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Abstract 53 

Differences in fruit morphology among or within species might indicate differences in other 54 

regenerative traits, such as seed dormancy and germination. In species with physical 55 

dormancy (PY), environmental conditions are suggested as responsible for dormancy break 56 

in field. Seeds of Vachellia caven have PY. This species exhibits two fruit morphs highly 57 

represented in Córdoba forests, Argentina: one is dehiscent and the other is indehiscent. In 58 

this study we performed a burial experiment with the aim to determine if the differences in 59 

V. caven fruit morphology were related to different patterns of PY break of their seeds in 60 

field conditions. We related these patterns to 1) environmental conditions that could 61 

influence the loss of PY, and 2) histological features of the lens zone. Seeds of both morphs 62 

exhibited dormancy break within 14 months of the start of the experiment, but with 63 

different patterns. The dehiscent morph showed an abrupt percentage of seeds that broke 64 

dormancy 14 months after the beginning of the experiment, probably after undergoing 65 

environmental changes similar to those suggested by the two-stage softening model. The 66 

indehiscent morph showed a gradual increase in seeds that broke dormancy, not clearly 67 

related to any of the environmental variables studied. No differences in seed coat structure 68 

of the lens zone were observed between morphs. The existence of both morphs could 69 

confer the species with higher possibilities of establishing and coping with environmental 70 

heterogeneity. Those characteristics contribute to the understanding of the success of this 71 

species in open and disturbed environments. 72 

Keywords: burial experiment, environmental conditions, Fabaceae, fruit morphology, 73 

physical dormancy, seed coat structure, Vachellia caven. 74 

75 
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Introduction 76 

Seed dormancy mechanisms in plants have evolved to optimize the time of 77 

germination, avoiding germination in periods that are only ephemerally favourable and, 78 

therefore, increasing seedling survival (Fenner and Thompson, 2005; Baskin and Baskin, 79 

2014; Willis et al., 2014). Recently, it has also been suggested that physical dormancy 80 

(hereafter, PY) has evolved to allow seeds to escape seed predation, preventing the 81 

production and release of volatile compounds detectable by post-dispersal seed predators 82 

(Paulsen et al., 2013). PY is caused by one or more layers of tightly packed palisade cells in 83 

the seed or fruit coat; such layers are impermeable to water and, once the seed or fruit coat 84 

becomes permeable, dormancy cannot be reversed (Baskin et al., 2000; Baskin and Baskin, 85 

2014). It has been suggested that seed hardness protects against microbial attack and extends 86 

seed longevity and persistence in the soil seed bank (Dalling et al., 2011; Jarasuriya et al., 87 

2015). Therefore, PY has a great ecological importance (Allen and Meyer, 1998). 88 

Hard seeds can be softened artificially by different mechanisms such as mechanical 89 

or acid scarification (Baskin and Baskin, 2014). However, the mechanisms involved in 90 

breaking physical dormancy under field conditions are scarcely known and seem to be highly 91 

variable among species (Van Assche et al., 2003; Van Assche and Vandelook, 2006; Gama-92 

Arachchige et al., 2012; Jaganathan et al., 2017). Seed softening might occur in response to 93 

fire (Moreira and Pausas, 2012; Jarasuriya et al., 2015; Liyanage and Ooi, 2015; Cochrane, 94 

2017), daily fluctuating temperatures (Van Assche et al., 2003, Baskin and Baskin, 2014), 95 

moisture changes (Baskin and Baskin, 2014), animal ingestion of seeds or fruits (Venier et 96 

al., 2012a; Jaganathan et al., 2016), the action of soil microorganisms (Soriano et al., 2014), 97 

or a set of environmental conditions acting during seed storage in the soil (Jaganathan et al., 98 
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2017; Liu et al., 2017). Moreover, it has been suggested that differences in timing of PY 99 

break in field conditions may be related to differences in the seed coat structure, especially to 100 

epidermis thickness of the lens, a potential water-gap in the seed coat consisting of a point of 101 

weakness of elongated palisade epidermal cells that eventually split apart, allowing water 102 

entry to the seed in the final stage of seed softening (Baskin, 2003; Taylor, 2005; Venier et 103 

al., 2012b; Jaganathan et al., 2017). Water gaps open in response to an appropriate 104 

environmental signal. Thus, understanding how timing of germination of seeds with PY is 105 

controlled in in field conditions is necessary to determine the environmental conditions that 106 

the water gap needs to open (Baskin, 2003). 107 

Some species exhibit differences in fruit morphology; those different fruits may be 108 

found in a single individual plant, a phenomenon  known as heterocarpy or heteromorphism 109 

(Lu et al., 2010; 2015; Baskin et al., 2014) or, although much less common, individuals 110 

plants with a single morph, which may constitute different varieties of the same species 111 

(Pometti et al., 2010). The production of seeds/fruits of different morphologies could be an 112 

adaptation of species to spatio-temporal variability of habitats (Imbert, 2002; Baskin and 113 

Baskin, 2014; Lu et al., 2010; 2015; Baskin et al., 2014). The fruits or seeds within a species 114 

may vary in size, color or morphology, as well as in dispersal, dormancy or germination 115 

characteristics (Lu et al., 2010; Baskin and Baskin, 2014; Baskin et al., 2014; Zang et al., 116 

2016). Different trade-offs among species that differ in fruit features have been described 117 

(Lu et al., 2010; 2013; 2015; Baskin et al., 2014). For example, diaspore dimorphism was 118 

found to be associated with the diversification of the degree of dormancy and the spread of 119 

offspring in time and space (Baskin et al., 2014; Zang et al., 2016 and reference therein). 120 

Studies about the relationship of fruits with different morphology and their type of dormancy 121 
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were performed mostly in seeds with physiological dormancy (Baskin et al., 2014; Zang et 122 

al., 2016), whereas studies on seeds with PY are scarce.  123 

Vachellia caven (Gillies ex Hook. & Arn.) Seigler & Ebinger (ex Acacia caven 124 

Gillies ex Hook. & Arn.; Seigler and Ebinger, 2005) is a tree native to Argentina. The 125 

species has PY (Funes and Venier, 2006) and previous studies have shown that neither high 126 

temperatures that simulate a fire nor cattle ingestion may break seed dormancy in this species 127 

(Venier et al., 2017; Venier et al., 2012a). Previous works in some Fabaceae species reported 128 

a seasonal pattern in dormancy loss, suggesting that fluctuating temperatures may be a key 129 

factor to break dormancy and trigger germination (Van Assche et al., 2003). Vachellia caven 130 

exhibits five types of fruit morphs (Pometti et al., 2010). Two of them are highly represented 131 

in Córdoba forests, Argentina; they differ in their mechanisms for releasing the seeds, with 132 

one being dehiscent and the other, indehiscent. Those morphs may be found in different 133 

individuals (Pometti et al., 2010). The presence of individuals with different fruit 134 

morphologies has led some authors to consider the existence of two varieties of this species –135 

i.e., V. caven var. caven (indehiscent fruits) and V. caven var. dehicents (dehiscent fruits) 136 

(Aronson, 1992; Pometti et al., 2010). However, this species can also be considered 137 

heteromorphic because its different fruit morphs can be found in a single individual 138 

(Baranelli et al., 1995).  139 

The presence of the two fruit morphs (indehiscent and dehiscent) in V. caven may 140 

have ecological significance. For example, seeds from the two fruit morphs might differ in 141 

their PY breaking behaviour. Accordingly, we expect that the morph that exposes the seeds 142 

earlier (dehiscent) would break seed dormancy as fast as possible in order to exploit the 143 

favourable conditions to germinate as soon as they are dispersed and to reduce their exposure 144 

http://www.ipni.org/ipni/idAuthorSearch.do?id=19349-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
http://www.ipni.org/ipni/idAuthorSearch.do?id=4086-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
http://www.ipni.org/ipni/idAuthorSearch.do?id=281-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
http://www.ipni.org/ipni/idAuthorSearch.do?id=26489-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
http://www.ipni.org/ipni/idAuthorSearch.do?id=2456-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
http://www.ipni.org/ipni/idAuthorSearch.do?id=19349-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
http://www.ipni.org/ipni/idAuthorSearch.do?id=4086-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
http://www.ipni.org/ipni/idAuthorSearch.do?id=281-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAcacia%2Baroma%26output_format%3Dnormal
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to post-dispersal seed predators (Chambers and McMahon, 1994; Crawley, 2000). 145 

Furthermore, those fruits that retain the seeds within the fruit for a longer time (indehiscent 146 

fruit morph) could break seed dormancy later, since it would be favourable for them to keep 147 

dormancy until the disperser has brought them to a new place or fruit dehiscence has 148 

occurred. Therefore, we performed a burial experiment to explore the patterns of dormancy 149 

break in field conditions in seeds with PY from two different fruit morphs of V. caven. 150 

Moreover, we related these patterns to 1) environmental conditions that could influence the 151 

loss of PY, and 2) histological features of the lens that could differ between seeds of both 152 

fruit morphs, and could explain different mechanism of dormancy break in field conditions.  153 

 154 

Materials and methods 155 

Study species  156 

Vachellia caven is one of the most widespread shrub or tree species of subtropical 157 

South America; in Argentina it occurs mainly in lowland and mountain arid and semiarid 158 

forests from central to northern regions (Aronson, 1992; Zuloaga and Morrone, 1999). This 159 

species shows remarkable climatic tolerance and ecological adaptability and is able to 160 

colonize areas degraded by anthropogenic activities, such as intense agriculture, grazing or 161 

fire (Aronson, 1992; Cabido et al., 1994). Most individuals of this species are usually shrubs 162 

of 1-3 m in height, with some individuals attaining 8-10 m in height (Aronson, 1992). 163 

Flowering occurs in August-September (Cialdella, 1984), and fruits ripen from January to 164 

February and are dispersed from the tree from February-March to April. The fruits are 165 

dispersed by cattle (observed in the indehiscent morph; Venier et al., 2012a) and by medium-166 

size birds (Aronson, 1992), and seeds could be removed by ants (personal observation). 167 
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Without the intervention of dispersers, the indehiscent fruit morph would release the seeds 168 

before the new reproductive season (personal observation). Seeds of V. caven have PY 169 

conferred by lignified epidermal palisade-like cells and the presence of callose in the cuticle 170 

that would make the seed coat impermeable to water (Venier et al., 2012b). Previous studies 171 

observed that this species may germinate at different temperatures, with optimal 172 

temperatures being 25/15°C and 35/20° C (Funes and Venier, 2006). 173 

 174 

Study area 175 

The study area is located in the Chaco Serrano in Córdoba province, central 176 

Argentina, at the southern end of the Gran Chaco. The vegetation is a mosaic of a seasonally 177 

subtropical forest dominated by Lithraea molleoides, Zantoxylum coco and Prosopis spp. 178 

(Giorgis et al., 2011). The climate is monsoonal; mean annual temperature is 19 °C and 179 

mean annual rainfall is 700 mm (which mainly falls in summer, between November and 180 

March), with a long dry season in winter, from April to October (Capitanelli, 1979).  181 

 182 

Seed collection and initial characterization 183 

In January and February 2014 we collected fruits from the two fruit morphs 184 

belonging to V. caven. In the study area a single individual may have either both fruit morphs 185 

or only one morph. The fruits were collected from at least 20 different individuals from the 186 

Chaco Serrano of Córdoba, Argentina. For each fruit morph we mixed the seeds from all the 187 

individuals and performed a pool of seeds for each morph. From this pool, we randomly 188 

chose 100 seeds of each morph and weighed each of them with a precision balance (± 0.1 189 

mg). In addition, in order to obtain the initial degree of PY in seeds of each morph before the 190 
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burial experiment, we conducted a germination experiment in the laboratory. Three replicates 191 

(20 seeds each) of each of the two morphs were put to germinate for 30 days. After that 192 

period, the seeds were scarified individually with sandpaper and placed again to germinate 193 

for 30 days. Seeds were placed in 9-cm diameter Petri dishes on filter paper moistened with 194 

distilled water and incubated in a germination chamber at 25 ± 1 °C (12/12 h daily 195 

photoperiod, light density of about 30 μmol/m
2
/s). 196 

 197 

Burial experiment 198 

To study patterns of dormancy break in field conditions, in April 2014 we buried 199 

fresh seeds of V. caven in 0.3-mm mesh nylon bags in the field (Van Staden et al., 1994). 200 

We closed the bags with sealing tape of different colors in order to distinguish the morphs 201 

at the time of exhumation. The date for seed burial corresponds to the end of the primary 202 

dispersal of both morphs in field. The burial area was located in La Bolsa (31° 44’ 16.46’’ 203 

S, 64°25’ 31’’ W), Córdoba, Argentina, in the Chaco Serrano region where the species 204 

occurs naturally. The burial area was 2.5 x 5 m and the bags were buried at 5 cm deep in 205 

the soil and protected against large seed removers with a wire cloth. In order to cover 206 

potential local heterogeneity within the burial area, bags were randomly distributed but 207 

ensuring that always, in each point of the burial area, bags of both morphs were presented. 208 

Each nylon bag contained 100 fresh seeds. Every three months since the start of the 209 

experiment, five nylon bags per morph were extracted from the soil. Thus, we buried 55 210 

nylon bags per morph with a total of 5500 seeds of each morph. However, the experiment 211 

ends when 25 nylon bags were extracted because by that time all seeds of both morphs 212 
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within the extracted bags had died or germinated, and therefore there were no dormant 213 

seeds. The experiment lasted 14 months. 214 

Environmental conditions were measured in the burial area. Daily maximum, 215 

minimum and average temperatures were recorded using two sensors (Thermochron 216 

iButton DS1921G) which obtained data every three hours during the whole experiment. In 217 

addition, a rain gauge was placed next to the burial area and the amount of rain (mm) was 218 

recorded after every rainy event. 219 

After each exhumation, we spread the content of each bag and counted: a) the 220 

number of clearly germinated seeds –i.e., seeds with easily distinguishable roots - (hereafter 221 

emerged seedlings); b) the number of hard seeds; c) the number of dead seeds –i.e., seeds 222 

that exhibited a high degree of fungal infection or that were rotted- and d) the number of 223 

missing seeds -i.e., even though the bags were not damaged we detected the lack of some 224 

seeds, probably due to a high seed decomposition or germination events long time before 225 

bag extraction. The seeds that were classified as hard seeds (item b) were allowed to 226 

germinate in Petri dishes (with a maximum of 25 seeds each) for 30 days, and those that 227 

had not germinated after that period were scarified with a sandpaper and placed to 228 

germinate for 30 days. This procedure was followed in order to reclassify the hard seeds 229 

into the following categories: b1) germinable (seeds that germinated in the laboratory 230 

without scarification); b2) dormant (hard seeds that germinated in the laboratory after 231 

mechanical scarification); b3) dead (seeds that were detected as dead in the laboratory 232 

experiment and seeds that died in the burial experiment (item c)). Finally, we obtained five 233 

categories of seeds: 1) emerged (germinated under field conditions), 2) germinable 234 
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(germinated in the laboratory without scarification), 3) dormant (germinated in the 235 

laboratory after scarification), 4) dead (rotted or showing fungal infection) and 5) missing 236 

(Holmes and Moll, 1990). 237 

In addition, in order to know if the buried seeds effectively need an environmental 238 

signal for breaking dormancy, other seeds of both fruit morphs were maintained in the 239 

laboratory under dark and dry conditions during the whole burial experiment. From this 240 

laboratory pool, on each exhumation date, seeds of each morph (three Petri dishes per 241 

morph, 15 seeds each) were also allowed to germinate in a germination chamber for 30 242 

days (control experiment). After that period, seeds that had not germinated were scarified 243 

and placed again in the germination chamber for 30 days. These seeds were classified as 244 

germinable, dormant or dead. For all the experiments the germination chamber was set at 245 

25°C ± 1 °C (12/12 h daily photoperiod, light density of about 30μmol/m2/s). Seeds were 246 

checked for germination twice a week and germinated seeds were recorded and removed. 247 

The Petri dishes were moistened when necessary. 248 

Histological measurements of the seed coat 249 

In order to relate the patterns of dormancy break in field in seeds with PY to 250 

histological features of the lens that could differ between morphs, the structure of the 251 

epidermis in the lens zone was studied in seeds of both fruit morphs of V. caven. Five seeds 252 

obtained from mature fruits of each morph were used for histological characterization of the 253 

palisade cell layer in the lens zone. To soften the seeds, they were scarified with sandpaper at 254 

the opposite side of the hilar zone and placed to imbibe water in Petri dishes on filter paper 255 

moistened with distilled water. The seeds were cut into thick portions near the hilar zone 256 
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with a razor blade, fixed in 2.5 glutaraldehyde– 2% paraformaldehyde, and embedded in 257 

Spurr low viscosity resin (embedding media kit ®. Data sheet # 217 Polysciences, INC). 258 

Semi-thin sections (0.3-0.4 µm thick) were made using a diamond knife of an 259 

ultramicrotome (Leica Ultracut R). The sections were stained with 1% Aniline Toluidine as a 260 

general stain to distinguish lignified and pectic cell walls, and observed under a light 261 

microscope (Nikon Eclipse – Ti). A digital photograph of each seed was taken to measure 262 

the length of the epidermis using the imaging software Nis Elements-BR. Measurements 263 

were made in radial lines through epidermis, from the cuticle to the parenchyma layer. In V. 264 

caven, the lens zone is a depression in the seed coat and might correspond to a thin structure 265 

of the epidermis that is different from the rest of the seed coat epidermis (Venier et al., 266 

2012b). Thus, in each seed, height of the epidermis was measured at three points: in the 267 

center of the lens and to the left and right sides of the lens.  268 

 269 

Data analysis 270 

Differences in seed mass between seeds of both fruit morphs were evaluated using 271 

General Linear Models with a gaussian error structure. Differences between fruit morphs and 272 

dates (five exhumation dates) in seed proportion in each of the five classes of seeds were 273 

analyzed with a Generalized Linear Model (GLMs) with binomial error structure with a logit 274 

link function or quasi-binomial error structure when data were overdispersed. For missing 275 

and dormant seeds, dates with zero seeds in those categories were not included in the 276 

analysis. When differences among treatments were significant, ―Di Rienzo, Guzmán and 277 

Casanoves‖ (DCG) a posteriori test was performed for all the variables (Di Rienzo et al., 278 

2002). Histological measurements of seed coats were analyzed with General Linear Models 279 
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with a gaussian error structure correcting for the heteroscedasticity in the factor morph using 280 

the function varIdent. All analyses were performed using the software InfoStat (Di Rienzo et 281 

al., 2009) and its interface in R (R 2.15.0, R development core team 2012). 282 

Results 283 

Initial seed characterization 284 

Seed mass was not statistically different between morphs ( x for both morphs±SE =0.1±1.3 x 285 

10 
-3

 g; F=0.13; P=0.714). In the laboratory, before the burial experiment (April 2014), the 286 

proportion of germinable seeds (without scarification) was low (less than 0.20) and did not 287 

differ between fruit morphs (t=1.31; P=0.2390; Fig. 1); hence, both fruit morphs had a 288 

similar degree of initial PY. Moreover, scarified seeds of both fruit morphs showed high 289 

germination proportion, without significant differences between them (t= - 0.51; P=0.6258; 290 

Fig. 1).  291 

Burial experiment  292 

Seeds of the two morphs of V. caven showed different temporal patterns of PY break 293 

under field conditions (Fig. 2). For the indehiscent fruit morph, a gradual increase in the 294 

number of emerged seedlings was observed during the experiment, whereas the dehiscent 295 

fruit morph showed a remarkable increase of emerged seedlings at the end of the 296 

experiment. The number of emerged seedlings was different between fruit morphs on most 297 

of the exhumation dates, with a higher percentage of emerged seedlings for the indehiscent 298 

morph on all the dates except in June 2015, when the pattern was reversed and a higher 299 

germination percentage was observed in the dehiscent morph (Fig. 2 a, Table 1).  300 
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Temperature and precipitation decreased from the first autumn until the middle of the 301 

winter was observed (Fig. 2 b). After that, an increase in temperature and precipitation was 302 

recorded until the beginning of summer. During spring and early in summer maximum soil 303 

temperatures were reached, and the highest thermal amplitude was recorded. The maximum 304 

amount of precipitation occurred in February. No freezing event occurred throughout the 305 

year.  306 

The different proportions of non-emerged seedlings (germinable, dormant, dead and 307 

missing seeds) from exhumed bags per fruit morph and date are summarized in Figure 3 a-308 

b. Significant differences were observed in the proportion of germinable and dormant seeds 309 

between fruit morphs and among dates (Table 1). The highest germinable seeds values were 310 

observed on the first, second and fourth exhumation dates in the indehiscent morph, 311 

whereas very few germinable seeds were observed in the dehiscent fruit morph on all dates. 312 

The highest proportions of dormant seeds were observed on the first three dates for the 313 

dehiscent fruit morph, being lowest on the fourth date for both morphs; neither morph had 314 

dormant seeds on the last date. Dead and missing seed proportions were not different 315 

between fruit morphs and among exhumation dates (Table 1; Fig. 3a-b).  316 

The pool of seeds that were mantained in the laboratory (control) showed no 317 

differences in the proportion of germinable, dormant or dead seeds between fruit morphs or 318 

dates (Fig. 3 c-d; Supplementary material Table S2). The proportion of dormant seeds was 319 

high for both fruit morphs during the whole experiment in the laboratory.  320 

Histological measurements of seed coat 321 



15 

 

The mean height of the epidermis in the center of the lens did not showed significant 322 

differences between seeds from both fruit morphs ( x ± S.E = 71.22 ± 3.84 µm; x ± S.E = 323 

61.73 ± 5.09 µm, for seeds of the indehiscent and dehiscent fruit morph respectively; 324 

F=2.22, P=0.1749). Also, no differences were found for the length of the epidermis at the 325 

other two measured points (Left of the lens: Indehiscent morph x ± S.E = 82.89 ± 2.75 µm. 326 

Dehiscent morph x ± S.E = 81.28 ± 7.76 µm; F=0.03; P=0.8782. Right of the lens: 327 

Indehiscent morph x ± S.E = 84.99 ± 3.58 µm. Dehiscent morph x ± S.E = 79.4 ±7.96 µm; 328 

F=0.41; P=0.5397). 329 

Discussion 330 

Species that show different fruit morphologies might also differ in other 331 

regenerative traits, such as dormancy and germination (Lu et al., 2010; 2013; 2015; Baskin 332 

et al., 2014; Zang et al., 2016). In this study, we analyzed PY break in field conditions of 333 

two different fruit morphs of Vachellia caven. Consistent differences in the temporal 334 

patterns of dormancy break were observed between seeds of both fruit morphs. Contrary to 335 

our predictions, the seeds of the indehiscent morph started germination earlier and showed 336 

a gradual increase in the percentage of emerged seedlings throughout the experiment. 337 

Furthermore, the dehiscent morph showed a marked seedling emergence at the end of the 338 

experiment. All in all, we observed that in seeds of both fruit morphs different signals 339 

might be involved in breaking PY (Van Assche and Vanderlook, 2006). Therefore, the 340 

existence of both fruit morphs might confer the species with different strategies a) to cope 341 

with environmental heterogeneity; b) to reduce  attack by seed predators through staggered 342 
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seed germination (Dalling et al., 2011) or by preventing the attack by rodents, which cannot 343 

easily detect buried impermeable seeds (Paulsen et al., 2013).   344 

Most seeds of the dehiscent morph germinated abruptly by the end of the 345 

experiment after being in the soil for one year, showing that even though their seeds are 346 

released early from the fruit, they may persist dormant in the soil until germination. 347 

However, before germination occurred we did not observe a single environmental signal, 348 

such as frost; certainly, temperatures at 5 cm in soil depth during winter were 5°C only on 349 

two or three dates. If those temperatures had boosted dormancy break, a high number of 350 

seedlings would have emerged during spring or summer (2014-2015; Fig. 2 a-b). Therefore, 351 

one possible explanation for the high percentage of emerged seedlings observed in the 352 

dehiscent fruit morph in June 2015 is that seeds from this fruit morph requires a period of 353 

high temperatures and great thermal amplitude –December 2014 to March 2015; Fig. 2b- 354 

followed by a decrease in temperature and thermal amplitude –from April 2015- in order to 355 

break seed dormancy. Taylor (2005) proposed a two-stage softening model for other 356 

Fabaceae species. This model includes a first preconditioning stage produced by constant or 357 

fluctuating temperatures, and is accelerated by increasing temperatures and humidity 358 

typical of summer. The seeds remain impermeable during this step; then there is the second 359 

stage of softening, which is achieved by fluctuating temperatures of summer or autumn. 360 

Seeds that achieve softening in autumn generally need lower temperatures during the final 361 

stage, as our dehiscent morph. A similar mechanism was more recently described by Gama-362 

Arachchige et al. (2012) through the stepwise PY-breaking behavior of Geranium 363 

carolinianum. Also, a sensitivity cycling, of alternating temperatures or alterations of wet-364 

dry conditions to dormancy break in seeds with PY has been proposed in  previous studies 365 
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(Van Assche et al., 2003; Baskin, 2003; Van Assche and Vanderlook, 2006; Jayasuriya et 366 

al., 2009).  367 

The indehiscent fruit morph exhibited a gradual increase in the percentage of 368 

emerged seedlings since July 2014 (three months after the start of the experiment). This 369 

pattern seems to be related to a gradual increase in thermal amplitudes, at least on the first 370 

three exhumation dates (Fig. 2a-b). However, the environmental variables recorded during 371 

our burial experiment do not clearly support why seed germination still increased when 372 

thermal amplitude decreased. Although there is no strong evidence to support this 373 

phenomenon, it has been suggested that dormancy break could be mediated by 374 

microorganisms, particularly when a low germination percentage with no clear seasonal 375 

pattern is observed, similar to our indehiscent morph (Van Assche et al., 2003). The 376 

presence of a permanent number of non-dormant seeds might be a strategy to explore novel 377 

habitats, with seeds ready to germinate in the new environment (Willis et al., 2014). The 378 

fact that this morph has a fruit as a dispersal unit, which is prepared for being dispersed 379 

longer distances (Aronson, 1992), might be complemented with their capacity to reach 380 

novel environments with a number of seeds able to establish.  381 

It is striking that most of the seeds of both morphs germinated in the beginning of 382 

winter –i.e., the highest percentage of emerged seedlings of the indehiscent morph and 383 

almost all the emerged seedlings of the dehiscent morph- when precipitation start to 384 

decrease until spring. However, a previous study observed that this species has a high 385 

germination at 20/10 °C (Venier et al., 2017) and a high survival of seedlings under water 386 

stress (Venier et al., 2013), suggesting that seeds could survive with low water availability 387 

in the environment and remain in the seedling stage until the rainy season. This may be a 388 
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strategy to ensure their establishment, capitalizing the resources mobilized by the first rains 389 

of spring, when much of the annual vegetation has still not established –i.e., establishing V. 390 

caven seedlings in a moment of low competition. 391 

The seed softening process in species with PY may take place over periods ranging 392 

from a few weeks to many years (Taylor, 2005). The species V. caven as a whole showed 393 

dormancy break of its seeds in 14 months. This period is brief compared to other species 394 

with PY (Van Assche et al., 2003; Cuneo et al., 2010; Marchante et al., 2010) but there are 395 

species that showed similar amount of time for breaking PY (Holmes and Moll, 1990) or 396 

even lower (Gama-Arachchige et al., 2012). The high field germination of V. caven 397 

suggests that, after a disturbance, this species might recolonize new areas from the seeds 398 

available in the soil only in the year after the disturbance occurs. However, studies using 399 

different burial depths and climatic conditions are necessary to have a broader view of the 400 

regeneration behavior of this species.  401 

The proportion of germinable seeds (i.e., seeds that germinated in the laboratory 402 

without scarification) of both morphs was low on the five exhumation dates, suggesting 403 

that most of the seeds that break dormancy in the soil obtained a sufficient amount of water 404 

to germinate under field conditions. In other Fabaceae (Delonix regia) the number of 405 

germinable seeds after being buried was higher in a dry year than in a humid year 406 

(Jaganathan et al., 2017). Therefore, considering that our experiment was performed in a 407 

humid year, the amount of germinable seeds could increase in drier years (precipitation 408 

from April 2014 to April 2015 in our experiment was 1033.5 mm, whereas the historical 409 

precipitation for the study area is 725.5 mm (CIMA-CONICET-UBA)). In addition, during 410 

the burial experiment the proportion of dormant seeds was higher in the dehiscent than in 411 
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the indehiscent fruit morph, with no dormant seeds being recorded on the last exhumation 412 

date for either morph. When the dormant seeds were scarified and set to germinate, we 413 

observed that most of the seeds were viable. Additionally, in both morphs, in most of the 414 

bags exhumed, a proportion of the seeds were dead. Probably, some of these dead seeds had 415 

germinated and decomposed after germination long before the end of the experiment, so we 416 

were not able to discriminate if they had germinated or simply died due to the action of 417 

microorganisms (Dalling et al., 2011). All in all, the amount of dead seeds was not different 418 

between morphs and did not modify the patterns observed in emerged seedlings. Finally, 419 

control seeds that were maintained in the laboratory while the burial experiment was 420 

underway did not show an increase in the proportion of germinable seeds, which also 421 

suggests the need for an environmental signal for breaking PY.  422 

The different patterns of PY loss shown by seeds of both fruit morphs of V. caven, 423 

would not be related to differences in the histological structure of the lens, since the results 424 

of the measurements in the lens area showed no significant differences between them. 425 

Nevertheless, other aspects of the epidermis, such as lignin concentration and how tightly 426 

packed the cells are in the palisade layer, are important in determining whether passage of 427 

water into the seed is blocked (Kelly et al., 1992; Baskin et al., 2000), and should be 428 

incorporated in future studies.  429 

In summary, in this study we observed two different strategies for breaking PY in 430 

seeds associated with two different fruit morphs (dehiscent and indehiscent) in V. caven. 431 

The presence of these two different PY break seed behavior, even within the same plant 432 

individual, could be considered a bet-hedging strategy and therefore could confer the 433 

species with higher possibilities of establishing and coping with environmental 434 
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heterogeneity (Venable, 2007; Jaganathan, 2016). Those characteristics may contribute to 435 

the understanding of the success of this species in open and disturbed environments where 436 

V. caven mainly occurs (Zak and Cabido, 2002), showing that PY has ecological 437 

significance for species in plant communities. 438 
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Figure references 611 

Figure 1. Seed germination proportion of scarified (grey) and non-scarified (white) seeds 612 

of the dehiscent and indehiscent morph of Vachellia caven, in the laboratory before the 613 

burial experiment (April 2014).   614 

Figure 2. Proportion of emerged seedlings from two morphs of Vachellia caven. Seeds 615 

were buried under field conditions and exhumed on five dates. (a) Germination proportion 616 

of seeds from indehiscent (white) and dehiscent (grey) morphs (mean ± S.E.). Different 617 

letters over each bar indicate significant differences in the post-hoc test for the interaction 618 

term (morph x date). (b) Temperatures and precipitation during the burial experiment. Lines 619 

represent absolute month maximun (dotted), minimum (dashed) and mean (continuous) 620 

temperatures (°C); barrs represent total monthly precipitation (mm).  621 

Figure 3. Mean ± S.E. of the cumulative proportion of dormant (white), germinable (grey), 622 

dead (light grey) and missing (black) seeds, inside exhumed bags (a-b) and control seeds 623 

(maintained under laboratory conditions) (c-d), of the two morphs of Vachellia caven on 624 

five dates.  625 

 626 

627 
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Table 1. Statistics (t values) and P values for the proportion of seeds under different 628 

conditions in relation to morphs (dehiscent and indehiscent), exhumation date (five dates) 629 

and their interaction. Statistics were obtained from Generalized Linear Models (see Table 630 

S1 of the Supplementary material for means and standard error of each seed category on 631 

each date). Significant p values (P≤0.05) are indicated in bold. 632 

 Seed condition after exhumation 

 Emerged Germinable Dormant Dead Missing 

 t P t P t P t P t P 

Morph 6.776 <0.0001 4.090 0.0027 4.075 0.0002 1.461 0.151 1.380 0.188 

Date 5.943 <0.0001 3.665 0.0006 4.495 0.003 1.017 0.314 2.099 0.053 

Morph*Date 0.325 <0.0001 2.112 0.0401 0.288 0.109 0.892 0.3771 1.155 0.266 
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