, Montevideo, 

Uruguay), and cells were obtained by scraping the luminal surface of the aorta. When 

colonies of BAEC were formed, they were isolated using 8-mm diameter cloning rings 

(Sigma). The purity of the culture was assessed by immunocytochemistry using an anti-

human von Willebrand factor polyclonal antibody (Sigma) and an acetylated low-

density lipoprotein fluorescently labeled (DiI-Ac-LDL). The cells were cultivated on 

gelatin-coated tissue plastic and propagated by subculturing in a 1:4 ratio in M199 with 

5 % FBS, 100 U/ml penicillin G, and 100 g/ml streptomycin sulfate. Cell media was 

routinely changed after 3 days, 1 week after subculture, and once a week thereafter for 

no longer than a month. Experiments were conducted using cells at 95 % confluence 

and between passages 5 and 8. All treatments were performed in M199 with reduced 

fetal bovine serum (0.4% FBS), unless otherwise indicated.  

 

MnP incorporation on cells and mitochondria. 

BAEC were preincubated with Mn(III)P (5  for 2 hours and washed twice in PBS, 

to remove all the non-incorporated MnP.  

Alternatively, for RR studies, Mn(III)P (5  were added directly to mitochondria or 

cells in the cylindrical quartz cell. The appropriate non-toxic concentrations of 

MnTnBuOE-2-PyP
5+

 and MnTnHex-2-PyP
5+

 used in this work were evaluated by the 

MTT assay, by exposing BAEC to increase concentrations of Mn(III)P ranging from 2 
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to 10 M. There was no significant decrease in cell viability over a 2 h exposure to 

Mn(III)P at concentrations below 10 M. The mitochondrial electron transport 

inhibitors used included: rotenone, malonate and antimycin A as inhibitors of Complex 

I, II and III, respectively. Alternatively to malonate, in experiments with BAEC we used 

thenoyl trifluoroacetate (TTFA) which also blocks the electron transfer from Complex 

II and can reach mitochondria without the need to add any permeabilization agent. The 

appropriate concentrations of the inhibitors used in our experimental conditions were 

tested previously. 

 

SIN-1 exposure: 

SIN-1 (1,3-morpholinosydnonimine) stock solution was prepared in 3 mM HCl and the 

pH was adjusted to 7.4 during assays in cell media. SIN-1 has been used in vitro to 

simultaneously generate O2
•
‾ and 

•
NO which react to form peroxynitrite (80), and can 

easily penetrate in BAEC generating an extra and intracellular peroxynitrite flux (81). 

The yield of peroxynitrite flux produced by the SIN-1 concentrations selected for 

expe ime ts, 100 a d 250 μM, p  duces a pe  xy it ite flux  f 3.14 a d 7.6 μM/mi , 

respectively, determined by oxidation of fluorescein boronate, as reported previously 

(74,82). 

Detection of endogenous peroxynitrite in BAEC measuring FI-B oxidation. 

The generation of endogenously peroxynitrite in BAEC was determined using the 

fluorescein-boronate probe (Fl-B), and monitored under different conditions by the 

increase in fluorescence intensity emission corresponding to Fl-B  xidati   (λex/em = 

492/515 nm) (74). BAEC were pre-incubated with Mn(III)TnBuOE-2-PyP
5+

 (5 M) for 

2 h and after treatment, cells were washed twice with PBS and incubated with FI-B (50 
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M) for 30 min at 37 ºC. Intramitochondrial-peroxynitrite was generated by a 

simultaneous stimulation of O2
•
‾ formation with the complex III- electron transport 

chain inhibitor, antimycin A (4 M) and the 
•
NO donor (NOC-7, 100 M yielding ~ 8.6 

M/min 
•
NO, at pH 7.4 and 37 ºC). The time course of FI-B in BAEC was monitored in 

a fluorescence plate reader at 25 ºC (Varioskan, Thermo) atex= 492 nm and em= 515 

nm for 20 min. Control assays showed that Mn(III)TnBuOE-2-PyP
5+

 (10 M) added to 

Fl-B (50 M) plus peroxynitrite (100 M in bolus addition) in PBS, interfered less than 

8 % with the fluorescence intensity emission corresponding to Fl-B oxidation (data not 

shown). 

 

Mitochondria purification. 

Rat heart mitochondria were isolated and purified by differential centrifugation as 

described previously (83). Briefly, rats were anesthetized, and the heart was removed 

and washed extensively, minced, and homogenized with a small tissue grinder. Tissue 

fragments were disrupted using a Potter-Elvehjem homogenizer in a solution 

containing: sucrose (0.3 M), MOPS (5 mM), potassium phosphate (5 mM), EGTA (1 

mM), and 0.1 % bovine serum albumin (BSA) (homogenization buffer, pH 7.4). The 

homogenate was then centrifuged at 1500 g, and mitochondria were isolated from the 

supernatant by centrifugation at 13000 g. Mitochondrial pellets were resuspended in 

minimal volume of homogenization buffer.  

 

Measurement of mitochondrial function in BAEC. 

Mitochondrial function in BAEC was measured using a Seahorse XF24 extracellular 

flux analyzer (Agilent Technologies), which allows the determination of oxygen 

consumption rates (QO2) and proton concentration in real time (84-86). BAEC were 
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plated in 24- well Seahorse microplate at an optimum seeding density (40,000 cells, 

(84)) and once the cells reached confluence 24 h later, Mn(III)TnBuOE-2-PyP
5+

 (5 M) 

was added to allow incorporation for 2 h. Cells were washed twice with phosphate-

buffered saline (PBS, 0.14 M NaCl, 0.003 M KCl, 0.002 M KH2PO4, 0.01 Na2HPO4), 

pH 7.4, in order to remove excess of MnP. Then cells were exposed to SIN-1 (100 M) 

overnight, washed and incubated with an un-buffered Seahorse media to allow 

equilibration for 1 hour before the assay. Drugs were added as indicated in the 

experiment: Oligomycin (1 M), FCCP (1 M), antimycin A (AA, 1 M) and Rotenone 

(R, 0.1 M). Basic procedure for the XF24 extracellular flux analyzer was followed as 

described in www.agilent.com. Data are expressed as the oxygen consumption rate 

(QO2) in pmol/min. From the QO2 obtained before and after addition of drugs to the 

cells and corrected per g protein, we calculated parameters related to mitochondrial 

function and metabolism. Non-mitochondrial QO2 was measured adding AA/R at the 

end of each respiratory experiment in order to fully inhibit the mitochondrial electron 

transport chain. Considering that this rate is constant, it was subtracted from all other 

rates. Different experimental conditions yielded similar non-mitochondrial QO2 (data 

not shown). Basal respiration was calculated as the last rate measurement before 

oligomycin injection minus non-mitochondrial QO2 after AA/R addition. ATP-linked 

respiration was calculated as the difference between basal respiration and the minimum 

rate measurement after oligomycin injection. Spare respiratory capacity is the maximal 

respiration rate (maximal rate after FCCP injection minus non- mitochondrial 

respiration) minus basal respiration rate. Coupling efficiency was calculated as the ratio 

of ATP-linked respiration with the basal respiration rate × 100. The cell respiratory 

control ratio (RCR) was calculated as the ratio of the uncoupled rate to the oligomycin 

rate (analogous to state 3/state 4 in isolated mitochondria).  
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Measurement of mitochondrial membrane potential (Ψm). 

Mitochondrial membrane potential (Ψm) was assessed using the aggregate-forming 

lipophilic cationic probe fluorochrome JC-1 (87). In the presence of physiological 

mitochondrial membrane potentials, JC-1 forms aggregates that fluoresce with an 

emission peak at 590 nm (red). Disruption or loss of membrane potential favors the 

monomeric form of JC-1, which has an emission peak at 525 nm (green). To examine 

the effect of MnP on modifications induced by SIN-1, BAEC were grown in 6-well 

culture plates in M199 with 10 % FBS, once they reached 90% confluence, the medium 

was changed to 0.4 % FBS for 12 h, and incubated with Mn(III)TnBuOE-2-PyP
5+

 (5 

μM) f   2 hours to allow incorporation into the mitochondria. Then, cells were washed 

twice and exposed to SIN-1 (100 μM)  ve  i ht i  M199 with 0.4 % FBS. JC-1 (2 μM) 

was added and incubated for 20 min at 37 °C and rinsed with Krebs buffer. 

Mitochondrial membrane potential was inferred from the ratio of fluorescence intensity 

JC-1 aggregate/monomer. The images were acquired from randomly chosen fields using 

an inverted epifluorescence microscope (Olympus IX70).  

 

Flow cytometric evaluation of apoptosis. 

To evaluate the effect of MnP on the apoptotic cell death induction by SIN-1, BAEC 

were pretreated with Mn(III)TnBuOE-2-PyP
5+

 (5 μM) for 2 h, washed twice, and 

incubated overnight with SIN-1 (250 μM). Then, cells were washed with PBS, 

harvested by trypsinization, labeled with Annexin-V-FITC or Alexa Fluor 488 anti 

BrDU antibody and analyzed by flow cytometry BD FACSCalibur apparatus (Becton 

Dickinson), at least 10,000 events of total cells were analyzed by each experimental 

treatment. Results are expressed as the percentage of Annexin-V positive cells with 
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respect to the total cell count (1 x 10
4
 cells were considered as 100 %) in each condition. 

Apoptotic cells labeling was determined by the mean sample fluorescence 

intensity/control fluorescence intensity, expressed in arbitrary units. As control, in order 

to confirm the nature of cell death, necrosis was evaluated by propidium iodide (PI) 

staining, following the same procedure as described before with Annexin-V. 

Furthermore, we also verified that pretreatment with MnP did not induce appreciable 

cell death as assayed either by apoptosis or necrosis by flow cytometry (data not 

shown).  

 

Data analysis. 

All experiments reported herein were reproduced at least three times, and results shown 

correspond to one representative experiment of each one unless otherwise indicated.  

All data are given as means ± SD or SEM unless otherwise noted, and P < 0.05 was 

considered significant. Statistical significance in cell experiments was determined using 

one-way ANOVA followed by t-test unpaired with Welch´s correction for comparisons 

among multiple groups. RR spectra analysis was performed using homemade software 

that allows for baseline subtraction and iterative convolution. Semi-quantification of the 

relative concentrations was achieved by integration of the ν4 band. The RR relative 

cross-sections for the reduced and oxidized species were obtained from the reduced 

Mn(II)P and oxidized Mn(III)P spectra obtained by mixing with excess sodium 

dithionite or potassium ferricyanide, respectively. Graphics and mathematical fits to 

experimental data were performed using OriginPro 8 (OriginLab Corporation) or 

GraphPad Prism version 6.0. 
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RESULTS 

 

RR spectra of MnP. 

The high frequency RR spectra of porphyrins (ca. 1300-1700 cm
-1

) are dominated by 

skeletal modes that are sensitive to the macrocycle core size and electron density and 

thus, constitute characteristic marker bands of the oxidation state, spin and axial 

coordination of the central metal ion (88-91). First, we characterized the RR spectra of 

MnTnHex-2-PyP
5+

 and MnTnBuOE-2-PyP
5+

 in PBS buffer solution. As shown in 

Figure 1A, the RR spectra of both MnP were quite similar to each other in terms of 

band positions and relative intensities, both in the oxidized Mn(III)P and dithionite-

reduced Mn(II)P states. In the Mn(III) form, MnTnHex-2-PyP
5+

 and MnTnBuOE-2-

PyP
5+

 showed bands at 1258, 1370 and 1570 cm
-1

, in agreement with the porphyrin-core 

sensitive vibrations reported before for metalloporphyrins, and can be assigned based on 

previous work on manganese(III) tetrakis(4-sulfophenyl)porphyrin (MnTPP-PyP) and 

manganese(III) tetrakis(1-methylpyridinium-4-yl)porphyrin (MnTM-4-PyP
5+

)
 
to:  (Cm 

– pyr), s (C - N) and s (C - Cβ), respectively (88,92). Upon reduction with excess 

dithionite, we observed for both MnP the characteristic downshift of the 1370 and 1570 

cm
-1

 bands to 1347 and 1550 cm
-1

, respectively, in agreement with previous reports 

(92), as well as the rise of a new band at 1440 cm
-1

 and a gain of intensity for the band 

centered at 1258 cm
-1

 (Figure 1A). As control, the initial RR spectra of Mn(III)P were 

completely recovered after addition of excess potassium ferricyanide to Mn(II)P (data 

not shown). In addition, as shown in Figure 1B, RR spectra of Mn(III)P did not 

appreciably change in the presence of the peroxynitrite donor SIN-1. However, when 

Mn(III)P was first reduced by ascorbic acid and then treated with SIN-1, we observed a 

change in the RR bands consistent to the oxidation of Mn(II)P to Mn(III)P, with no 

evidence for other Mn redox states or complexes such as the formation of a metal-
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nitrosyl complex form the reaction between the reduced MnP, Mn(II)TE-2-PyP
5+

 with 

•
NO (93). 

 

These experiments confirm that RR spectroscopy is a sensitive and useful method to 

assign the redox state of the two porphyrins studied here, and that the s (C - N) band 

is an optimal spectral indicator because of the 23 cm
-1

 shift between redox states and its 

high intensity in a spectrally clean region. It is important to remark that experimental 

RR conditions such as laser wavelength, laser power at sample, rotational speed of the 

cuvette and exposure times, were carefully controlled and optimized in order to avoid 

photoreduction or any other laser-induce damage of the MnP. 

 

Intramitochondrial redox state of MnP studied by RR. 

As reported previously, Mn(III)P can be readily reduced by intracellular components, in 

particular by the Complexes I and II of the mitochondrial electron transport chain (16-

18).Thus, we next attempted to directly assess the redox state of MnP incubated with 

intact isolated mitochondria by RR confocal microscopy. As expected, when 

Mn(III)TnHex-2-PyP
5+

 was added to mitochondria in the absence of an electron source 

as substrate, RR spectra showed bands at 1370 and 1570 cm
-1

, corresponding to the 

oxidized Mn(III)P (Figure 2c). Upon addition of succinate as a metabolic substrate of 

Complex II, we observed an intensity drop of the bands at 1370 cm
-1

 and 1570 cm
-1

, 

concomitant with the rise of bands at 1347 and 1550 cm
-1

, which is consistent with the 

reduction to Mn(II)TnHex-2-PyP
5+

 (Figure 2d). From the integration of the two bands 

and the relative RR cross-sections of the porphyrin in the two redox states, as obtained 

from spectra of chemically reduced and oxidized samples, we determined that > 70 % of 

the incorporated porphyrin was reduced under these conditions. Control experiments 

showed that succinate was not able to reduce the Mn(III)P in the absence of 
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mitochondria (Figure 2b). In order to confirm the reduction by mitochondrial 

components, we performed control experiments with the addition of compounds that 

selectively inhibit electron transfer at different points of the mitochondrial respiratory 

chain. When isolated mitochondria were incubated in the presence of succinate as 

electron source and of antimycin A as inhibitor of the respiratory Complex III, the 

measured RR spectrum was dominated by an intense band at 1347 cm
-1

 and a weaker 

band at 1370 cm
-1

, which after quantification revealed that ca. 80% of the incorporated 

Mn(III)TnHex-2-PyP
5+

 was effectively reduced by mitochondrial components (Figure 

2f). For incubations in the presence of rotenone and malonate, inhibitors of Complexes I 

and II, respectively, the intensity ratio of the 1347 and 1370 cm
-1

 bands was reversed 

(Figure 2e), which indicates that the reduction of MnP was significantly hindered under 

these conditions to only ca. 36%. Next, we investigated the redox state of MnTnBuOE-

2-PyP
5+

 in mitochondria exposed to SIN-1. As observed before, in presence of 

succinate, the RR spectra indicate that MnP was mostly in the reduced state (Figure 3A, 

c). When SIN-1 was added, RR bands did not change appreciably and corresponded 

predominantly to the Mn(II)P state, indicating that the levels of succinate readily 

restored the oxidative effects of SIN-1 (Figure 3A, d). This is important since, 

according to the catalytic cycle (eq. 1-3), the antioxidant protection is effective as long 

as MnP is reduced faster than it is oxidized, keeping high steady-state levels of Mn(II)P. 

Nevertheless, in the presence of the inhibitors rotenone and thenoyl trifluoroacetate 

(TTFA), when cells were exposed SIN-1, the intensity ratio of the RR bands of MnP at 

1347 and 1370 cm
-1

 was reversed, indicating that MnP mainly evolved to the oxidized 

state (Figure 3B, c and d). 

 

Incorporation and redox state of MnP in BAEC studied by RR. 
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In order to evaluate the uptake of MnP in living cells by RR spectroscopy, a confluent 

BAEC culture was preincubated with Mn(III)TnBuOE-2-PyP
5+

 or Mn(III)TnHex-2-

PyP
5+

 for 2 h. After treatment, the cells were extensively washed with PBS buffer prior 

to RR measurements in order to remove remaining free MnP and also to eliminate 

potential artifacts produced by residues of the culture medium. As shown in Figure 4b, 

the RR spectra of cells incubated with Mn(III)TnHex-2-PyP
5+ 

display a band at 1347 

cm
-1

. The position and relative intensity of the s (C - N) RR band argues in favor of 

MnP existing predominantly in the reduced state when incorporated into living cells. 

Similar results were obtained with Mn(III)TnBuOE-2-PyP
5+

 (data not shown). It is 

remarkable that RR signals of MnP could be detected above the scattering background 

of cellular components. Next, we studied the redox state of MnP in BAEC challenged 

by SIN-1. In this case, cells were resuspended in PBS and Mn(III)TnHex-2-PyP
5+ 

was 

added directly to the sample. As expected, we obtained a similar result than with 

isolated mitochondria. RR spectra showed that when succinate was added to the cells, 

MnP was mostly reduced to Mn(II)P (Figure 5c); when SIN-1 was added in the 

presence of rotenone and TTFA, a time-dependent oxidation to Mn(III)P was observed, 

as indicated by the shift of the RR bands, particularly the change from 1347 to 1370 cm
-

1
 (Figure 5, e and f). 

 

Reaction of Mn(III)TnBuOE-2-PyP
5+

 with peroxynitrite. The kinetics of 

Mn(III)TnBuOE-2-PyP
5+

 reaction with excess peroxynitrite were measured through 

stopped-flow spectrophotometry. The decay of Mn(III)TnBuOE-2-PyP
5+

 followed 

exponential functions (Figure 6A) and the observed pseudo-first order rate constants 

(kobs) increased linearly with peroxynitrite concentrations (Figure 6B). From the slope of 

the plot, the apparent second-order rate constant (kapp) was determined to be (3.5 ± 0.1) 
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x 10
7
 M

-1
 s

-1
 at pH 7.2 and 37 °C. To study the pH-dependence of the reaction kinetics, 

the apparent second-order rate constants of Mn(III)TnBuOE-2-PyP
5+

 oxidation by 

peroxynitrite were determined from the slope of plots of kobs versus peroxynitrite 

concentrations at different pHs in the range of 5.23 to 7.20. As shown in Figure 6C, 

there is a sigmoideal dependence of kapp with pH, with an inflection point at pH ~ 6.29 

and reaches maximal values al pH ≥ 7. Given that the pKa of ONOOH is 6.75 (94), this 

behavior is consistent with Mn(III)P reacting fast with ONOO
–
, and much more slowly 

with ONOOH, as reported for all the MnP previously studied (8,9). 

 

Effect of MnP on cell-derived peroxynitrite in endothelial cells. 

In order to obtain more evidence of the subcellular distribution and the effect of MnP in 

mitochondria, we evaluated their influence on endogenous mitochondrial peroxynitrite 

formation. The specific and sensitive detection of peroxynitrite generation in BAEC 

was monitored using the fluorescein-boronate probe (Fl-B), which reacts fast with 

peroxynitrite with a rate constant of k = 1.7 x 10
6
 M

-1
 s

-1
, several orders of magnitude 

greater than for hydrogen peroxide (1.7 M
-1

 s
-1

) (74). BAEC were stimulated to produce 

mitochondrial O2
•
‾ by the use of antimycin A, and intramitochondrial peroxynitrite was 

generated in the presence of a 
•
NO donor (NOC-7). As shown in Figure 7, when BAEC 

were exposed to the combination of antimycin A and NOC-7, a maximal increase in 

fluorescence intensity over time corresponding to Fl-B oxidation was observed, 

indicating peroxynitrite generation. Remarkably, in the presence of MnTnBuOE-2-

PyP
5+

, FI-B oxidation was partially inhibited (~ 40%). To note, the small fluorescence 

signal obtained with NOC-7 alone is expected based on the known stimulation of 

mitochondrial-O2
•
‾ and consequently peroxynitrite, secondary to the 

•
NO-mediated 

inhibition of cytochrome c oxidase (83,95,96). 
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Peroxynitrite-induced mitochondrial dysfunction is partially prevented by MnP. 

Mitochondrial function was studied by measuring the oxygen consumption rates (QO2) 

in cells pre-treated with Mn(III)TnBuOE-2-PyP
5+

 and exposed to exogenous flux of 

peroxynitrite generated by SIN-1. A representative time course of cell respiratory 

control experiments is shown in Figure 8A. First, QO2 was measured under basal 

conditions, followed by the sequential addition of an inhibitor of ATP synthase, 

oligomycin (1 M), a proton ionophore, FCCP (1 M), and a mixture of electron 

transport chain inhibitors, rotenone/antimycin A (1 M/0.1 M), as indicated. A 

remarkable protection effect of MnTnBuOE-2-PyP
5+

 on oxygen consumption profile 

was evident along the assay when compared to SIN-1-exposed cells in the absence of 

MnP (Figure 8A). In order to evaluate major aspects of mitochondrial function, key 

parameters were calculated as described in experimental procedures section. Basal 

respiration (before addition of reagents), ATP-linked respiration and spare respiratory 

capacity were all impaired by SIN-1 treatment compared with control cells in the 

absence of SIN-1. All these effects were significantly restored when BAEC were 

preincubated with Mn(III)TnBuOE-2-PyP
5+

, supporting the protective effect of MnP 

against the peroxynitrite-induced damage in mitochondria (Figure 8, B-D). 

Furthermore, to evaluate the ability of mitochondria to couple oxygen consumption to 

oxidative phosphorylation, respiratory control ratios (RCR) were also determined. RCR 

is a particularly revealing parameter to assess mitochondrial function since it reflects the 

tight coupling between respiration and oxidative phosphorylation. As shown in Figure 

8E, RCR was significantly reduced by SIN-1 whereas preincubation with 

Mn(III)TnBuOE-2-PyP
5+

 partially avoided this effect.  
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Protective effect of MnP on mitochondrial membrane potential (Ψm) exposed to 

SIN-1. 

Mitochondrial membrane potential (Ψm) was assessed using the fluorescent probe JC-

1. When subjected to physiological mitochondrial membrane potentials, JC-1 forms 

aggregates that fluoresce with an emission peak at 590 nm (red). Loss of membrane 

potential favors the monomeric form of JC-1, which presents an emission peak at 525 

nm (green). As shown in Figure 9, exposure to SIN-1 (100 M) disrupts the Ψm, as 

indicated by an increase in the monomeric JC-1 fraction (decrease in the red/green ratio 

fluorescent). In agreement with cell respiratory results, the disruption on Ψm induced 

by SIN-1 was prevented by preincubation with Mn(III)TnBuOE-2-PyP
5+

. Similar results 

were obtained upon exposure to SIN-1 (250 M) and using Mn(III)TnHex-2-PyP
5+

 

(data not shown).  

 

Effect of MnP on apoptosis triggered by SIN-1 in BAEC. 

As observed before, SIN-1 affects mitochondrial function and disrupts Ψm, events that 

can lead to activation of apoptotic cell death (78,82). Moreover, mitochondria-derived 

reactive species have been associated with the initiation phase of the apoptotic cell 

death (97,98). In order to evaluate the effect of MnP on apoptosis induced by SIN-1 on 

BAEC, we measured the exposure of phosphatidylserine (PS) by anexin-V FITC by 

flow cytometry analysis. As shown in Figure 10, SIN-1 induced an increase in PS 

externalization and pretreatment with Mn(III)TnBuOE-2-PyP
5+

 significantly reduced 

the amount of apoptotic cells induced by SIN-1. As control, we did not observe 

significant differences with respect to the untreated cells in the percentage of PI-positive 

cells when BAEC was exposed to SIN-1 (data not shown), ruling out a necrotic cell 

death and supporting an apoptotic pathway induced by peroxynitrite, as reported 
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previously (97,99). Thus, MnTnBuOE-2-PyP
5+

 protect BAEC against nitroxidative 

damage, maintaining the mitochondrial function, integrity and promoting cell survival.  

 

 

DISCUSSION 

 

In the present study, we introduced the application of RR spectroscopy as an effective 

tool for the direct and noninvasive evaluation of the uptake and redox state of MnP in 

living cells. First, we characterized the RR spectra of two cationic MnP, MnTnBuOE-2-

PyP
5+ 

and MnTnHex-2-PyP
5+

 both as Mn(III) and Mn(II) complexes (Figure 1), and 

identified the porphyrin marker bands based on previous vibrational assignments 

(88,92). MnP redox state was also assayed by RR spectroscopy in isolated 

mitochondria, which can readily reduce Mn(III) to Mn(II). Addition of SIN-1, in the 

presence of compounds that selectively inhibit the electron transport chain, resulted in 

substantial changes in the RR spectra of MnP, with a time-dependent oxidation of 

Mn(II)P to Mn(III)P (Figures  3 and 5).  

 

These assays provide additional evidence of the known contribution of mitochondrial 

components on MnP reduction. Furthermore, the RR experiments confirm that Mn(III)P 

are effectively incorporated and accumulated in endothelial cells and reduced by 

intracellular components (Figure 3). It is remarkable that MnP can be detected by RR 

spectroscopy in a cell system, even when BAEC were incubated with low micromolar 

concentrations of Mn(III)P (5 M). Together these results support RR spectroscopy as a 

suitable approach to assess incorporation and intracellular redox speciation of MnP in 

biological systems. The method is capable of providing important new insights to 

unravel antioxidant action mechanisms in living cells and, if coupled to confocal 
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microscopy, this information can potentially be obtained with subcellular spatial 

resolution. 

 

The ability of MnP to scavenge reactive species and act as an efficient antioxidant in 

biological systems would depend on kinetic factors, such as the rate constant and 

concentration in cell compartments. In this sense, we characterized the kinetics of the 

peroxynitrite reaction with Mn(III)TnBuOE-2-PyP
5+

 (Figure 6). The second-order rate 

constant was determined to be (3.5 ± 0.1) x 10
7
 M

-1
 s

-1
 at pH 7.2 and 37 °C, which is in 

the range of the previously reported rate constants of peroxynitrite reduction by other 

cationic Mn(III)P, and is similar to the reported value for Mn(III)TnHex-2-PyP
5+

 (1.3 x 

10
7
 M

-1
 s

-1
) (8,14). Also, the pH-dependent study shows that the reaction rate of 

Mn(III)TnBuOE-2-PyP
5+

 is faster with ONOO
–
 than with ONOOH, as expected due to 

the electrostatic facilitation of former reaction between species of opposite charges and 

as earlier seen in reaction between other cathionic MnP and O2
•
‾ or ONOO

–
(8,13). 

Mn(II)P can react fast and efficiently with peroxynitrite, as reported for Mn(II)TE-2-

PyP
5+

 with a rate constant > 10
7 

M
-1

 s
-1

 (eq. 3) (17). This is relevant considering that the 

initial Mn(III) complex can be reduced to Mn(II) by intracellular reductants and Mn(II) 

is the predominant oxidation state of intracellular MnP, as confirmed herein by RR 

spectroscopy studies. Based on these relatively high rate constants, it can be concluded 

that direct reactions with peroxynitrite are fast enough to outcompete peroxynitrite-

dependent oxidant reactions with cellular targets and allows us to rationalize a role as an 

antioxidant in biological systems. In addition, pharmacokinetic studies performed with 

MnTE-2-PyP
5+

 in mouse, reported a concentration of 5.1 M in heart mitochondria up 

to 7 h after a single intraperitoneal administration of 10 mg/kg of the compound. Taking 

into account the reported lower limit rate constant of Mn(II)TE-2-PyP
5+

, the value 
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kapp[T] (product of the rate constant and target concentration) was estimated in the range 

for a suitable peroxynitrite scavenger to be competitive (17,58,100). Therefore, MnP 

can be effective antioxidants to protect from peroxynitrite-mediated damage to 

mitochondria (17,101) and cells (this paper), provided that they can be reduced to the 

Mn(II) state. As long as the redox metabolism keeps the MnP in the reduced state, the 

compound will be an efficient neutralizer of the cytotoxic effects of peroxynitrite; of 

course, if intracellular redox conditions change in a way that increasing amounts of 

Mn(III)P arise (e.g. sustained oxidative stress, depletion or disruption of reducing 

systems), then the protective antioxidant actions of MnP will progressively decline due 

to, among other factors, the secondary formation of 
•
NO2 (Eq. 1-3). Theoretically, MnP 

could also attenuate SIN-1-dependent toxicity by scavenging of  O2
•
‾ or trapping of 

•
NO; the first mechanism is ruled out based on kinetic grounds as intracellular SOD 

levels would be at least 1,000 fold more efficient than micromolar MnP concentrations 

used herein (3-6).  The second mechanism involving the formation of Mn(II)P-nitrosyl 

complexes is also not kinetically favored as the rate constant of 
•
NO with Mn(II)P is at 

least one order of magnitude lower than that for peroxynitrite (93) and it is an 

stoichiometric process which can not account for the protection observed against a large 

excess of SIN-1. 

Several studies have evidenced the formation of mitochondria-derived oxidants and 

peroxynitrite formation, leading to nitro-oxidative modification of mitochondrial 

components, related to different pathological conditions (20,24,29,101). Thus, it is 

important to confirm the preferential subcellular distribution of MnP and its 

colocalization, since mitochondria are the site where most of the oxidants can be formed 

and where MnP could exert their function as catalytic antioxidants. The fact that MnP 

inhibited intra-mitochondrial Fl-B oxidation by peroxynitrite strongly supports its site-
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specific protective role in mitochondria (Figure 7). In addition, we evaluated the 

protective capacity of MnP on mitochondrial integrity and functionality by exposing the 

endothelial cells to nitro-oxidative stress induced by the peroxynitrite donor SIN-1. 

First, we assessed the functional profile through oxygen consumption rates 

measurements (Figure 8). Our results show that MnTnBuOE-2-PyP
5+ 

was capable to 

largely protect against peroxynitrite-mediated mitochondrial dysfunction in BAEC by 

avoiding the impairment of different functional parameters: basal, ATP-linked cellular 

respiration, spare respiratory capacity and RCR. In line with these mitochondrial 

functional results, pretreatment with Mn(III)P was effective in protecting BAEC from 

peroxynitrite-induced loss of mitochondrial membrane integrity, as shown by 

preserving the mitochondrial membrane p te tial (ΔΨm) (Figure 9), and preventing 

apoptotic cell death (Figure 10). These results are in full agreement with previous 

reports with submitochondrial particles (SMP), in which MnTE-2-PyP
5+

 was able to 

protect the succinate dehydrogenase and succinate oxidase activities of mitochondrial 

electron transport chain from peroxynitrite-mediated damage (17). In addition, MnP 

also protected SMP from peroxynitrite-dependent inactivation of NADH dehydrogenase 

activity and inhibition of complex I-dependent oxygen consumption, protein radical and 

nitrotyrosine formation (101). Remarkably, the observed protection by MnP was 

obtained at low micromolar concentration (cells were treated with 5 M Mn(III)P), 

which is compatible with the levels detected by RR spectroscopy in BAEC and 

correspond to the reported levels achievable in mitochondria in vivo (58).  

 

Overall, the data presented herein provide the basis for the application of RR 

spectroscopy as a valuable methodology that allows observing the intracellular 

accumulation of the MnP and monitoring their redox state in cell culture systems. RR 
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results confirmed that Mn(III)P are effectively incorporated into endothelial cells and 

can be reduced by intracellular components, in particular those of the mitochondrial 

electron transport chain. Also, MnP protected endothelial cells from peroxynitrite-

mediated nitro-oxidative damage, preserving mitochondrial function and preventing 

apoptosis. The combined studies of redox interactions and reactivity of MnP presented 

herein add new elements to understand their mechanisms of antioxidant capacity in 

biological systems.  
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FIGURE LEGENDS 

 

Figure 1. RR spectra of MnP. (A) High-frequency region RR spectra of MnTnBuOE-

2-PyP
5+

 (50 M) (top) and MnTnHex-2-PyP
5+

 (50 M) (bottom) in PBS. The black and 

red lines represent the spectra of oxidized Mn(III)P and sodium dithionite-reduced 

Mn(II)P, respectively. (B) RR spectra of MnTnBuOE-2-PyP
5+

 (100 M) in the presence 

of increasing concentrations of SIN-1 (100, 480 M and 5 mM) (top), and MnTnBuOE-

2-PyP
5+

 (100 M) incubated with ascorbic acid (2 mM) and then added SIN-1 was 

added (150 M and 2 mM) (bottom). Measurements were performed at 457.9 nm 

excitation, 5 mW laser power at sample and accumulation times of 40s (4 × 10s). Band 

assignment adopted from (88,92). 
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Figure 2. RR spectra of MnTnHex-2-PyP
5+

 incubated with isolated mitochondria 

tested with succinate and respiratory inhibitors. Controls: (a) Isolated mitochondria 

(0.5 mg/mL) in PBS; (b) Mn(III)TnHex-2-PyP
5+

 (5 M) incubated with succinate (6 

mM), rotenone (1 M) and malonate (10 mM), in the absence of mitochondria and (c) 

Mn(III)TnHex-2-PyP
5+

 added to mitochondria, in the absence of succinate. Study of the 

redox state of MnP: (d) Mn(III)TnHex-2-PyP
5+

 incubated with mitochondria, in the 

presence of succinate (6 mM) and (e) rotenone (1 M) and malonate (10 mM); (f) 

Mn(III)TnHex-2-PyP
5+

 incubated with mitochondria, in the presence of antimycin A 

(2.5 M) and succinate (6 mM). Measurements were performed at 457.9 nm excitation, 

5 mW laser power at sample and accumulation times of 160 s (8 × 20s). 

 

Figure 3. RR spectra of MnP incubated with isolated mitochondria exposed to 

SIN-1. (A) In the absence of respiratory inhibitors: (a) isolated mitochondria (0.5 

mg/mL) in PBS; (b) plus Mn(III)TnBuOE-2-PyP
5+

 (5 M); (c) incubated with succinate 

(6 mM); (d) exposed to SIN-1 (200 M) after 10 min. (B) In the presence of respiratory 

inhibitors: (a) isolated mitochondria (0.5 mg/mL) in PBS; (b) plus Mn(III)TnHex-2-

PyP
5+

 (5 M); (c) incubated with succinate (3 mM); (d) plus rotenone (1 M) and 

TTFA (10 M) and exposed to SIN-1 (200 M) after 10 min. Measurements were 

performed at 457.9 nm excitation, 5 mW laser power at sample and accumulation times 

of 160 s (8 × 20s).  

 

Figure 4. RR spectra of MnP incubated with BAEC. Confluent BAEC were 

incubated with Mn(III)TnBuOE-2-PyP
5+

 (5 M) for 2 h. After treatment, cells were 

extensively washed with PBS, repeating three cycles of cell centrifugation at 1000 g for 

5 min, pellet was resuspended in PBS and RR spectra were acquired. (a) Control: 
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BAEC in PBS; and (b) preincubated with Mn(III)TnHex-2-PyP
5+

. Measurements were 

performed at 457.9 nm excitation, 5 mW laser power at sample and accumulation times 

of 480 s (8 × 60s). 

 

Figure 5. RR spectra of MnP added to BAEC in the presence of respiratory 

inhibitors and SIN-1. BAEC were incubated with Mn(III)TnHex-2-PyP
5+

 (5 M) and 

RR spectra were immediately acquired. (a) BAEC in PBS; (b) plus Mn(III)TnHex-2-

PyP
5+

 (5 M); (c) with succinate (3 mM); (d) plus rotenone (1 M) and TTFA (10 M); 

(e) with SIN-1 (250 M); (f) after 20 min SIN-1 exposure. Measurements were 

performed at 457.9 nm excitation, 5 mW laser power at sample and accumulation times 

of 480 s (8 × 60s). 

 

Figure 6. Kinetics of Mn(III)TnBuOE-2-PyP
5+

 reaction with peroxynitrite. (A) 

Kinetic traces of Mn(III)TnBuOE-2-PyP
5+ 

reaction with excess peroxynitrite 

concentrations under pseudo-first order conditions. Mn(III)TnBuOE-2-PyP
5+ 
(0.5 μM) 

in sodium phosphate buffer (50 mM, with 0.1 mM DTPA), was mixed with different 

peroxynitrite concentrations (from right to left: 2.5, 5, 7.5, 10 and 12.5 M) at pH 7.2 

and 37 °C, and followed at 455 nm. A is the absorbance at time t, and A0 and AINF are 

the initial and final values, respectively. Inset. Logarithmic plot of stopped-flow kinetic 

traces up to 0.03 s. (B) The observed rate constants kobs (s
-1

) were determined from the 

fit of the decay of Mn(III)TnBuOE-2-PyP
5+ 

at 455 nm to a single exponential function. 

Results a e the mea  ± sta da d deviati   (  ≥ 7)  f a typical expe ime t. The sec  d-

order rate constant was determined from the slope of the plot of kobs versus peroxynitrite 

concentrations. (C) pH-dependence of the reaction. The kobs of Mn(III)TnBuOE-2-PyP
5+

 

oxidation was determined at each peroxynitrite concentration and pH value. The 
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apparent second-order rate constants (kapp) obtained from the plot of kobs versus 

peroxynitrite concentrations were plotted as a function of pH. Solid line represents the 

best fit to equation: kapp = k1Ka/(Ka + [H
+
]), where k1 is the rate constant between 

ONOO
–
 and the Mn(III)P and Ka represent a ionization constant of ONOOH. 

 

Figure 7. Effect of MnP on cell-derived peroxynitrite generation in endothelial 

cells. Confluent BAEC monolayers were preincubated with Mn(III)TnBuOE-2-PyP
5+

 (5 

M) as described in experimental procedures section. Then, cells were incubated with 

Fl-B (50 M, in PBS for 30 min) and stimulated intra-mitochondrial peroxynitrite 

generation by antimycin A (4 M) treatment in the presence or in the absence of NOC-7 

(100 M), as indicated. The time course of the increase in the fluorescence intensity 

emission corresponding to Fl-B oxidation in the different cellular conditions were 

measu ed i  a flu  esce t mic  plate  eade  (λex/em = 492/515 nm). Slopes were 

calculated from the primary data set. For clarity, only selected time courses of 

fluorescence are shown (inset). Data are the means ± the standard error of the mean 

(SEM) of three independent experiments. *P ˂ 0.03 i dicates statistical difference when 

compared each condition with and without MnP by t-test unpaired with Welch´s 

correction. P < 0.0001 by one-way ANOVA test. 

 

Figure 8. Measurement of mitochondrial function in BAEC. Cells were 

preincubated with Mn(III)TnBuOE-2-PyP
5+

 (5 M) for 2 h, washed and exposed to 

SIN-1 (100 M) as described in experimental procedures. (A) Representative time 

course for oxygen consumption rate measurements (QO2). Sequential addition of 

oligomycin (1 M), FCCP (1 M) and antimycin A plus rotenone (AA/R:1 M/0.1 
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M). This progress curve shows basal respiratory rate (B) and after addition of 

oligomycin and FCCP, ATP-linked respiration (C), spare respiratory capacity (D) and 

RCR (E), were calculated as described above. Data represent the mean  the standard 

error of the mean (SEM) of at least 4 group of independent experiments (n8 per group) 

and are expressed as oxygen consumption rates (pmol/min/g protein). Asterisks 

indicate statistically significant differences (*P < 0.0007, **P < 0.007 and *** P < 0.03) 

by t-test unpaired with Welch´s correction. P < 0.006 by one-way ANOVA test. 

 

Figure 9. Role of MnP in cellular mitochondrial membrane potential exposed to 

SIN-1. BAEC were preincubated with Mn(III)TnBuOE-2-PyP
5+

 (5 M) for 2 hours and 

then treated with SIN-1 (100 M) overnight. After that, cells were loaded with JC-1 (2 

μM) and aggregate (590 nm, left column images) and monomer distribution (525 nm, 

center column images) were observed. Contrast and brightness of the top images were 

enhanced using Image J; exactly the same parameters were used in both images.   

 

Figure 10. Evaluation of apoptosis triggered by SIN-1 and protection by MnP. 

BAEC were pretreated with Mn(III)TnBuOE-2-PyP
5+

 (5 M) for 2 h, washed twice and 

then exposed to SIN-1 (250 M) overnight. (A) Cells were harvested, and phosphatidyl 

serine externalization was evaluated by Annexin-Alexa-488 staining. Results were 

analyzed by flow cytometry and apoptotic cell labeling is given in arbitrary units. 

Results were expressed as the percentage of Annexin V-positive control cells (non-

treated cells, traced line) and represent the mean ± SEM of at least three independent 

experiments. Asterisks indicate statistically significant differences (*P < 0.05) when 
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compared with control (non-treated cells) by one-way ANOVA test. (B) Representative 

flow cytometer histogram of Annexin V staining.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

  

A                                             B 

Mn(III)P 

Mn(II)P 



42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

 

1200 1400 1600

Raman shift cm -1

 

Raman shift (cm
-1

) 

    1200      1400        1600 

1347         1370           1570 

a 

b 

c 

d 

e 

f 

g 

h 



43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

 

1347         1370             1570 

A                                                       

B 

Raman shift (cm
-1

) 

1200 1400 1600
1200        1400        
1600

1347         1370             
1570 

a 

b 

c 

d 

1200 1400 1600

Raman shift (cm
-1

) 

1200        1400        
1600

a 

b 

c 

d 



44 

 

1200 1400 1600

Raman shift cm-1
      Raman shift (cm

-1

) 

  1200               1400                 1600 

  1347           1370                       1570 

 

a 

b 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 

 

1200 1400 1600

      Raman shift (cm
-1

) 

  1200    1400   1600 

 

a 

b 

c 

d 

e 

1347          1370         1570 

f 



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 

 

A 

 

 

 

 

 

B  

 

 

 

 

 

C                                                                     

0 2 4 6 8 10 12
0

100

200

300

400

500

k
o
b
s
 (

s
-1

)

[ONOO
-
] (M)

5.0 5.5 6.0 6.5 7.0 7.5 8.0
0

1x10
7

2x10
7

3x10
7

4x10
7

k
a

p
p
 (

M
-1
 s

-1
)

 

pH

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

 

Time (s)

  
  

  
 (

A
 -

 A
IN

F
)

  
  

  
(A

0
 -

 A
IN

F
)

0.00 0.01 0.02 0.03

0.1

1

Time (s)

  
  

  
 (

A
 -

 A
IN

F
)

  
  

  
(A

0
 -

 A
IN

F
)



47 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 7 

 

 

 

 

 

 

 

 

 

 

 

Ctrl AA NOC-7 AA/NOC-7
0.0

0.5

1.0

- MnP

+ MnP

R
F

U
/m

in

*

*

*
5 10 15 20

0

2

4

6

8

10

12

 Ctrl

 Ctrl + MnP

 AA / NOC

 AA / NOC + MnP
F

lu
o

re
s
c
e

n
c
e

 

Time (min)



48 

 

       A 

 

 

 

 

 

 

B                                                                             C 

 

D                                                E 

  

 

 

 

 

 

 

Figure 8 

0

5

10

15

Control + SIN-1 (100 mM)

B
a

s
a

l 
re

s
p

ir
a

ti
o

n
 

(p
m

o
l/m

in
/m

g
 p

ro
te

in
)

MnP - -+ +

*

*

0 25 50 75 100
0

100

200

300

400

500

BAEC

+ MnP

+ SIN-1

+ MnP + SIN-1

Oligomycin  FCCP      AA/R

time (min)

Q
O

2
 (

p
m

o
l/

m
in

)

0

5

10

15

Control + SIN-1 (100 mM)

A
T

P
-l
in

k
e

d
 r

e
s

p
ir

a
ti
o

n
 

(p
m

o
l/m

in
/m

g
 p

ro
te

in
)

MnP - -+ +

*

**

0

5

10

15

20

Control + SIN-1 (100 mM)

S
p

a
re

 r
e

s
p

ir
a

to
ry

 c
a

p
a

c
it
y

(p
m

o
l/m

in
/m

g
 p

ro
te

in
)

MnP - -+ +

**
***

0

5

10

15

20

25

30

35

Control + SIN-1 (100 mM)

R
C

R

MnP - -+ +

*

*



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 
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Figure 10 

 

Highlights 

 Raman Resonance was utilized to reveal the redox state of Mn-porphyrins 
(MnP) in cells 

 Mn(III)P are readily reduced intracellularly to the Mn(II) state 
 Intramitochondrial oxidation of a peroxynitrite-sensitive probe is inhibited 

by MnP 
 The cytotoxicity of peroxynitrite is neutralized by MnP via a catalytic redox 

cycle 
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