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Abstract The relation between fundamental spacetime structures and dynamical symmetries1

are treated beyond the geometrical and topological viewpoint. To this end analyze, taking into2

account the concept of categories and quasi hamiltonian structures, a recent research (Cirilo-3

Lombardo and Arbuzov in Int J Geom Methods Mod Phys 15(01):1850005, 2017) where4

one linear and one quadratic in curvature models were constructed and where a dynamical5

breaking of the SO(4, 2) group symmetry arises. We explain there how and why coherent6

states of the Klauder-Perelomov type are defined for both cases taking into account the coset7

geometry and some hints on the possibility to extend they to the categorical (functorial) status8

are given. The new spontaneous compactification mechanism that was defined in the subspace9

invariant under the stability subgroup is commented in the context of future developments as10

the main tool for the treatment of the internal symmetries, as the electroweak in the Standard11

Model (SM). The physical implications of the symmetry rupture as the introduction of a12

noncommutative structure in the context of non-linear realizations and direct gauging are13

analyzed and briefly discussed in this new theoretical framework.14
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Introduction44

As we recently have been discussed [73], studies of higher-dimension theories that involve45

(spontaneously) broken symmetries and noncommutativity in the quantum case are motivated46

by searches for a unified theory and consequently by a consistent theory of quantum gravity.47

Dimensional reduction of such theories is not unique and becomes extremely involved when48

gravity is included. We believe that the guiding principles for the reduction are provided by49

the observed (or desirable) physical field content and by the group theoretical structure itself.50

It is possible, however, to include more fundamental structures (categories) that allow a more51

natural way of describing all the properties of spacetime that interest us. In the other hand,52

symplectic geometry grew out of the theoretical study of classical and quantum mechanics. At53

first it was thought that it differs considerably from Riemannian geometry, which developed54

from the study of curves and surfaces in three dimensional Euclidean space, and went on to55

provide the language in which General Relativity is studied. This fact was understandable56

given that symplectic geometry started from the study of phase spaces for mechanical systems57

but, with the subsequent seminal works of Cartan that introduce the symplectic structure into58

the geometry of the spacetime calculus, that thinking changed radically due the introduction59

of the concept of categories and functors. In this paper we review and give some new results60

our recent research introducing some new ideas and results both, from the physical and61

mathematical viewpoint.62

Noncommutative Structures63

From the technical point of view, we have to extend physical fields into an extra (internal)64

space with preserving the general noncommutative quantum structure. However from the65

point of view of only group manifolds, the development of a mechanism that permit us to66

display the set of physical fields in interaction with the corresponding four dimensional world67
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implies that some of the original symmetries of the higher-dimension manifold have been68

broken. There exist many theoretical attempts to realize the above ideas such as string and69

brane theories but none of them can be treated as the final answer: formulation of such theories70

contain serious problems that are still non solved. In spite of the fact that in these theories the71

solution seems to include a non-commutative structure [1,2], the concrete implementation72

of these symmetries in a substructure of any (super) manifold seems to be very complicated73

from the technical and geometrical viewpoints. However the possible answer to this question74

as for the problems of the geometrical quantization procedures which include a categorization75

mechanism. A posibility is given in Section VI where we explain the generalized Rothstein76

theorem presented by us before and may include naturally the desired categorization.77

Gauge Theories of Gravity78

However if well there exist another way to attack the unification problem that is in the context79

of gauge theories of gravity [3–5], the quantum picture is still not clear. The main problem is80

to conciliate the gauge theories, the breaking of symmetry and the mechanism of quantization81

in a fiber bundle structure. We will not go into details of each proposed theory of gravitation82

here, only the possibility of implementing a consistent geometric quantization scheme. As is83

well known the first model of gauge gravitation theory was suggested by Utiyama [6] in 195684

generalizaing the original SU (2) gauge model of Yang and Mills to an arbitrary symmetry85

Lie group he met the problem of treating general covariant transformations and a pseudo-86

Riemannian metric which had no partner in the Yang–Mills gauge theory see also [3,4,7–11]87

and references therein. Since the Poincaré group comes from the Wigner–Inonu contraction88

of de Sitter groups SO(2, 3) and SO(1, 4) and it is a subgroup of the conformal group,89

gauge theories on fibre bundles with these structure groups were also considered [12–18] .90

Because these fibre bundles fail to be natural, the lift of the group Diff(X) of diffeomorphisms91

of the fiber onto the base should be defined [19,20]. However, these gauging approaches92

contain the problem with a non-linear (translation) summand of an affine connection being a93

soldering form, but neither a frame (vierbein) field nor a tetrad field. Thus the latter doesn’t94

have the status of a gauge field [21–23]. At the same time, a gauge theory in the case95

of spontaneous symmetry breaking also contains classical Higgs fields, besides the gauge96

and matter ones [24–32]. Therefore, basing on the mathematical definition of a pseudo-97

Riemannian metric, some authors formulated gravitation theory as a gauge theory with a98

reduced Lorentz structure where a metric gravitational field is treated as a Higgs field [33–99

37]. Consequently all the above attempts to implement a clean geometrical quantization100

procedure fail justifying the possibility of more fundamental algebro-geometric structures at101

the level of the base differentiable manifold.102

Cartan Forms, Pullbacks and Quantization103

The most satisfactory answer to the formulation of gravity as a gauge theory was developed104

in the pure geometrical context in the works of Volkov et al. [38–41]; in the context of105

supergravity by Arnowitt and Pran Nath [42]; and finally by Mansouri [43] who was able106

to solve some of the problems listed before by means of a principal fiber bundle imposing a107

condition of orthogonality of the generators of the fiber and base manifold. Such conditions108

that break the symmetry of the original group are implemented by means of a particular choice109

of the metric tensor. This approach was implemented in a supergroup structure obtaining a110

gauge theory of supergravity. Note that the underlying geometry must be reductive (in the111

Cartan sense) or weakly reductive in the case of supergravity. In these cases a geometrical112
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quantization procedure can be incorporated because there ias a correct supergroup structure113

with a Cartan weakly reductive geometry.114

Cosets and Number of Fields115

As always, even the problem to determine which fields transform as gauge fields and which116

not, as well as which fields are physical ones and which are redundant, nonetheless remains.117

Also the relation between the coset factorization (as in the case of the non-linear realization118

approach [52–54]) and the specific breaking of the symmetry in the pure topological theories119

of grand unification (GUT) is still unclear.120

Higher Structures in Field Theory121

Gerbes appear in descriptions of the classical fields on manifolds and their boundaries by122

Dan Freed. There have to be links via “twisted K-theory” with Mickelsson’s work on QFT123

[72] (and references therein), anomalies and gerbes. The latter involves (twisted) projective124

representations (as opposed to linear representations) of the group of classical symmetries,125

on a Hilbert space of quantum states. Such “anomalies” can often be expressed in terms126

of Dixmier–Douady classes (in the integer-valued third cohomology group) or in terms of127

gerbes, or via twisted K-theory. I think that it would be nice to understand this point better.128

Coset Coherent States and Quasihamiltonian Structures129

Let us remind the definition of coset coherent states130

H0 = {g ∈ G | U (g) V0 = V0} ⊂ G. (1)131

Consequently the orbit is isomorphic to the coset, e.g.132

O (V0) � G/H0. (2)133

Analogously, if we remit to the operators, e.g.134

|V0〉 〈V0| ≡ ρ0 (3)135

then the orbit136

O (V0) � G/H (4)137

with138

H = {g ∈ G | U (g) V0 = θV0}139

= {
g ∈ G | U (g) ρ0U† (g) = ρ0

} ⊂ G. (5)140

The orbits are identified with coset spaces of G with respect to the corresponding stability141

subgroups H0 and H being the vectors V0 in the second case defined within a phase. From142

the quantum viewpoint |V0〉 ∈ H (the Hilbert space) and ρ0 ∈ F (the Fock space) are V0143

normalized fiducial vectors (an embedded unit sphere in H).144

In the case of Hamiltonian and quasihamiltonian structures the typical case can be exem-145

plified as follows146

G (�)maps : � → G147

�

�1 (�)⊗ g148
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now149

g : � → G150

and we have a connection such is invariant under151

A → g−1 Ag + g−1dg152

is the action with A hamiltonian? We define t : � → g, then:153

Ht (A) =
∫

�

〈t, FA〉 +
∫

∂�

〈t, A〉154

where FA = d A + A ∧ A and looking at the Poisson bracket between 2 actions:155

{
Ht1 , Ht2

} = H[t1,t2] +
∫

∂�

〈t1, dt2〉156

we see that the problems appear when the boundaries certainly exist: ∂� �= 0 no momentum157

map. Consequently the problem can be solved from the point of view of the Atyah–Bott158

theorem redefining the symplectic structure with the help of the moduli-space of the flat159

connections. (in a future work [51] this problem will be explicitly exemplified).160

Invariant SO(2, 4) Action and Breakdown Mechanism161

The explicit construction given recently [73] of geometrical lagrangians based in a group162

manifold with conformal structure is reviewed here in order to understand how it can be163

connected with the general dynamics and quantization procedures.164

Linear in R AB
165

S =
∫
μAB ∧ R AB (6)166

in this case we note first, that the SO(2, 4)-valuated tensor μAB acts as multiplier in S167

(without any role in dynamics, generally speaking). Having this fact in mind, let us consider168

the following points.169

(i) If we have two diffeomorphic (or gauge) nonequivalent SO(2, 4)-valuated connections,170

namely �AB and �̃AB , their difference transforms as a second rank six-tensor under the171

action of SO(2, 4)172

κ AB = G A
C G B

Dκ
C D, (7)173

κ AB ≡ �̃AB − �AB . (8)174
175

(ii) If we now calculate the curvature from �̃AB we obtain176

R̃ AB = R AB + Dκ AB , (9)177

where the SO(2, 4) covariant derivative is defined in the usual way178

Dκ AB = dκ AB + �A
C ∧ κC B + �B

D ∧ κ AD . (10)179
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(iii) Redefining the SO(2, 4) six vectors as V A
2 ≡ ψ A and V B

1 ≡ ϕB (in order to put all in180

the standard notation), the 2-form κ AB can be constructed as181

κ AB → ψ [A ϕ B]dU. (11)182

Then we introduce all into the R̃ AB (U scalar function) and get183

R̃ AB = R AB + D
(
ψ [A ϕ B]dU

)
184

= R AB +
(
ψ [A Dϕ B] − ϕ[A Dψ B]

)
∧ dU. (12)185

186

The next step is to find the specific form of μAB such that μ̃AB = μAB (invariant under187

tilde transformation) in order to make the splitting of the transformed action S̃ weakly188

reductive as follows.189

(iv) Let us define190

θ̃ A = D̃ϕA (13)191

with the connection �̃AB = �AB + κ AB , then192

θ̃ A = DϕA
︸︷︷︸
θ A

+ κ A
Bϕ

B ,193

θ̃ A = θ A +
[
ψ A
(
ϕB
)2 − ϕA (ψ · ϕ)

]
∧ dU, (14)194

195

where
(
ϕB
)2 = (ϕ Bϕ

B
)

and (ψ · ϕ) = ψBϕ
B etc.196

In the same manner we also define197

η̃A = D̃ψ A,198

η̃A = ηA +
[
ψ A

2 (ψ · ϕ)− ϕA
(
ψ B
)2
]

∧ dU. (15)199

200

(v) To determine μAB we propose to cast it in the form201

μAB ∝ ρs

[
aψ FϕEεABC DE F

(
θC ∧ ηD + θC ∧ θD + ηC ∧ ηD

)
+ bκ AB

]
(16)202

with ρs, a, b scalar functions in particular contractions of vectors and bivectors203

SO(2, 4)-valuated with εABC DE F ) to be determined. The behaviour under the tilde204

transformation is205

μ̃AB ∝ μAB − 1

2
ρsaψ FϕEεAB E F dξ ∧ dU, (17)206

where ξ = (ψ A
)2 (

ϕB
)2 − (ψ · ϕ)2.207

(vi) Finally we have to look at the behaviour of the transformed action208

S̃ =
∫
μ̃AB ∧ R̃ AB

209

= S +
∫

1

2
ρsaκAB ∧ R AB ∧ dξ +

∫
μAB ∧ Dκ AB . (18)210

211

We see that till this point, the SO(2, 4)-valuated six-vectors ψ F and ϕE are in principle212

arbitrary. However, under the conditions discussed in the first Section the vectors go to213

the fiducial ones modulo a phase. Consequently214

ξ → A2 B2 (19)215
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and the bivector comes to216

κ AB → ψ [A ϕ B]dU → �(AB) εαβ = αβABεαβ = ABεαβ, α, β : 5, 6, (20)217

where we define the 2nd rank antisymmetric tensor εαβ and218

� = Det

(
λ∗α −μβ

−μ∗α λβ

)
= αβ = 1(unitary transformation) (21)219

Below we consider two important cases with respect to the components m and λ.220

A = m and B = λ221

1. If the coefficients A = m and B = λ play the role of constant parameters we have222

dξ → d
(
λ2m2) = 0 (22)223

and224

Dκ AB → d (λm) εαβ ∧ dU = 0 (23)225

making the original action S invariant, e.g.226

S̃
∣∣
V0

=
∫
μ̃AB ∧ R̃ AB =

∫
μAB ∧ R AB = S (24)227

being S̃
∣∣
V0

the restriction of S̃ under the subspace generated by V0 and consequently228

breaking the symmetry from SO (2, 4) → SO (1, 3).229

2. The connections after the symmetry breaking (when the mentioned conditions with λ230

and m constants are fulfilled) become231

�̃AB = �AB + κ AB ⇒ b.o.s. → �̃i j = �i j ; �̃i5 = �i5, �̃i6 = �i6, (25)232

but �̃56 = �56 − (λm) dU. (26)233
234

3. Vectors θ̃ A and η̃A after the symmetry breaking and under the same conditions become235

θ̃ A = dϕA + �A
C ∧ ϕC

︸ ︷︷ ︸
θ A

+ κ A
Bϕ

B ⇒ b.o.s.,236

θ̃ i = θ i = 0 + �i
5m + 0 ⇒ θ i = �i

5m,237

θ̃5 = 0 = 0 + 0 = 0,238

η̃A = dψ A + �A
C ∧ ψC

︸ ︷︷ ︸
θ A

+ κ A
Bψ

B ⇒ b.o.s.,239

η̃i = ηi = 0 − �i
6λ+ 0 ⇒ ηi = −�i

6λ,240

η̃6 = η6 = 0241
242

and evidently μi5 = μi6 = 0.243
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4. Consequently from the last points, curvatures become244

Ri j = Ri j
{} + m−2θ i ∧ θ j + λ−2ηi ∧ η j , (27)245

Ri5 = m−1

⎡

⎢⎢
⎣

Dθ i

︷ ︸︸ ︷
dθ i + ωi

j ∧ θ j +
(m

λ

)
ηi ∧ �65

⎤

⎥⎥
⎦ = m−1

[
Dθ i − m

λ
ηi ∧ �65

]
, (28)246

Ri6 = −λ−1
[

Dηi −
(m

λ

)−1
θ i ∧ �56

]
, (29)247

R56 = d�56 + (mλ)−1 θi ∧ ηi , (30)248
249

where D is the SO(1, 3) covariant derivative.250

5. The tensor responsible for the symmetry breaking becomes251

μi j = −2ρsaλmεi jkl

(
θk ∧ ηl + θk ∧ θ l + ηk ∧ ηl

)
(31)252

μ56 = −ρsbε56λmdU. (32)253
254

6. Consequently, with all ingredients at hand, the action will be255

S =
∫
μAB ∧ R AB =

∫
μi j ∧ Ri j

︸ ︷︷ ︸
S1

+
∫
μ56 ∧ R56

︸ ︷︷ ︸
S2

, (33)256

where257

S1 = − 2
∫
ρsaεi jkl

(
θk ∧ ηl + θk ∧ θ l + ηk ∧ ηl

)
∧
(
λm Ri j

{} + λ

m
θ i ∧ θ j + m

λ
ηi ∧ η j

)
258

= − 2
∫
ρsaεi jkl

(
θk ∧ ηl ∧ λm Ri j

{} + θk ∧ θ l ∧ λm Ri j
{} + ηk ∧ ηl ∧ λm Ri j

{}
)

259

− 2
∫
ρsaεi jkl

(
θk ∧ ηl ∧ λ

m
θ i ∧ θ j + θk ∧ θ l ∧ λ

m
θ i ∧ θ j + ηk ∧ ηl ∧ λ

m
θ i ∧ θ j

)
260

− 2
∫
ρsaεi jkl

(
θk ∧ ηl ∧ m

λ
ηi ∧ η j + θk ∧ θ l ∧ m

λ
ηi ∧ η j + ηk ∧ ηl ∧ m

λ
ηi ∧ η j

)
261
262

and263

S2 = −λm
∫
ρsbε56 ∧

(
d�56 + (mλ)−1 θi ∧ ηi

)
.264

7. At this point (the mathematical justification will come later) we can naturally associate265

the tetrad field with the θ -form266

θk ∼ ek
aω

a (34)267

consequently a metric can be induced in M4:268

ηab = g jke j
aek

b, g jk = ηabea
j eb

k , ek
aeb

k = δa
b , etc., (35)269

where η jk is the Minkowski metric. That allows us to lift up and to lower down indices,270

and ηi with the following symmetry typical of a SU (2, 2) Clifford structure271

ηk ∼ f k
a ω

a, (36)272

ea
j f k

a glk = fl j = − f jl (37)273
274
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that consequently allows us to introduce into the model an electromagnetic field (that275

will be proportional to fl j ).276

8. So we can re-write the action as277

S1 = − 2
∫
ρsaεi jkl

(
θk ∧ ηl + θk ∧ θ l + ηk ∧ ηl

)
∧
(
λm Ri j

{}278

+ λ

m
θ i ∧ θ j + m

λ
ηi ∧ η j

)
279

= − 2
∫
ρsa

[
λm
(

fi j Ri j
{} +

(
gi j + f k

i fk j

)
Ri j

{}
)

+
(
λ

m
+ m

λ

)
f k j fk j280

+
(
λ

m

√
g + m

λ

√
f

)]
d4x . (38)281

282

In the above expression we have taken into account the following:283

(i) Terms ∼ η ∧ η ∧ η ∧ θ and η ∧ θ ∧ θ ∧ θ vanish;284

(ii) Terms ∼ η ∧ η ∧ θ ∧ θ and η ∧ η ∧ θ ∧ θ lead to → f k j fk j ;285

(iii) Term ∼ εi jklθ
k ∧ ηl ∧ Ri j

{} leads → fi j Ri j
{} picking the antisymmetric part of the286

generalized Ricci tensor (containing torsion);287

(iv) Term ∼ εi jkl
(
θk ∧ θ l + ηk ∧ ηl

)
Ri j

{} leads to → (
gi j + f k

i fk j
)

Ri j
{} picking the sym-288

metric part of the generalized Ricci tensor (containing Einstein–Hilbert plus quadratic289

torsion term);290

(v) Terms ∼ η ∧ η ∧ η ∧ η and θ ∧ θ ∧ θ ∧ θ lead to the volume elements
√

f and
√

g,291

respectively, where we defined as usual g ≡ Det (glk) and f ≡ Det ( flk) = ( f ∗
lk f lk

)2
.292

A = m (x) and B = λ (x) : Spontaneous Subspace293

If the coefficients A = m (x) and B = λ (x) are not constant but functions of coordinates294

we have295

dξ → d
(
λ2m2) = 2d (λm) (39)296

and297

Dκ AB → d (λm) εαβ ∧ dU. (40)298

Consequently from the following explicit computations299

S̃ =
∫
μ̃AB ∧ R̃ AB (41)300

= S +
∫

1

2
ρsaκAB ∧ R AB ∧ dξ +

∫
μAB ∧ Dκ AB

301

= S −
∫

1

2
ρsa R AB ∧ κAB ∧ dξ +

∫
μAB ∧ Dκ AB

302

= S −
∫

1

2
ρsa Rαβε

αβλmdU ∧ 2d (λm)+
∫
μαβε

αβd (λm) ∧ dU303

= S +
∫

1

2
ρsa Rαβε

αβλm2d (λm) ∧ dU +
∫
μαβε

αβd (λm) ∧ dU,304

S̃ = S +
∫ [

μαβ + ρsa Rαβλm
]
εαβd (λm) ∧ dU.305

306
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we obtain the required condition:307

S̃ = S if308

μαβ = −ρsa Rαβλm, (42)309
310

then we see that μAB takes the place of an induced metric and it is proportional to the311

curvature312

Rαβ = �μαβ (43)313

with � = − (ρsaλm)−1 . (44)314
315

Note that we have now a four-dimensional space-time plus the above “internal” space of a316

constant curvature. This point is very important as a new compactification-like mechanism.317

Remark 1 A geometrical structure defined on the coset K = G/H , with H stability318

group, is defined weakly reductive if there is a vector space K satisfying the following319

conditions:G = H + K and [H,K] ⊂ K being G and H the Lie algebras of G and H respec-320

tively.321

Supergravity as a Gauge Theory and Topological QFT322

In previous works [57,58] we have shown, by means of a toy model, that there exists a super-323

symmetric analog of the above symmetry breaking mechanism coming from the topological324

QFT. Here we recall some of the above ideas in order to see clearly the analogy between the325

group structures of the simplest supersymmetric case, Osp (4), and of the classical conformal326

group SO (2, 4).327

The starting point is the super SL(2C) superalgebra (strictly speaking Osp(4))328

[MAB ,MC D] = εC (A MB)D + εD (A MB)C ,329

[MAB , QC ] = εC (A Q B) , {Q A, Q B} = 2MAB . (45)330
331

Here the indices A, B,C, . . . stay for α, β, γ . . .
(
.
α,

.

β,
.
γ . . .

)
spinor indices: α, β

(
.
α,

.

β
)

=332

1, 2
( .

1,
.

2
)

in the Van der Werden spinor notation. We define the superconnection A due the333

following “gauging”334

ApTp ≡ ωα
.
βM

α
.
β

+ ωαβMαβ + ω
.
α
.
βM .

α
.
β

+ ωαQα − ω
.
αQ .

α, (46)335

where (ωM) defines a ten-dimensional bosonic manifold1 and p ≡multi-index, as usual.336

Analogically the super-curvature is defined by F ≡ F pTp with the following detailed struc-337

ture338

F (M)AB = dωAB + ωA
C ∧ ωC B + ωA ∧ ωB , (47)339

F (Q)A = dωA + ωA
C ∧ ωC . (48)340

341

From (46) it is easy to see that there are a bosonic part and a fermionic one associated with342

the even and odd generators of the superalgebra. Our proposal for the “toy” action was (as343

before for SO(2, 4)) as follows:344

S =
∫

F p ∧ μp, (49)345

1 Corresponding to the number of generators of SO (4, 1) or SO (3, 2) that define the group manifold
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where the tensor μp (that plays the role of a Osp (4) diagonal metric as in the Mansouri346

proposal) is defined as347

μ
α
.
β

= ζα ∧ ζ .
β
μαβ = ζα ∧ ζβ μα = νζα etc. (50)348

with ζα
(
ζ .
β

)
anti-commuting spinors (suitable basis)2 and ν the parameter of the breaking349

of super SL(2C) (Osp (4)) to SL(2C) symmetry of μp . Note that the introduction of the350

parameter ν means that we do not take care of the particular dynamics to break the symmetry.351

In order to obtain dynamical equations of the theory, we proceed to perform variation of352

the proposed action (49)353

δS =
∫
δF p ∧ μp + F p ∧ δμp354

=
∫

dAμp ∧ δAp + F p ∧ δμp, (51)355

356

where dA is the exterior derivative with respect to the super-SL (2C) connection and δF =357

dAδA have been used. Then, as the result, the dynamics is described by358

dAμ = 0, F = 0. (52)359

The fist equation claims that μ is covariantly constant with respect to the super SL (2C)360

connection. This fact will be very important when the super SL (2C) symmetry breaks down361

to SL (2C) because dAμ = dAμAB + dAμA = 0, a soldering form will appear. The second362

equation gives the condition for a super Cartan connection A = ωAB +ωA to be flat, as it is363

easy to see from the reductive components of above expressions364

F (M)AB = R AB + ωA ∧ ωB = 0,365

F (Q)A = dωA + ωA
C ∧ ωC = dωω

A = 0, (53)366
367

where now dω is the exterior derivative with respect to the SL (2C) connection and R AB ≡368

dωAB + ωA
C ∧ ωC B is the SL (2C) curvature. Then369

F = 0 ⇔ R AB + ωA ∧ ωB = 0 and dωω
A = 0 (54)370

the second condition says that the SL (2C) connection is super-torsion free. The first doesn’t371

say that the SL (2C) connection is flat, but it claims that it is homogeneous with a cosmo-372

logical constant related to the explicit structure of the Cartan forms ωA, as we will see when373

the super SL (2C) action is reduced to the Volkov–Pashnev model [44,45].374

Quadratic in R AB
375

The previous action, linear in the generalized curvature, has some drawbacks that make376

necessary introduction of additional “subsidiary conditions” due to the fact that the curvatures377

Ri5 and Ri6 don’t play any role in the linear/first order action. Such curvatures have a very378

important information about the dynamics of θ and η fields. In order to simplify the equations379

2 In general this tensor has the same structure as the Cartan-Killing metric of the group under consideration.
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of motion we define380

�56 ≡ A, (55)381

m−1θ i ≡ θ̃ i , (56)382

λ−1ηi ≡ η̃i , (57)383
384

and as always385

Ri j = Ri j
{} + m−2θ i ∧ θ j + λ−2ηi ∧ η j (58)386

with the SO (1, 3) curvature Ri j
{} = dωi j + ωi

λ ∧ ωλ j . Consequently from the quadratic387

Lagrangian density388

S =
∫

RAB ∧ R AB (59)389

we obtain the following equations of motion:390

δ
(
RAB ∧ R AB

)

δθ i
→ D

(
Dθ̃ j

)+ 2Ri j ∧ θ̃ i − θ̃ i ∧ η̃i ∧ η̃ j + θ̃ j ∧ A ∧ A = 0, (60)391

δ
(
RAB ∧ R AB

)

δηi
→ D

(
Dη̃ j

)+ 2R jk ∧ η̃k − θ̃ i ∧ η̃i ∧ θ̃ j + η̃ j ∧ A ∧ A = 0, (61)392

δ
(
RAB ∧ R AB

)

δ�56
→ θ̃ i ∧ θ̃i = η̃i ∧ η̃i , (62)393

δ
(
RAB ∧ R AB

)

δωi
j

→ −DRkl + Dθ̃k ∧ θ̃l + Dη̃k ∧ η̃l + θ̃k ∧ η̃l ∧ A = 0. (63)394

395

Maxwell Equations and the Electromagnetic Field396

As we claimed before we can identify397

θ i ≡ ei
μdxμ, (64)398

ηi ≡ f i
μdxμ (65)399

400

with the symmetries401

ei
μeνi = δνμ, ei

μeiν = gμν = gνμ (66)402

and403

f i
μ f νi = δνμ, eiν f i

μ = fμν = − fνμ (67)404

such that the geometrical (Bianchi) condition405

∇[ρ f μν] = ∇∗
ρ f ρν = 0 (68)406

or in the language of differential forms407

D
(
θ̃ i ∧ η̃i

)
= 0 (69)408

holds, thus the curvatures Ri6 and Ri5 are enforced to be null. And conversely if Ri6 and Ri5
409

are zero then D
(
θ̃ i ∧ η̃i

) = 0 or equivalently ∇[ρ f μν] = ∇∗
ρ f ρν = 0.410
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Proof From expressions (28, 29), namely: Ri5 = [
Dθ̃ i − η̃i ∧ �65

]
and Ri6 = [− Dη̃i +411

θ̃ i ∧ �56
]

we make412

Ri5 ∧ η̃i + θ̃i ∧ Ri6 = D
(
θ̃ i ∧ η̃i

)
+
(
η̃i ∧ �56

)
∧ η̃i + θ̃i ∧

(
θ̃ i ∧ �56

)
, (70)413

Ri5 ∧ η̃i + θ̃i ∧ Ri6 = D
(
θ̃ i ∧ η̃i

)
. (71)414

415

In the last line we used the constraint given by Eq. (62) Consequently if Ri6 and Ri5 are zero,416

then D
(
θ̃ i ∧ η̃i

) = 0 or equivalently ∇[ρ f μν] = ∇∗
ρ f ρν = 0 and vice versa.417

Corollary 2 Note that the vanishing of the R56 curvature (that transforms as a Lorentz418

scalar) does not modify the equation of motion for �56 and simultaneously defines the elec-419

tromagnetic field as420

R56 = d�56 + (mλ)−1 θi ∧ ηi = 0, (72)421

⇒ d A − F = 0. (73)422
423

��424

Equations of Motion in Components and Symmetries425

Let us define426

Ri j
{}μν = ∂μω

i j
ν − ∂νω

i j
μ + ωi

μkω
k j
ν − ωk j

μ ω
i
νk, (74)427

T i
μν = ∂μei

ν − ∂νei
μ + ωi

μ kek
ν − ω i

ν kek
μ, (75)428

Si
μν = ∂μ f i

ν − ∂ν f i
μ + ωi

μ k f k
ν − ω i

ν k f k
μ. (76)429

430

Note that Si
μν is a totally antisymmetric torsion field due the symmetry of f i

νdxν ≡ ηi .431

Consequently the equations of motion in components become432

∇μ
[√|g|Ri jμν

]
+√|g|

(
−m−2T jiν + λ−2S jiν

)
−√|g| (λm)−1 f [i ν A i] = 0,433

∇μ
[√|g|

(
Ri jμν

{} − m−2e[i μe j]ν + λ−2 f [i μ f j]ν
)]

434

+ √|g|
(
−m−2T jiν + λ−2S jiν

)
−√|g| (λm)−1 f [i ν A i] = 0,435

∇μ
(√|g|T jμv

)
+√|g|

(
R jν

{} − m−2e jν + Ai Aν
)

= 0,436

∇μ
(√|g|S jμi

)
+√|g|

(
Ri j

{} − λ−2 f i j + A[i A j]
)

= 0,437

∇[μ A ν] = Fμν = (λm)−1 Fμν,438

∇[ρ Fμν] = 0. (77)439
440

Nonlinear Realizations Viewpoint441

Note that in our case Eqs. (64, 65) identify θ i ∼ ei and ηi ∼ f i making the table below442

completely clear. Note that �65 is identified with the g of Ivanov and Niederle [14,15].443

Algebra and transformations in the case of the work of Ivanov and Niederle are different444

due different definitions of the generators of the SO(2, 4) algebra, however the meaning of445

g which is associated to the connection �65 remains obscure for us because of the second446
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This work [14,15]

Ri j Ri j
{} + m−2θ i ∧ θ j + λ−2ηi ∧ η j Ri j

{} + 4gei ∧ f j

Ri5 m−1
[

Dθ i − m
λ η

i ∧ �65
]

Dei + 2gei ∧ g

Ri6 −λ−1
[

Dηi − (m
λ

)−1
θ i ∧ �56

]
D f i − 2g f i ∧ g

R56 d�56 + (mλ)−1 θi ∧ ηi dg + 4gei ∧ f i

DS/ADS reduction Yes No

Cartan structure equations Ri5 and Ri6. Note that, although the group theoretical viewpoint in447

the case of the simultaneous nonlinear realization of the affine and conformal group [55,56]448

to obtain Einstein gravity are more or less clear, the pure geometrical picture is still hard to449

recognize due the factorization problem and the orthogonality between coset elements and450

the corresponding elements of the stability subgroup.451

Symplectic Structures, Poisson Manifolds and Noncommutativity452

Generalization of Rothstein’s Theorems Even Supersymplectic Supermanifols453

The existence of a (super) symplectic structure on a manifold is a very significant constraint454

and many simple and natural constructions in symplectic geometry lead to manifolds which455

cannot possess a symplectic structure (or to spaces which cannot possess a manifold struc-456

ture). However these spaces often inherit a bracket of functions from the Poisson bracket on457

the original symplectic manifold. It is a (semi-)classical limit of quantum theory and also is458

the theory dual to Lie algebra theory and, more generally, to Lie algebroid theory.459

Poisson structures are the first stage in quantization, in the specific sense that a Poisson460

bracket is the first term in the power series of a deformation quantization. Poisson groups are461

also important in studies of complete integrability.462

From the point of view of the Poisson structure associated to the differential forms induced463

by the unitary transformation from the G-valuated tangent space implies automatically, the464

existence of an even non-degenerate (super)metric. The remaining question of the previous465

section was if the induced structure from the tangent space (via Ambrose-Singer theorem)466

was intrinsically related to a supermanifold structure (e.g. noncommutativity, hidden super-467

symmetry, etc.). Some of these results were pointed out in the context of supergeometrical468

analysis by Rothstein and by others authors [61–63], corroborating this fact in some sense.469

Consequently we have actually several models coming mainly from string theoretical frame-470

works that are potentially ruled out [66,70]. Let us review and develop our earlier work [59]471

to work out this issue with more detail: from the structure of the tangent space Tp (M) we472

have seen473

U B
A (P) = δB

A + RB
Aμνdxμ ∧ dxν474

= δB
A + ωk (Tk)

B
A (78)475

476

where the Poisson structure is evident (as the dual of the Lie algebra of the group manifold)477

in our case leading to the identification478

RB
Aμνdxμ ∧ dxν ≡ ωk (Tk)

B
A (79)479
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We have in the general case, a (matrix) automorphic structure. The general translation to the480

spacetime from the above structure in the tangent space takes the form481

ω̃ = 1

2

[
ωi j + 1

2

(
ωkl

(
�k

ai�
l
bj − �k

bj�
l
ai

)
+ gbd Rd

i ja

)
dψadψb

]
dxi ∧ dx j

482

+ ωi j A j
bmdxmdxi dψb+483

+ 1

2

[
gab + 1

2

(
gcd

(
�c

ib�
d
ja − �c

ja�
d
ib

)
+ ωl j Rl

abi

)
dxi ∧ dx j

]
dψadψb

484

+ gab Ab
iddψddψadxi (80)485

486

Because covariant derivatives are defined in the usual (group theoretical) way487

Dψa = dψa − �i
ibdψbdxi (81)488

Dxi = dxi − �i
a j dx j dψa (82)489

490

we can rewrite ω̃ in a compact form as491

ω̃ = 1

2

[(
ωi j Dxi ∧ Dx j + 1

2
gbd Rd

i jadψadψbdxi ∧ dx j
)

492

+
(

gab Dθa Dθb + 1

2
ωl j Rl

abi dxi ∧ dx j dθadθb
)]

(83)493

At the tangent space, where that unitary transformation makes the link, the first derivatives494

of the metric are zero, remaining only the curvatures, we arrive to495

ω̃ = 1

2

[(
ηi j + 1

2
εbd Rd

i jadψadψb
)

dxi ∧ dx j +
(
εab + 1

2
ηl j Rl

abi dxi ∧ dx j
)

dψadψb
]

496

(84)497

Here the Poisson structure can be checked498

ηi j + 1

2
εbd Rd

i jadψadψb =
(
δk

j + 1

2
εbdη

kl Rd
l jadψadψb

)
ηki (85)499

εab + 1

2
ηl j Rl

abi dxi ∧ dx j =
(
δc

b + 1

2
ηl jε

cd Rl
dbi dxi ∧ dx j

)
εac (86)500

501

In expressions (80–86) the curvatures, the differential forms and the other geometrical opera-502

tors depend also on the field where they are defined: R, C or H. In the quaternionic H-case the503

metric is quaternion valuated with the propierty ω†
[i j] = −ω[ j i] and the covariant derivative504

can be straightforwardly defined as expressions (81,82) but with the connection and coor-505

dinates also quaternion valuated. The fundamental point in a such a case going towards a506

fully reliable gravitational theory is to fix the connection in order to have a true link with507

the physical situation. The matrix representation of structures (85,86) are automorphic ones:508

e.g. they belong to the identity and to the symplectic block generating the corresponding509

trascendent (parameter depending) functions. Now, we will analize the above fundamental510

structure under the light of the supersymplectic structure given by Rothstein (notation as in511

Ref. [62,63])512

ω̃ = 1

2

(
ωi j + 1

2
gbd Rd

i jaθ
aθb
)

dxi dx j + gab Dθa Dθb (87)513
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where the usual set of Grassmann supercoordinates were introduced: x1, . . . x j ; θ1 . . . θd ;514

the superspace metrics were defined as: ωi j =
(
∂
∂xi ,

∂
∂x j

)
, gab =

(
∂
∂θa ,

∂
∂θb

)
and515

∇ ∂

∂xi

(
θa) = Ai

ibθ
b (88)516

Due to the last expression, we can put ω̃ in a compact form with the introduction of a517

suitable covariant derivative: Dθa = dθa − Ai
ibθ

bdxi . With all the definitions at hands, the518

Poisson structure of ω̃ in the case of Rothstein’s is easily verified519

ωi j + 1

2
gbd Rd

i jaθ
aθb =

⎛

⎜⎜
⎝δ

k
i + 1

2
gbdω

lk Rd
ilaθ

aθb

︸ ︷︷ ︸
≡B

⎞

⎟⎟
⎠ωk j (89)520

The important remark of Rothstein [62] is that the matrix representation of the structureB521

has nilpotent entries, schematically522

ω̃−1 = [ω−1 (I − B + B2 − B3 . . .
)]i j ∇i ∧ ∇ j + gab ∂

∂θa
∧ ∂

∂θb
(90)523

where, as is obvious Bn = 0 for n > 1 and n ∈ N.524

Remarks from the above analysis, we can compare the Rothstein case with the general525

one arriving to the following points:526

(i) In the Rothstein case only a part of the full induced metric from the tangent space is527

preserved (“one way” extension [62–65,67–69])528

(ii) The geometrical structures (particularly, the fermionic ones) are extended “by hand”529

motivated, in general, to give by differentiation of the corresponding closed forms,530

the standard supersymmetric spaces (e.g. Kahler, C Pn , etc.)[62,63]. In fact it is easily531

seen from the structure of the covariant derivatives: in the Rothstein case there are532

Grassmann coordinates instead of the coordinate differential 1-forms contracted with533

the connection.534

(iii) In the Rothstein case the matrix representation (73) coming from the Poisson structure535

is nilpotent (characteristic of Grassmann manifolds) in sharp contrast with the general536

representation (68-70) coming from the tangent space of the UFT that is automorphic.537

Remark 3 was noted in [64,65] that the following facts arise: (i) A Grassmann algebra, as538

used in supersymmetry, is equivalent, in some sense, to the spin representation of a Clifford539

algebra. (ii) The questions about the nature and origin of the vector space on which this540

orthogonal group acts are completely open. (iii) If it is a tangent space or the space of a541

local internal symmetry, the vectors will be functions of space-time, and the Clifford algebra542

will be local. (iv) In other cases we will have a global Clifford algebra. Consequently, the543

geometric structure of the UFT presented here falls precisely in such a case.544

Tangent Space and Even Supermanifold Structure545

The very general QFT structure induced from the tangent space by means of the Ambrose–546

Singer [60] theorem (78,79) verifies straigforwardly the Darboux-Kostant theorem: e.g. it has547

a supermanifold structure (even in the noncommutative case). Darboux–Kostant’s theorem548

[61] is the supersymmetric generalization of Darboux’s theorem and statement that:549

Given a (2n|q)-dimensional supersymplectic supermanifold (M,AM , ω), it states that for550

any open neighbourhood U of some point m in M there exists a set (q1, . . . , qn, p1, . . . , pn;551

ξ1, . . . , ξq) of local coordinates on V E(U ) so that ω on U can be written in the following552
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form,553

ω|U ≡ ω̃ =
n∑

i=1

dpi ∧ dqi +
q∑

a=1

ε

2

(
ξa)2 , (ε = ±1) (91)554

Proof by simple inspection we can easily see that the expression (68) has the structure (75).555

That means that we have locally a supersymplectic vector superspace induced (globally) by556

a supersymplectic supermanifold. ��557

The Geometrical Reduction and Even Symplectic Super-Metrics558

Example: Volkov–Pashnev Metric559

The super-metric under consideration, proposed by Volkov and Pashnev in [44,45], is the560

simplest example of symplectic (super) metrics induced by the symmetry breaking from561

a pure topological first order action. It can be obtained from the Osp (4) (super SL (2C))562

action via the following procedure.563

(i) The Inönu-Wigner contraction [46] in order to pass from SL (2C) to the super-Poincare564

algebra (corresponding to the original symmetry of the model of Refs. [44,45,47–49])565

then, the even part of the curvature is split into a R
3,1 part Rα

.
β and a SO (3, 1) part566

Rαβ
(

R
.
α
.
β
)

associated with the remaining six generators of the original five dimensional567

SL (2C) group. This fact is easily realized by knowing that the underlying geometry is568

reductive: SL (2C) ∼ SO (4, 1)→ SO (3, 1)+ R
3,1. Than we rewrite the superalgebra569

(45) as570

[M,M] ∼ M [M,�] ∼ � [�,�] ∼ M
[M, S] ∼ S [�, S] ∼ S {S, S} ∼ M +�

(92)571

with � ∼ M
α
.
β

, M ∼ Mαβ

(
M .
α
.
β

)
, and re-scale m2� = P and mS = Q. In the limit572

m → 0, one recovers the super Poincare algebra. Note that one does not re-scale M573

since one wants to keep [M,M] ∼ M Lorentz algebra, that also is a symmetry of (1).574

(ii) The spontaneous breaking of the super SL (2C) down to the SL (2C) symmetry of μp575

(e.g. ν → 0 in μp) of such a manner that the even part of the super SL (2C) action576

F (M)AB remains.577

After these evaluations, it has been explicitly realized that the even part of the original super578

SL (2C) action (now a super-Poincare invariant) can be related with the original metric (1)579

as follows:580

R (M)+ R (P)+ ωαωα − ω
.
αω .

α → ωμωμ + aωαωα − a∗ω
.
αω .

α |V P . (93)581

Note that there is mapping R (M)+ R (P) → ωμωμ |V P that is well defined and can be real-582

ized in different forms, and the map of interest hereωαωα−ω .
αω .

α → aωαωα−a∗ω
.
αω .

α |V P583

that associate the Cartan forms of the original super SL (2C) action (49) with the Cartan584

forms of the Volkov–Pashnev supermodel: ωα = (a)1/2 ωα |V P , ω
.
α = (a∗)1/2 ω

.
α |V P .585

Then, the origin of the coefficients a and a∗ becomes clear from the geometrical point of586

view.587

From the first condition in (54) and the association (93) it is not difficult to see that, as in the588

case of the space-time cosmological constant� : R = �
3 e ∧ e (e ≡ space − time tetrad),589

there is a cosmological term from the superspace related to the complex parameters a and a∗:590
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R = −
(

aωαωα − a∗ω
.
αω .

α

)
and it is easy to see from the minus sign in above expression,591

why for supersymmetric (supergravity) models it is more natural to use SO (3, 2) instead of592

SO (4, 1).593

Note that the role of the associated spinorial action in (49) is constrained by the nature of594

νζα in μp as follows.595

(i) If they are of the same nature of the ωα , this term is a total derivative and has not596

influence onto the equations of motion, then the action proposed by Volkov and Pashnev597

in [44,45] has the correct fermionic form.598

(ii) If they are not of the same SL (2C) invariance that the ωα , the symmetry of the original599

model is modified. In this direction a relativistic supersymmetric model for particles was600

proposed in Ref. [50] considering an N-extended Minkowsky superspace and introducing601

central charges to the superalgebra. Hence the underlying rigid symmetry gets enlarged602

to N-extended super-Poincare algebra. Considering for our case similar superextension603

that in Ref. [50] we can introduce the following new action604

S = −m
∫ τ2

τ1
dτ

√
◦
ωμ

◦
ωμ + a

.

θ
α .

θα − a∗
.

θ

.
α .

θ .α + i(θαi Ai j
.

θ
j
α − θ

.
αi

Ai j

.

θ
j
.
α)605

=
∫ τ2

τ1
dτ L

(
x, θ, θ

)
(94)606

607

that is the super-extended version of the superparticle model proposed in [44,45] with the608

addition of a first-order fermionic part. The matrix tensor Ai j introduce the symplectic609

structure of such manner that now ζαi ∼ Ai jθ
j
α is not covariantly constant under dω.610

Note that the “Dirac-like” fermionic part is obviously under the square root because611

it is a part of the full curvature, fact that was not advertised by the authors in [50]612

(see also [29]) that doesn’t take into account the geometrical origin of the action. An613

interesting point is to perform the same quantization as in the first part of the research614

given in [47–49] in order to obtain and compare the spectrum of physical states with the615

one obtained in Ref. [50]. This issue will be presented elsewhere [51].616

The spontaneous symmetry breaking happens here because the parameter doesn’t have any617

dynamics. But this doesn’t happen in the nonlinear realization approach where the parameters618

have a particular dynamics associated with the space-time coordinates.619

Discussion620

Here we discuss some of the results obtained within the light of the Ref. [59] and describe621

their possible generalizations from the point of view of the boson-fermion symmetries as622

from the categories viewpoint623

(i) The Darboux-Kostant theorem is fulfilled in our case showing that M fits the character-624

istic of a general even supermanifold in addition to all those the considerations given625

in [13,15,17,61–65]. However the extension to odd supersymplectic supermanifold is626

still open question627

(ii) The general Rothstein theorem that we review here (also see [59] for details)is complete628

to describe the spacetime manifold being it with the more general symplectic even629

superstructure from the algebraic and geometrical viewpoint. In next work the odd part630

of the history must be explored.631
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(iv) The possibility, following an old Dirac’s conjecture, to find a discrete quaternionic632

structure inside the Poincare group: this fact will be give us the possibility of spacetime633

discretization without break Lorentz symmetries.634

(v) The introduction of groupoid theoretical methods of compactification taking as group635

theoretical example in [71].636

(vi) The relation with nonlinearly realized symmetries and geometric quantization.637

With respect to [73] we introduced two geometrical models: one linear and another one638

quadratic in curvature. Both models are based on the SO(2, 4) group consequently there639

exists a possibility to extend the contruction to the grupoid domain. Dynamical breaking of640

this symmetry was considered only from the group manifold viewpoin. Because in [73] in641

both cases we introduced coherent states of the Klauder-Perelomov type, which as defined642

by the action of a group (generally a Lie group) are invariant with respect to the stability643

subgroup of the corresponding coset being related to the possible extension of the connection644

which maintains the proposed action invariant the question is if some kind of categorization645

of such mechanism certainly exists considering that grupiod coherent states were recently646

constructed [74].647

From the group theoretical viewpoint [73], the linear action, unlike the cases of West or648

even McDowell and Mansouri [43], uses a symmetry breaking tensor that is dynamic and649

unrelated to a particular metric. Such a tensor depends on the introduced vectors (i.e. the650

coherent states) that intervene in the extension of the permissible symmetries of the original651

connection. Only some components of the curvature, defined by the second structure equation652

of Cartan, are involved in the action, leaving the remaining ones as a system of independent653

or ignorable equations in the final dynamics. The quadratic action, however, is independent of654

any additional structure or geometric artifacts and all the curvatures (e.g. all the geometrical655

equations for the fields) play a role in the final action (Lagrangian of the theory).656

With regard to the parameters that come into play λ and m (they play the role of a657

cosmological constant and a mass, respectively) we saw that in the case of linear action if658

they are taken dependent on the coordinates and under the conditions of the action invariance,659

a new spontaneous compactification mechanism is defined in the subspace invariant under660

the stability subgroup.661

Following this line of research with respect to possible physical applications, we are going662

to consider scenarios of the Grand Unified Theory, derivation of the symmetries of the Stan-663

dard Model together with the gravitational ones. The general aim is to obtain in a precisely664

established way the underlying fundamental theory. The group theoretical introduction of665

a gauge structure and superconnections into the model, (e.g. the supergroup SU(2/1) as the666

simplest case) can help to determine the fundamental structure of the underlying theory. The667

superconnection was introduced by Quillen in mathematics; it is a supermatrix, belonging to668

a given supergroup S, valued over elements belonging to a Grassmann algebra of forms. The669

even part of the superconnection takes values over the gauge-potentials of the even subgroup670

SU(2/1) as oneforms B.dx on the base M-manifold of the bundle, realizing the “gauging”671

of the group G. The odd part of the supermatrix, representing the quotient S = G = H/S,672

is valued over zero-forms in that Grassmann algebra, physically interpreted as the Higgs673

multiplet, in a spontaneously broken G gauge theory. In quantum treatments which are set674

to reproduce geometrically the ghost fields and BRST equations, the Grassmann algebra675

is taken over the complete bundle variable. The first physical example of a superconnec-676

tion preceded Quillen’s theory. This was the supergroup proposal given by the authors of677

refs. [11] for an algebraically irreducible description of the electroweak interaction. Lacking678

Quillen’s generalized formulation, the model appeared to suffer from spin-statistics interpre-679
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tative complications for the physical fields. The structural Z grading of Lie superalgebras,680

as previously used in physics (i.e. in SUGRA, etc.), corresponds to the grading inherent in681

quantum statistics, i.e. to Bose-Fermi transitions, so that invariance under the supergroup682

represents symmetry between bosons and fermions. In the Neeman et al. proposal, how-683

ever, though the superconnection itself does fit the quantum statistics ansatz, this is realized684

through the order of the forms in the geometrical space of the Grassmann algebra [62], rather685

than through the quantum statistics of the particle Hilbert space. This will be important,686

in particular, to solve the problem of hierarchies and fundamental constants, the masses of687

physical states, and their interaction that in such a case richer mathematical structures (e.g.688

functors, categories, etc.) can help certainly.689
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Appendix I: Symmetry Breaking Mechanism: The SO(4, 2) Case693

A. General Features694

(i) Let a, b, c = 1, 2, 3, 4, 5 and i, j, k = 1, 2, 3, 4 (in the six-matrix representation) then695

the Lie algebra of SO (2, 4) is696

i
[
Ji j , Jkl

] = ηik J jl + η jl Jik − ηil J jk − η jk Jil , (95)697

i
[
J5i , J jk

] = ηik J5 j − ηi j J5k, (96)698

i
[
J5i , J5 j

] = −Ji j , (97)699

i [J6a, Jbc] = ηac J6b − ηab J6c, (98)700

i [J6a, J6b] = −Jab. (99)701
702

(ii) Identifying the first set of commutation relations (95) as the lie algebra of the SO (1, 3)703

with generators Jik = −Jki .704

(iii) The commutation relations (95) plus (96) and (97) are identified as the Lie algebra705

SO (2, 3) with the additional generators J5i and ηi j = (1,−1,−1,−1).706

(iv) The commutation relations (95)–(99) is the Lie algebra SO (2, 4) written in terms of707

the Lorentz group SO (1, 3) with the additional generators J5i , J6b, and Jab = −Jba ,708

where ηab = (1,−1,−1,−1, 1). It follows that the embedding is given by the chain709

SO(1, 3) ⊂ SO(2, 3) ⊂ SO(2, 4).710

From the six dimensional matrix representation we know from that parameterizing the711

coset C = SO(2,4)
SO(2,3) and P = SO(2,3)

SO(1,3) , then any element G of SO(2, 4) is written as712

SO(2, 4) ≈ SO(2, 4)

SO(2, 3)
× SO(2, 3)

SO(1, 3)
× SO(1, 3), (100)713

explicitly714

G = e−i za(x)Ja G (H)715

= e−i za(x)Ja e−iεk (x)Pk H (�) . (101)716
717

Consequently we have G (H) : H → G is an embedding of an element of SO(2, 3) into718

SO(2, 4)where Ja ≡ 1
λ

J6a and H (�) : � → H is an embedding of an element of SO(1, 3)719
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into SO(2, 3) where Pk ≡ 1
m J5k as follows720

G = e−i za(x)Ja e−iεk (x)Pk

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

SO(3, 1) 0

0 I2x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
H(�)

︸ ︷︷ ︸
G(H)

(102)721

then any element G of SO(2, 4) is written as the product of an SO(2, 4) boost, an ADS722

boost, and a Lorentz rotation.723

Goldstone Fields and Symmetries724

(i) Our starting point is to introduce two 6-dimensional vectors V1 and V2 being invariant725

under SO (3, 1) in a canonical form. Explicitly726

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
A
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
V1

+

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
0

−B

⎞

⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
V2

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
A

−B

⎞

⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
V0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

invariant under SO (3, 1) . (103)727

(ii) Now we take an element of Sp (2) ⊂ Mp (2) embedded in the 6-dimensional matrix728

representation operating over V as follows729

MV →

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 a b
0 0 0 0 c d

⎞

⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
Sp(2)⊂Mp(2)

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
A

−B

⎞

⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
V0

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
A′

−B ′

⎞

⎟⎟⎟⎟⎟⎟
⎠

= V ′, (104)730

where731

A′ = a A − bB,
−B ′ = cA − d B

(105)732

consequently we obtain a Klauder-Perelomov generalized coherent state with the fidu-733

cial vector V0.734
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(iii) The specific task to be made by the vectors is to perform the symmetry breakdown to735

SO(3, 1). Using the transformed vectors above (Sp(2) ∼ Mp (2) CS) the symmetry of736

G can be extended to an internal symmetry as SU (1, 1) given by G̃ below (note that737

|λ|2 − |μ|2 = 1):738

G̃V ′ = e−i za(x)Ja e−iεk (x)Pk

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

SO(3, 1) 0

0
λ μ

μ∗ λ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
H̃(�)

︸ ︷︷ ︸
G̃(H)

V ′ = (106)739

740

= e−i za(x)Ja e−iεk (x)Pk

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

SO(3, 1) 0

0
α 0
0 β

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
H(�)

︸ ︷︷ ︸
G(H)

V0 = GV0, (107)741

742

M =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 λ∗α −μβ
0 0 0 0 −μ∗α λβ

⎞

⎟⎟⎟⎟⎟⎟
⎠

(108)743

and if we also ask for DetM = 1 then αβ = 1, e.g. the additional phase: it will bring744

us the 10th Goldstone field. The other nine are given by za (x) and εk (x) (a, b, c =745

1, 2, 3, 4, 5 and i, j, k = 1, 2, 3, 4) coming from the parameterization of the cosets746

C = SO(2,4)
SO(2,3) and P = SO(2,3)

SO(1,3) .(e.g. geometrically Ad S4 × S3).747
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