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PAMAM Dendrimers as a Carbamazepine Delivery System for Neurodegenerative Diseases: 

A Biophysical and Nanotoxicological Characterization 

 

Abstract 

Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of 

neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its 

low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, 

ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) 

(DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, 

the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 

and DG4.5 allowed the incorporation of ~20 molecules of CBZ per dendrimer, into their hydrophobic 

pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant 

to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested 

ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was 

observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced 

the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity 

in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 

capable of complex the CBZ has been developed. This achievement highlights the advantages of using 

negatively charged dendrimers for nanomedicine.  

 

Keywords: Carbamazepine, PAMAM dendrimers, Complexation, Toxicology, Neurodegenerative disease, 

Epilepsy.  

 

Graphical abstract 
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Highlights  

 The PAMAM dendrimers generation 4.0 and 4.5 (DG4.0 and DG4.5) encapsulated around of 20 

molecules of carbamazepine (CBZ) per molecule of dendrimer, tripling the solubility of the drug. 

 The DG4.0-CBZ and DG4.5-CBZ complexes were stable for 90 days stored at 37 °C and resistant 

to a lyophilization process.  

 Both DG4.0-CBZ and DG4.5-CBZ complexes showed a controlled release of the CBZ under 

physiological conditions, retaining 40% of the drug after 24 h of dialysis. The interaction between 

CBZ and dendrimers occurs in their hydrophobic pockets. 

 The DG4.0-CBZ and DG4.5-CBZ complexes did not show hemolytic effects. The DG4.5-CBZ 

complexes reduced the cytotoxicity caused by the free drug in cell culture. The DG4.5-CBZ 

complexes were biocompatible according to the tests carried out on zebrafish larvae. 

 A stable and biocompatible drug delivery system based on the DG4.5 capable of efficiently complex 

the CBZ has been developed. 

 

Abbreviations 

BBB: blood-brain barrier; CBZ: Carbamazepine; CV: crystal violet; DDS: drug delivery system; DG4.0: 

polyamidoamine dendrimer generation 4.0; DG4.5: polyamidoamine dendrimer generation 4.5; DMSO: 

dimethylsulfoxide; dpf: days post-fecundation; FBS: fetal bovine serum; FTIR: Fourier Transform Infrared 

Spectroscopy; hpf: hours post-fecundation; hpi: hours post-incubation; MEM: minimum essential medium; MTT: 3-

(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide; NR: neutral red; PAMAM: polyamidoamine; PBS: 

phosphate buffer saline.
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1. Introduction 

The protein misfolding and abnormal aggregation of specific proteins are involved in the most prevalent 

neurodegenerative disorders, including Alzheimer´s disease, amyotrophic lateral sclerosis, Parkinson´s 

disease, and Huntington´s disease (Guo et al., 2017). The generation of highly diffusible small oligomers, 

fibrils and large aggregates with amyloid properties are implicated in these abnormal processes (Vidal et 

al., 2014). Lately, due to the selective degradation of abnormally folded protein by the lysosomal pathway 

and the disruption of aggregated proteins, the enhancers of natural autophagy process have become 

attractive as a treatment for these neurodegenerative disorders (Budini et al., 2017; Harris & Rubinsztein, 

2012; Hidvegi et al., 2010; Vidal et al., 2014).  

More recently, it has been found that carbamazepine (CBZ), an FDA approved anticonvulsant and mood-

stabilizing drug has a potent autophagy enhancement effect (Harris & Rubinsztein, 2012; Hidvegi et al., 

2010) which reduces the accumulation and toxic effects of aggregation-prone proteins in in vitro cell models 

and protects against neurodegeneration in vivo (Li et al., 2013; Williams et al., 2008; L. Zhang et al., 2017). 

CBZ is traditionally given as a solid dosage or suspensions form by oral administration, but due to its poor 

solubility in water (120 µg/mL, 500 µM, at 25 °C) (Brewster et al., 1990; Hemenway et al., 2009; Martins et 

al., 2012), it has a slow and irregular gastrointestinal absorption, leading to an incomplete drug 

bioavailability (El-Zein et al., 1998; Gavini et al., 2006; Kobayashi et al., 2000). In addition, this reduced 

solubility does not allow its incorporation in therapeutic dosages in aqueous solutions for intravenous 

injection (Serralheiro et al., 2014). Also, the CBZ pharmacokinetic is complex because there is no direct 

relationship between the given oral dose and the concentration of the drug found in plasma (Alrashood, 

2016; Jiao et al., 2003). Therefore, it is necessary to use a high oral dose (800-1200 mg/day) to achieve 

the therapeutic concentration of CBZ, which has been estimated at 0.004-0.012 mg/mL (Kong et al., 2014). 

Furthermore, CBZ undergoes extensive hepatic metabolism and enzymatic induction that outcome in 

erratic plasmatic fluctuations and unexpected clearance increments, which demand successive dose 

adjustments (Serralheiro et al., 2014; Tomson et al., 1987; Yuen et al., 2008). 

Taking into account the above considerations, improving the solubility of CBZ may increase the rate of 

absorption, enhance the oral bioavailability and allow reducing the oral dose needed to accomplish 

therapeutic concentrations. Therefore, CBZ is a promising candidate to be used into a drug delivery system 

(DDS) with controlled release properties for the treatment of neurodegenerative diseases. A DDS delivers a 
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drug to a predetermined specific site (target organ/tissue) and, in this way, they allow to reduce the side 

effects by decreasing access to other tissues or organs where they do not have the therapeutic effect 

(Kakkar et al., 2017). The brain is an essential organ from which most of the vital functions are controlled. It 

is isolated and protected from the external environment by the blood-brain barrier (BBB). The same 

mechanisms that prevent the entry of harmful foreign substances avoid the access of therapeutic drugs. 

Hence, it is important to design DDSs that are capable of massively direct the drug to the brain, especially 

in the treatment of neurodegenerative diseases (Saraiva et al., 2016). 

The dendrimers are three-dimensional polymers obtained by organic synthesis that provide unique 

properties to the DDS field, since they have relevant characteristics such as minimal polydispersity, defined 

surface structure with globular shape, high water solubility, and very small and controlled size in the range 

of nanometers (Kalomiraki et al., 2016; Kesharwani et al., 2014; Svenson & Tomalia, 2012; Tomalia et al., 

1990). Generation 4.0 and 4.5 PAMAM dendrimers are optimal as DDS since they can incorporate drug 

molecules into their hydrophobic pockets, which are size- and shape-controlled, or anchor them to their 

surface groups by ionic or covalent interactions (Markowicz-Piasecka & Mikiciuk-Olasik, 2016). Thus, the 

complexed drug would acquire the physicochemical properties of the dendrimers, which would significantly 

increase its solubility in aqueous media and, therefore, modify its pharmacokinetics and biodistribution 

properties. In previous works, our group demonstrated that the drugs sulfadiazine and risperidone 

complexed with PAMAM dendrimers increment their solubility in water and the arrival to the brain, 

generating an increase in the potency of their effect (M. Prieto et al., 2006; M. Prieto et al., 2008; Maria 

Jimena Prieto et al., 2013; Maria Jimena Prieto et al., 2014; María Jimena Prieto et al., 2011). 

For those mentioned above, the present study aims to develop and characterize a novel drug delivery 

system for CBZ based on PAMAM dendrimers for the treatment of neurodegenerative disorders. This 

strategy is focused on increasing CBZ solubility, decreasing the dose and frequency of administration 

reducing side effects and probably improving the cost-effective balance of the therapy.  

 

 

2. Materials and Methods  

 

2.1. Materials 
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Polyamidoamine (PAMAM) dendrimers (D), with ethylenediamine core, generation 4.0 (mol weight = 

14,214 g/mol, 64 amine terminal groups) (DG4.0) and PAMAM dendrimers generation 4.5 (mol weight = 

26,251 g/mol, 128 carboxylate terminal groups) (DG4.5) were purchased from SIGMA-ALDRICH (MERCK, 

Argentina) and were used without further purification. Carbamazepine (CBZ), 5H-dibenzo[b,f]azepine-5-

carboxamide (mol weight = 236.27 g/mol), was generously donated by Ph.D. Albertina Moglioni from the 

Chemistry and Drug Metabolism Institute (IQUIMEFA-CONICET) (Buenos Aires, Argentina). Sodium 3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) was from USB Corporation, cell culture MEM 

was from HyClone, and antibiotic-antimycotic solution and trypsin were from Gibco, all purchased from 

Thermo Fisher Scientific, Argentina. Fetal bovine serum was from Internegocios S.A., Argentina. Crystal 

violet was from Sigma-Aldrich (MERCK, Argentina) and Neutral red was from BioPack (Argentina). All other 

reagents were of analytical grade and used without further purification.  

 

2.2. CBZ complexation in DG4.0 and DG4.5 

Different amounts of CBZ were combined with a constant amount of DG4.0 or DG4.5 in methanolic solution 

to obtain different D:CBZ molar ratios (1:5, 1:10, 1:25, 1:50, 1:100, 1:150 and 1:200); corresponding to 

0.024 mM of dendrimers and 0.12, 0.24, 0.6, 1.2, 2.4, 3.6 or 4.8 mM of CBZ, respectively. The mixtures 

were incubated for 24 h at 28 °C and, then, methanol was evaporated at 25 °C in a SAVANT TM SpeedVac 

Concentrator (Thermo Fisher Scientific, USA). The solid residues obtained were dissolved in 0.1 mL of 

phosphate buffer saline (PBS 10 mM, pH=7.4) at room temperature and centrifuged at 10,000×g for 5 min, 

to separate the D-CBZ complexes from the non-soluble unincorporated CBZ (Figure S1).  

 

2.3. Drug quantification by UV-Vis spectroscopy 

NanoDrop 1000 UV-Vis spectrometer (Thermo Fisher Scientific, USA) was used to quantify the amount of 

CBZ incorporated in the dendrimer. In PBS (10 mM, pH=7.4), CBZ has its maximum absorbance at ʎmax= 

284 nm. The stock solution of CBZ was obtained in a solution of 10% (v/v) ethanol in PBS. A calibration 

curve of CBZ at different concentrations in PBS was set determining the absorbance at this wavelength. 

The calibration curve was linear in a concentration range of 0.41–211 µM (R2=0.9994). The D-CBZ 

complexes were dissolved in PBS. Since dendrimers have no absorbance at this wavelength, the 

absorbance obtained from D-CBZ complexes can be attributed to CBZ (Figure S2). The obtained 
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absorbance was correlated with the calibration curve, and the amount of CBZ was determined. The total 

amount of CBZ in the D-CBZ complexes corresponds to both the soluble unincorporated CBZ and the 

complexed CBZ. The amount of CBZ present in a free CBZ control (performed in the same buffer and 

conditions) was subtracted from the total amount of CBZ determined for the D-CBZ complexes to calculate 

the quantity of the complexed CBZ. Since the concentration of dendrimer was known, the results were 

expressed as the number of moles of CBZ incorporated per mole of dendrimer. 

 

2.4. D-CBZ complexes stability and resistance to lyophilization process  

The time stability of free or complexed CBZ was studied after storage at 4, 25 or 37 °C. The amount of CBZ 

in the suspensions after 1, 7, 14, 21, 28, 35, and 90 days post-complexation were measured as described 

in Section 2.3. The soluble CBZ present in the control of free drug was used to set the 100% and all sample 

data was adjusted to this value. Also, the stability of the complexes after the lyophilization process was 

studied. Lyophilization was performed from frozen suspensions (-80 °C overnight) of CBZ, DG4.0-CBZ and 

DG4.5-CBZ without additives, in a Freezone 4.5 LABCONCO lyophilizer (LABCONCO Corporation, USA), 

pre-cooled at -50 ºC maintaining the lyophilization process pressure within the range of 33x10-3 to 65x10-3 

mbar for 24 h. The amount of CBZ in the suspensions after 1, 7, 14, 21, 28, 35 and 90 days post-

reconstituting the lyophilized powder were measured as described in Section 2.3. The soluble CBZ present 

in the control of free drug was used to set the 100%, and all sample data was adjusted to this value. 

 

2.5. Fourier transform infrared spectroscopy (FTIR) 

To study the D-CBZ interaction and the structural changes in the complexes respect to free dendrimers, 

FTIR spectroscopy was used. FTIR spectra of lyophilized PBS, CBZ, DG4.0, DG4.5, DG4.0-CBZ, and 

DG4.5-CBZ were measured using an FTIR Nicolet 8700 spectrometer (Thermo Fisher Scientific, USA). 

Powders were characterized placing into the attachment plate to measure attenuated total reflectance 

(ATR). After 64 scans in the range of 400 cm-1 to 4000 cm-1, the spectrum was obtained with a resolution of 

2 cm-1.  

 

2.6. In vitro drug release studies 
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In vitro release of CBZ from D-CBZ complexes was studied against buffer solutions at different pH (2.2, 7.4 

and 12.6) by using a micro-dialysis Eppendorf tube diffusion technique in which the top internal flap-cover 

of a 0.5 mL Eppendorf tube is replaced with a dialysis membrane (MW cut-off: 12000 from Sigma-Aldrich-

Merck, Argentina). This technique was developed ad hoc to overcome micro-quantities of the released drug 

(Igartúa et al., 2015). D-CBZ complexes or free drug were sealed into the micro-dialysis Eppendorf tube 

and incubated in the different buffers under continuous stirring. The CBZ release experimental design 

consisted of collecting aliquots at pre-determined time intervals (1, 2, 3, 4, 5, 6, 7, 9, 24 and 28 h) from the 

incubation medium. Each aliquot withdrawn was replaced afterward by an equal volume of fresh medium to 

maintain the volume constant during the experiment. The assay was repeated six times, and the amount of 

released CBZ was determined by absorbance at 284 nm, as described in Section 2.3.  

 

2.7. Ex vivo toxicity: Hemolysis assay and human red blood cells morphological changes 

The study was conducted in accordance with the principles of the Declaration of Helsinki and was approved 

by the Ethics Committee of National University of Quilmes (Buenos Aires, Argentina; ethics CE-UNQ No 

2/2014). The participant (healthy donor) provided a written informed consent to the experimental protocol 

before her/his study-participation. 

Hemolysis of human red blood cells incubated with CBZ and D-CBZ complexes was assayed as previously 

described by Prieto et al. (2011) and Temprana et al. (2017) (María Jimena Prieto et al., 2011; Temprana 

et al., 2017). Briefly, freshly-prepared human red blood cells from a healthy donor were incubated at 37 °C 

with CBZ (in the range 0.3 – 30 µM), dendrimers (in the range 0.012 – 1.2 µM), D-CBZ complexes (in the 

range 0.012– 1.2 µM of D and 0.3 – 30 µM of CBZ), or PBS (10 mM, pH=7.4) as a negative control. After a 

4- or 24-h incubation, samples were centrifuged at 2000xg for 10 min, and supernatant absorbance was 

measured at 414 nm with a UV-Vis NanoDrop1000 spectrophotometer. Hemolysis was expressed as a 

percentage of the hemoglobin release induced by SDS 2% w/v set as 100% hemolysis. Additionally, 

morphological changes in red blood cells upon incubations were determined by optical microscopy. Briefly, 

after incubation, cells were mounted on a slip, stained with Giemsa for 20 min and observed with a Leica 

DMI 6000 B (Leica Microsystems, USA) microscope. 

 

2.8. In vitro toxicity: Cytotoxicity in N2a cell culture  
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2.8.1. Cell culture and treatment 

To study the influence of the proposed delivery systems on cell culture and analyze possible cytotoxic 

effects, we used the N2a cell line, a fast-growing mouse neuroblastoma cell line that has been widely used 

to study neuronal differentiation, neurite growth, synaptogenesis and signaling pathway. Also, N2a cells 

have been used to study neurotoxicity, Alzheimer's disease and asymmetric division of mammalian cell 

lines (He et al., 2017; Yang et al., 2014). Cytotoxicity upon treatment with CBZ, D or D-CBZ was measured 

by colorimetric methods as crystal violet (CV) staining, MTT assay, and neutral red (NR) uptake. The cells 

were seeded at a cell density of 7×103 cells/well in a 96-well flat bottom microplate and grown at 37 °C in 

MEM supplemented with 10% FBS and a 10% antibiotic-antimycotic solution in a humidity chamber with a 

5% CO2 atmosphere. After 24 h, the medium was replaced with 100 µL of 10-fold-serial dilutions (prepared 

in culture media) of CBZ (in the range 3x10-3 – 30 µM), dendrimers (in the range 0.12x10-3 – 1.2 µM), or D-

CBZ complexes (in the range 0.12x10-3 – 1.2 µM of D and 3×10-3 – 30 µM of CBZ). After 4 or 24 h of 

incubation, solutions were removed and replaced by the different reagent solutions according to the 

implemented method. For each assay, eight technical replicates and three biological replicates were used 

for each dilution (n=24).  

 

2.8.2. Crystal violet assay 

As adherent cells detach from cell culture plates during cell death, determination of attached cells can be 

used for the indirect quantification of cell death. A straightforward method to detect attached cells involves 

the crystal violet (CV) dye staining as the colorant binds to proteins and DNA (Kueng et al., 1989). The CV 

assay is based on the protocol described by Gillies et al. (1983) with modifications from Gasparri et al. 

(2011) (Gasparri et al., 2011; Gillies et al., 1986). Following cell exposure of 4 or 24 h to CBZ, D or D-CBZ, 

the solutions were removed and replaced by 100 µL of CV solution at a final concentration of 0.1% w/v in a 

1:4 methanol:water mixture. After 5 min of incubation in a humidity chamber, the CV solution was removed, 

and the insoluble crystals were dissolved in 100 µL of acetic acid 30% v/v. Absorbance at 530 nm was 

measured using a Cytation5 microplate reader (BioTek Instruments, USA), and is proportional to attached 

living cells. The absorbance obtained from cells incubated only with medium was used to set the 100% cell 

viability, and sample data was adjusted to this value. 
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2.8.3. MTT assay 

MTT is a water-soluble tetrazolium salt, which is converted to an insoluble purple formazan product by the 

succinate dehydrogenase enzyme within the cell mitochondria. The formazan product is impermeable to 

the cell membranes, and therefore it accumulates inside healthy cells (Fotakis & Timbrell, 2006). The MTT 

assay is based on the protocol described for the first time by Mosmann (1983) (Mosmann, 1983). Briefly, 

after 4 or 24 h of incubation with CBZ, D or D-CBZ, solutions were removed and replaced by 100 µL of 

MTT at a final concentration of 0.5 mg/mL. After 2 h of incubation, the MTT solution was removed, and the 

insoluble formazan crystals were dissolved in 100 µL of DMSO; absorbance at 570 nm was measured by 

using a Cytation5 microplate reader. Cells incubated only with medium were used to set the 100% 

metabolic activity, and sample data was adjusted to this value. 

 

2.8.4. Neutral red uptake 

Living cells take up the neutral red (NR) dye, which concentrates within the lysosomes of living cells 

(Fotakis & Timbrell, 2006). The NR assay is based on the protocol described by Borenfreund and Puerner 

(1984) (Borenfreund & Puerner, 1985). Briefly, following exposure of 4 or 24 h to CBZ, D or D-CBZ, the 

solutions were removed, and replaced by 100 µL of NR solution at a final concentration of 50 µg/mL in 

serum-free medium. After 2 h of incubation, the NR solution was removed and cells were incubated with 

100 µL of 1% formaldehyde – 1% sodium carbonate mixture, to remove unincorporated dye and 

simultaneously promote adhesion of the cells to the substratum. The formaldehyde solution was removed, 

and cells were washed with 100 µL of saline solution (NaCl 0.9% w/v). Then, 100 µL of a mixture of 1% 

acetic acid – 50% ethanol was added to each well followed by gentle shaking for 10 min so that complete 

extract of NR was achieved. The absorbance at 540 nm was measured by using a Cytation5 microplate 

reader. Cells incubated only with medium were used to set the 100% NR uptake, and sample data was 

adjusted to this value. 

 

2.9. In vivo biocompatibility: Zebrafish larvae 

2.9.1. Animals 

Adult zebrafish (Danio rerio) were maintained at 28.0 ± 1.0 °C in aquaria with a 14 h light − 10 h dark cycle, 

as described previously (Feas et al., 2017; Igartúa et al., 2015). Fishes were fed with dry flakes (TetraMin 
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PRO®) three times a day and nauplius larvae of Artemia once a day. The water in the aquarium was 

aerated and maintained at pH 7.0 - 8.0. In this study, embryos refer to zebrafish before hatching (0-3 day 

post-fecundation - dpf), while larvae refer to post-hatching animals (over 3 dpf) (Figure S3). Embryos were 

obtained from natural mating and were reared in E3 medium (NaCl 5 mM, KCl 0.17 mM, CaCl2 0.33 mM 

and MgSO4 0.33 mM in deionized water and 50 ppb methylene blue as a fungicide). Selected fertilized 

eggs in good condition were used for further treatment. The characteristics of the eggs were determined 

with a Nikon SMZ800 stereomicroscope (Nikon, USA.  

 

2.9.2. Compliance with ethical standards 

All zebrafish procedures were performed in strict accordance with the National Institute of Health guidelines 

for animal care and maintenance. The study protocols were approved by the Institutional Animal Care 

Committee of the National University of Quilmes (CE-UNQ 2/2014) (Buenos Aires, Argentina) and 

Institutional Committee for the Care and Use of Laboratory Animals (CICUAL) (CICUAL-UNQ 013-15 and 

014-15). 

 

2.9.3. Treatment 

For the treatment, three non-hatched zebrafish embryos at 1 dpf were placed in each well of a 96-well plate 

containing E3 medium and incubated for additional 4 days at 28 °C. At 5 dpf, the medium was replaced by 

250 µL of 10-fold-serial dilutions prepared in the E3 medium of CBZ (0.3-30 µM) or D-CBZ complexes 

(0.012-1.2 µM D and 0.3-30 µM CBZ). 

 

2.9.4. Viability 

Viability was studied at 1, 4, 24 and 48 hours post-incubation (hpi) with a stereomicroscope. It was 

considered that the larvae were dead when no heartbeat was observed. Viability was expressed as a 

percentage of the live larvae respect to the total of larvae per treatment (n=72).  

 

2.9.5. Neurotoxicity 

The spontaneous movement was studied in a multichannel ADC system (WMicrotracker, Designplus SRL, 

Argentina) as previously described in Igartúa et al. (2015) (Igartúa et al., 2015). Activity events were 
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recorded for 15 min at 1, 4, 24 and 48 hpi, at room temperature. The spontaneous movement was 

expressed as percentage respect to the movement in the non-treated larvae control. Changes in 

spontaneous locomotor activity events could reflect the neurotoxicity of the different treatments (Maria 

Jimena Prieto et al., 2012; Selderslaghs et al., 2013), as well as a morphological or lethal effect. For each 

assay, eight technical replicates and three biological replicates were used for each dilution (n=24). 

 

2.9.6. Cardiotoxicity 

The heart rate of zebrafish was assessed at 48 hpi (7 dpf). Control and experimental zebrafish larvae were 

individually transferred to a slide with sodium carboxymethylcellulose and placed under a trinocular 

stereomicroscope. The heart rate was determined by counting the number of beats every 15 s and 

expressed as beats per minute (bpm). Experiments were performed three times on eight larvae per group 

(n=24). The difference between the heart rates of control and treated larvae was regarded as cardiotoxicity 

(Berghmans et al., 2008).  

 

2.9.7. Morphological Changes 

The larvae were photographed after 48 hpi (7 dpf) to determine morphological changes. Several 

morphological alterations as the bent spine, jaw malformation, opaque head region, small head, opaque 

liver, opaque yolk sac, yolk not depleted, uninflated swim bladder, edema and tail malformation were 

observed. Fish were scored based on the degree of morphological anomalies [0=no visible toxic effects; 

1=minor, one to two morphological anomalies; 2=moderate, three to four effects; 3=severe, more than four 

minor toxic effects; and 4=dead] (Adaptation from (Yang et al., 2014)). The mean toxicity score for each 

treatment was determined by the score of individual larvae. Experiments were performed in triplicate on 

eight larvae per group for each dilution (n=24). 

 

2.10. Statistical Analysis 

Results are expressed as the mean ± standard deviation (SD). Statistical analysis was performed using 

Graph Pad Prism v6.0 software. ONE-WAY ANOVA test followed by Dunnett´s multiple comparisons post-

test or by TWO-WAY ANOVA test followed by Dunnett´s multiple comparisons post-tests were used 



  

13 
 

depending on the obtained data. The different statistical analyses used are detailed within the figures´ 

captions. Differences were considered to be significant only when p<0.05. 

 

 

3. Results and discussion 

 

3.1. CBZ complexation to obtain DG4.0-CBZ and DG4.5-CBZ complexes 

Dendrimers may increase the solubility and stability of bioactive compounds, and protect them from the 

biological environment. Solubilization of drugs mediated by dendrimers depends on the type, generation, 

size, core and functional groups of the dendrimer (Jain et al., 2010) and also depends on pH, temperature, 

and hydrophobic or electrostatic interaction affinity between the drug and the dendrimer (Kolhe et al., 

2003). The PAMAM dendrimers generation 4.0 (DG4.0) and generation 4.5 (DG4.5) can encapsulate drug 

molecules into their hydrophobic pockets or anchor them on their external functional groups. The 

complexed drug would acquire the physicochemical properties of the dendrimers, which can significantly 

increase its solubility in an aqueous media and provide a controlled-release profile (D'emanuele & Attwood, 

2005). In this sense, the drug carbamazepine (CBZ) is poorly soluble in water (120 µg/mL, 500 µM, at 25 

°C), so complexation ability of different amounts of CBZ in DG4.0 and DG4.5 was studied to estimate the 

maximum number of molecules that can be incorporated into the dendrimers molecules (Figure 1). The 

studied molar ratios were 5, 10, 25, 50, 100, 150, and 200 moles of CBZ per mole of DG4.0 or DG4.5. 

When the molar ratio was higher than 10, the soluble CBZ present in D-CBZ formulations was always 

significantly higher than the CBZ present in the control of the free drug. This result confirms the interaction 

of CBZ with both DG4.0 and DG4.5. As no significant differences were observed between DG4.0 and 

DG4.5 dendrimers, we hypothesize that the drug-dendrimer interaction is through complexation inside the 

hydrophobic pockets of dendrimers, which are chemically identical and have similar size. At molar ratios 

greater than 50, the dendrimers saturation was achieved, and higher combination ratios were not 

associated with higher amounts of complexed CBZ. However, particularly at a molar ratio of 150, a 

tendency to a more considerable amount of complexed CBZ with DG4.5 was observed, so this molar ratio 

was used to confirm the complexation and to study the reproducibility of the protocol (Table 1). By 

complexing with dendrimers, the solubility of CBZ was significantly increased in aqueous media (p<0.0001) 
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by almost three times more. At this ratio, an average of 21±7 and 24±11 moles of CBZ per mole of DG4.0 

and DG4.5, respectively, were calculated.  

Figure 1. Optimization of D:CBZ molar ratio. Different amounts of CBZ were combined with a constant quantity of 

DG4.0 or DG4.5 in methanolic solution to obtain different D:CBZ molar ratios. (A) Concentration of soluble CBZ after 

complexation process. Results are shown as mean ± SD. Significant differences respect to free CBZ were analyzed 

by TWO-WAY ANOVA test followed by Dunnett´s multiple comparisons post-test (**p<0.01, ****p< 0.0001). (B) Moles 

of CBZ per mole of DG4.0 or DG4.5 obtained after the complexation process. Data are shown as mean ± SD. 

 

Table 1. D-CBZ complexation at 1:150 D:CBZ molar ratio (n=16).  

 Soluble CBZ (µM) CBZ moles per D mole 

CBZ 322.2 ± 52.72 - 

DG4.0-CBZ 834.8 ± 187.2 **** 21 ± 7 

DG4.5-CBZ 898.7 ± 279.4 **** 24 ± 11 

Results are shown as the mean ± SD. Significant differences respect to CBZ were analyzed by ONE-WAY ANOVA 

test followed by Dunnett´s multiple comparisons post-test (****p< 0.0001). No statistical difference between CBZ moles 

per D mole was observed by T-test when DG4.0-CBZ or DG4.5-CBZ was compared.  

 

3.2. DG4.0-CBZ and DG4.5-CBZ stability and resistance to lyophilization 

The stability of the DG4.0-CBZ and DG4.5-CBZ complexes was evaluated at various conditions of 

temperature (4, 25 and 37 °C) keeping in the dark up to 90 days, and after lyophilization process, as can be 

seen in Figure 2. The formulations were found to be more stable at 37 °C as concluded by observing the 

physical appearance and by quantifying the soluble CBZ, which were significantly higher in DG4.0-CBZ and 

DG4.5-CBZ respect to free CBZ during the analyzed period of 90 days post-complexation (p<0.0001). The 

formulations were found to be stable at 25 °C only for seven days post-complexation and were non-stable 

at 4 °C. The release and crystallization of non-soluble CBZ were minimum at 37 °C and maximum at 4 °C. 

The observed results may be due to the shrinking of the dendrimer structure, which would lead to a 

decrease in the cavity entrapping the drug molecules, as was previously described (Bhadra et al., 2003). 

Furthermore, as far as we know, the resistance to lyophilization was not tested for drug complexed in 

DG4.0 and DG4.5. We observed that the formulations were stable after the lyophilization process without 

additives. In all of the formulations, the concentration of CBZ was reduced by a ~25%, but the DG4.0-CBZ 

and DG4.5-CBZ complexes remained stable at 25 °C until 60 days post-lyophilization. The increase in the 
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stability of lyophilized respect to non-lyophilized complexes at 25 °C could be because during the 

lyophilization process the drug-dendrimer interactions are maximized. 

 

Figure 2. Stability of D-CBZ complexes during storage and resistance to the lyophilization process. The time 

stability of free or complexed CBZ was studied after storage at 4, 25 or 37 °C, and after lyophilization.  (A) Percentage 

of CBZ (respect to initial concentration) at different times after complexation and storage at 4, 25 or 37 °C. (B) 

Concentration of CBZ before and after the lyophilization process. (C) Percentage of CBZ (respect to initial 

concentration) at different times after lyophilization and storage at 25 °C. (A-C) In all of the cases, results are shown 

as the mean ± SD. Significant differences respect to CBZ were analyzed by TWO-WAY ANOVA test followed by 

Dunnett´s multiple comparisons post-test (*p<0.05; **p<0.01; ***p<0.001; ****p< 0.0001) (Table S1).  

 

3.3. D-CBZ interaction studied by Fourier transform infrared spectroscopy (FTIR) and in vitro 

release  

As both DG4.0 and DG4.5 dendrimers encapsulated a similar amount of CBZ and presented similar profiles 

of stability over the time, we hypothesize that the drug-dendrimer interaction occurs into the hydrophobic 

pockets. These are chemically identical in both dendrimers whereas the terminal groups are different (–

NH3
+ for DG4.0 and –COO- for DG4.5 at physiological pH). To confirm this hypothesis, the interaction 

between CBZ and dendrimers was studied using FTIR and in vitro release studies. 

Infrared spectroscopy is a well-established nondestructive method for highly sensitive and selective 

concentration determination and identification of chemical species. FTIR works by exposing the sample to 

infrared radiation, and the infrared region of the spectrum is absorbed by the sample, so that each sample 

would have a characteristic set of absorption bands. The specific absorption of the substance in the 

“fingerprint” region enables the recognition of various chemical species and even of the structural isomers. 

FTIR spectrum of solid CBZ (Figure 3A) showed all the specific absorption bands of the drug (Milović et al., 

2012; Wu et al., 2011), including the N-H stretching band at 3460 cm-1, the –CO-R- vibration at 1670 cm-1, 

and the –C=C-, -C=O and N-H deformation vibrations at 1590 cm-1. FTIR spectra of lyophilized PBS 

(Figure 3B and C) was included as an internal control of our assay because the D-CBZ formulations were 

dissolved in this buffer before lyophilization and the buffer´s salts would remain in solid formulations. In this 

control, it was found that the absorption bands at 528, 548, 668, 861, 949, 1074, 1163, 2341 and 2359 cm-1 

correspond to the vibrations of phosphate groups of buffer´s salts.  
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FTIR spectrum of DG4.0 (Figure 3B) showed the –CH and –NH stretching vibrations of the dendrimer core 

at 2917 y 2849 cm-1; the –NH deformation vibration of the terminal groups at 1651 cm-1; and the C-C 

stretching bonds inside the core at 1557 cm-1 (Kolhe et al., 2003; Popescu et al., 2006; Prajapati et al., 

2009; M. Prieto et al., 2006). In the FTIR spectrum of DG4.0-CBZ, the disappearance of the absorption 

bands at 2917 and 2849 cm-1 and the displacement of another band from 1651 to 1692 cm-1 were 

observed. Since the first two signals correspond to internal groups of DG4.0 and the third to the terminal 

amine groups, CBZ molecules could be interacting both with the hydrophobic pockets of the DG4.0 and 

with their terminal amine groups. 

On the other hand, FTIR spectrum of DG4.5 (Figure 3C) showed the –NH flexion vibration of amides of 

dendrimer core at 3299 cm-1 and at 1642 cm-1; the –CH and –NH stretching vibrations of the dendrimer 

core at 2915 y 2849 cm-1; the -C=O stretching vibration of –COOH terminal groups at 1730 cm-1; and the –

COO symmetric vibration of terminal group at 1393 cm-1 (M. Prieto et al., 2006; Maria Jimena Prieto et al., 

2014). In the FTIR spectrum of DG4.5-CBZ, the disappearance of the absorption bands at 2915, 2849 and 

1730 cm-1 and the displacement of the bands to 3332 and 1652 cm-1 were observed. As these signals 

correspond to the internal and terminal groups of the DG4.5, the CBZ molecules could be interacting both 

with the hydrophobic pockets of the DG4.5 and with their terminal carboxylic groups. 

It is important to remember that in the D-CBZ formulations obtained from the complexation protocol there is 

the free CBZ (up to the limit of saturation) and the CBZ complexed in the dendrimers (drug solubilized by 

complexation into the hydrophobic pockets of the dendrimers). When these D-CBZ formulations are 

lyophilized, the interactions between the CBZ (both free and complexed) and the dendrimers are 

maximized, due to the evaporation of the solvent.  

As all the absorption bands corresponding to the groups of the hydrophobic pockets change in the D-CBZ 

formulations concerning the free dendrimers, we can confirm our hypothesis that the drug interacts with the 

hydrophobic pockets of both nanocarriers. As there are also some changes in the signals corresponding to 

the terminal groups of both DG4.0 and DG4.5, it is not possible to rule out that the CBZ interaction with 

them due to the proximity during the lyophilization process. 

 

Figure 3. Interaction between CBZ and DG4.0 or DG4.5 by FTIR analysis. (A) FTIR spectrum of CBZ powder; (B) 

FTIR spectra of lyophilized DG4.0, DG4.0-CBZ, and PBS control; (C) FTIR spectra of lyophilized DG4.5, DG4.5-CBZ, 

and PBS control. (B-C) Shifts or disappearance of the maximums observed in the spectrum of dendrimers respect to 
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D-CBZ complexes are included into the study because the complexes and dendrimers were lyophilized from buffer 

suspension, and phosphate salts have a strong signal in FTIR.   

 

The strength and stability of the drug-dendrimer complex were also studied using in vitro release assays of 

CBZ from DG4.0-CBZ and DG4.5-CBZ against PBS at physiological pH 7.4 (Figure 4) and extreme pHs of 

2.2 and 12.6 (Figure S4). CBZ is a molecule with hydrophobic rings and a polar region due to the presence 

of an amide group. Under non-catalyzing conditions and at extreme basic pHs, CBZ can form negatively 

charged amide (pKa of amide group 13.9) (Röhricht et al., 2009). In all the pHs used in this work, the CBZ 

can be found as an uncharged molecule. Moreover, DG4.0 present primary amino groups as terminal ends 

with pKa 8-10 and internal tertiary amines with pKa 4-6; while DG4.5 present carboxylic acids as terminal 

ends with pKa 4-5 and internal tertiary amines with pKa 3-6 (Devarakonda et al., 2007; Maiti et al., 2005; 

Maiti et al., 2004). Therefore, both dendrimers are macromolecules whose degree of ionization and the 

conformational state will depend on the pH. 

At acid pH (2.2) (Figure S4 A) the internal tertiary amines of both dendrimers would be protonated; this 

excessive positive charge would lead to an extended conformation, preventing the formation of 

hydrophobic pockets inside the dendrimers. Moreover, it was previously reported that at pH<4.0, the 

dendrimer size increased almost 30-40% (Maiti et al., 2005; Maiti et al., 2004). These structural changes 

lead to the complete release of the CBZ from D-CBZ complexes.  

At basic pH (12.6) (Figure S4 B) the internal tertiary amines of both dendrimers would be deprotonated, 

and the end groups -NH2 of the DG4.0 would also be deprotonated; this absence of charges would give rise 

to a compact globular conformation (Maria Jimena Prieto et al., 2013). However, Maiti et al. (2005) found 

that at pH>12.0 and in the presence of a solvent such as water, the size of the dendrimer was increased by 

almost 10-15% (Maiti et al., 2005). The same conformational change can be expected for the DG4.5 

considering that their terminal groups -COO- would be negatively charged. Under these conditions, CBZ 

was completely released from both DG4.0-CBZ and DG4.5-CBZ complexes. 

At physiological pH (7.4) (Figure 4) the internal tertiary amines of both dendrimers would be deprotonated 

forming hydrophobic pockets, while the end groups would have positive charges -NH3
+ for DG4.0 and 

negative charges -COO- for DG4.5. As it was previously described, at neutral pH, there was no significant 

change in the dendrimer size (Maiti et al., 2005; Maiti et al., 2004). Under these conditions, the CBZ 

molecules could interact hydrophobically or by hydrogen bonding with the core of the dendrimers, which 
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results in a controlled release over time. After 2 h of dialysis, the free CBZ was released by 70%, while the 

D-CBZ by 45% (p<0.001). Subsequently, after 24 h of dialysis, the free CBZ was completely released 

(100%), while the D-CBZ complexes still retained 40% of the drug (p<0.0001). Consistent with our results, 

the drug retention capacity of both dendrimers under physiological conditions had previously been 

observed for the drug risperidone (Maria Jimena Prieto et al., 2014; María Jimena Prieto et al., 2011) and 

ibuprofen (Kolhe et al., 2003). Moreover, it was also found that the interaction between dendrimers and 

drugs is strongly dependent on pH (Beezer et al., 2003; Devarakonda et al., 2007). 

 

Figure 4. In vitro release of CBZ from D-CBZ complexes in physiological pH 7.4. The in vitro release of CBZ from 

D-CBZ complexes was studied against buffer solution with pH 7.4 by using a micro-dialysis Eppendorf tube diffusion 

technique developed ad hoc. Results are shown as mean ± SD. Significant differences respect to CBZ were analyzed 

by TWO-WAY ANOVA test followed by Dunnett´s multiple comparisons post-test (*p<0.05; **p<0.01; ***p<0.001; 

****p< 0.0001) (Table S2).  

 

3.4. Ex vivo toxicity: Hemolysis assay and human red blood cells morphological changes 

Red blood cell hemolysis and morphological changes study are simple methods widely used to analyze 

polymer-membrane interaction and ex vivo toxicity (Duncan & Izzo, 2005; Temprana et al., 2017). Despite 

hemolysis caused by cationic and anionic dendrimers is reported to be generation- and concentration-

dependent, non-hemolysis is found at low dendrimer concentration (<1 mg/mL) (Asthana et al., 2005; 

Bhadra et al., 2003; Malik et al., 2000; María Jimena Prieto et al., 2011). However, it is of importance to test 

the hemolytic effect of the complexes as it has been reported that CBZ can induce hemolytic anemia 

(Sobotka et al., 1990; Stroink et al., 1984; Yamamoto et al., 2007). In this work, we evaluated the hemolytic 

effects (Figure 5) and possible morphological changes (Figure S5) after 4- and 24-h human red blood cells 

incubation with free CBZ, dendrimers and D-CBZ complexes. No significant hemolysis or morphological 

changes were observed when compared with red blood cells incubated with isotonic PBS buffer (negative 

control) at any incubation time.  

 

Figure 5. Ex vivo toxicity studied by hemolysis in human red blood cells. Hemolysis after 4- or 24-h treatments 

with CBZ, dendrimers or D-CBZ complexes. Hemolysis is expressed as a percentage of the hemoglobin release 

induced by the SDS positive control (100% hemolysis). Results are shown as mean ± SD. Significant differences 
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respect to PBS negative control was performed by TWO-WAY ANOVA test followed by Dunnett´s multiple 

comparisons post-test. There were no significant differences for any of the formulations at the tested concentrations.  

 

3.5. In vitro toxicity: Cytotoxicity in N2a cell culture 

Regardless of the extensive pharmaceutical and biomedical applications of dendrimers, it is reported that 

dendrimer cytotoxicity might restrict their use as drug delivery systems (Jain et al., 2010; María Jimena 

Prieto et al., 2011). Thus, it is imperative to evaluate the cytotoxicity of dendrimers themselves and the 

obtained complexes. The cytotoxicity of the dendrimers is dependent on the kind of the core, but mainly on 

the nature of its surface groups (Duncan & Izzo, 2005). Also, the cytotoxicity is found to be concentration- 

and time-dependent in different cell lines (Duncan & Izzo, 2005; Jain et al., 2010). DG4.0 are cationic 

dendrimers at physiological pH that can cause more cytotoxic effects than negative dendrimers DG4.5. For 

example, on Vero and J774 cell lines, DG4.0 presented cytotoxicity at 3 μM concentration after 24 h (María 

Jimena Prieto et al., 2011) whereas DG4.5 presented no cytotoxicity up to 33 μM (M. Prieto et al., 2006). 

The observations reported are due to cationic dendrimers´ ability to interact with the negatively charged 

plasma membrane, generating destabilization and cell membrane nanoholes, thus resulting in cell lysis 

(Jain et al., 2010). 

While most chemical compounds cause cellular damage through interaction with specific biomolecules, 

nanoparticles can cause toxicity through a combination of different mechanisms such as inducing ROS, 

genotoxicity, morphological modifications and immunological effects at the same time (Joris et al., 2013). 

So, it is important to study the effect of dendrimers and complexes in cell culture by several methods 

simultaneously (Fotakis & Timbrell, 2006). In the present work, we studied the effects of CBZ, dendrimers, 

and D-CBZ complexes in N2a cell line after 4- and 24-h treatments on viability by the crystal violet (CV) 

staining; on cellular metabolic activity by the MTT assay; and on lysosomal activity by the neutral red (NR) 

uptake (Figure 6 and S6). After 4 h (Figure S6), no reduction in N2a cell viability (CV staining) or effects 

on metabolic activity (MTT assay) were observed for any of the treatments and the concentrations tested. 

However, 1.2 µM of DG4.0 caused a reduction of ~20% in the uptake of NR, which might be related to the 

toxic effect of cationic dendrimers on cells membranes, particularly in the lysosomal membrane. After 24-h 

treatments (Figure 6), results of the three assays were not in accordance, which can be explained by the 

fact that each test analyzes different parameters involved in cellular toxicity. The MTT assay is mainly 

based on the enzymatic conversion of MTT in the mitochondria, whereas the NR assay is a colorimetric 
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assay measuring the uptake of the dye by functional lysosomes, and CV staining measured the uptake of 

the dye by attached and viable cells (Fotakis & Timbrell, 2006). The CV staining revealed that 0.03 and 

0.003 μM of CBZ reduced cell viability by 40% and 30% respectively. The DG4.5-CBZ complex prevented 

this cytotoxic effect, although the DG4.0-CBZ did not. Regarding the metabolic activity studied by the MTT 

assay, none of the formulations in the evaluated concentrations produced cytotoxic effects. However, 

cytotoxicity measured as reduction of NR uptake was observed at the higher concentration of free 

dendrimers and D-CBZ complexes. This effect on lysosomes produced by dendrimers was previously 

described (Mukherjee et al., 2010; J. Zhang et al., 2016). As expected, the toxic effect was more significant 

for DG4.0 than for DG4.5 and it was reflected in shorter times.   

In conclusion, the use of different concentrations, treatment-times, and methods to study the toxic effects in 

the N2a cells, allowed to demonstrate that the DG4.5-CBZ complexes presented reduced toxicity 

concerning the other formulation (DG4.0-CBZ) or the free CBZ.  

 

Figure 6. In vitro toxicity studied in N2a cell culture by colorimetric methods.  Cytotoxicity measured as viability 

by the crystal violet (CV) staining, metabolic activity by the MTT assay, and lysosomal activity by the neutral red (NR) 

uptake at 24 hours post-incubation (hpi) with CBZ, dendrimers or D-CBZ complexes. All data are expressed as the 

percentage respect to non-treated cells control, which was considered as 100% of viability, 100% metabolic activity or 

100% neutral red uptake. Results are shown as the mean ± SD. Statistics were performed by ONE-WAY ANOVA test 

followed by Dunnett´s multiple comparisons post-test. Significantly different respect to the control (**p<0.01; 

***p<0.001; ****p< 0.0001).  

 

3.6. In vivo biocompatibility: Zebrafish larvae 

While the term “toxicity” is referring to the non-specific and undesired effects of a drug or nanoparticle, the 

term “biocompatibility” is wider and could be referring to the ability to be in contact with a living system 

without producing an adverse effect (Vert et al., 2012). Hence, it is critical to study the effect of the obtained 

complexes in a living organism. Particularly, in this work, we chose to work with Zebrafish (Danio rerio) 

which is an animal model that offers whole-animal information, which cannot be obtained from in vitro 

studies. Furthermore, we used zebrafish larvae as a rapid, high-throughput, cost-effective model to provide 

a more comprehensive and predictive screening of biocompatibility of the free CBZ and D-CBZ complexes. 

The effect on the viability (Figure 7A), spontaneous swimming activity (Figure 7B), morphological 
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development (Figure 7C), and heart rate (Figure 7D) of zebrafish larvae after treatment with CBZ or D-

CBZ were studied. Neither free CBZ nor DG4.5-CBZ complexes produced mortality, malformations or 

changes in heart rate or spontaneous movement at the evaluated concentrations. On the other hand, when 

high concentrations of the DG4.0-CBZ complex (30 µM CBZ encapsulated in 1.2 µM of DG4.0) were 

administered, only 68 and 57% of viability was observed after 4- and 24-h treatments, respectively. At 48-h 

treatments, the viability remained at 57%. In addition, at this dose, significant morphological changes were 

also observed (Figure 8) such as uninflated swim bladder, opaque yolk sac, and yolk not depleted. The 

tendency in the reduction of the movement and the heartbeat are directly related to the lethal effect of the 

DG4.0 and not with neurological or cardiological effects indeed. In non-lethal doses, complexes did not 

cause any other effects. Results are consistent with those obtained by Calienni et al. (2017), in which free 

DG4.0 were lethal for zebrafish larvae in concentrations higher than 0.5 µM (Calienni et al., 2017).  

 

Figure 7. In vivo toxicity studied in zebrafish larvae. (A) Viability of zebrafish larvae at 7 dpf after a 48-h treatment 

with CBZ or D-CBZ complexes. Viability is expressed as the percentage of the live larvae respect to the total of larvae, 

and data are shown as mean ± SD. Statistics were performed by ONE-WAY ANOVA test followed by Dunnett´s 

multiple comparisons post-test. Significantly different respect to CBZ (***p<0.001). (B) Spontaneous movement in 

zebrafish larvae after 1-, 4-, 24- and 48-h treatment with CBZ or D-CBZ complexes. Spontaneous movement is 

expressed as the percentage respect to movement in the non-treated larvae control, and results are shown as mean ± 

SD. None significant differences respect to CBZ was found after analysis by TWO-WAY ANOVA test followed by 

Dunnett´s multiple comparisons post-test. (C) Morphological changes scored based on the degree of anomalies of 

zebrafish larvae at 7 dpf after 48-h treatment with CBZ or D-CBZ complexes. Statistics were performed by ONE-WAY 

ANOVA test followed by Dunnett´s multiple comparisons post-test. Significantly different respect to CBZ 

(****p<0.0001). (D) Heart rate of zebrafish larvae at 7 dpf after 48-h treatment with CBZ or D-CBZ. Heart rate is 

expressed as the percentage of heartbeat in treated larvae respect to the heartbeat in the non-treated larvae control, 

and data are shown as mean ± SD. Significant differences respect to CBZ was performed by ONE-WAY ANOVA test 

followed by Dunnett´s multiple comparisons post-test (****p<0.0001). 

 

Figure 8. In vivo morphological changes studied in zebrafish larvae. Representative photographs of live 7-dpf 

zebrafish larvae after a 48-h treatment with 30 µM of CBZ or D-CBZ complexes. Significant morphological changes 

are indicated with arrows.  
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Taking into account these results to those previously obtained ex vivo and in vitro, we can conclude that the 

DG4.5-CBZ complexes were non-toxic and biocompatible in the concentrations tested. These complexes 

are presented as an alternative to the delivery of CBZ, a water-insoluble drug which has been approved for 

the treatment of epilepsy and shows the potential for the development of new therapies against 

neurodegenerative diseases. 

 

4. Conclusions and perspectives  

A stable drug delivery system based on the PAMAM dendrimer generation 4.5 capable of efficiently 

complex the antiepileptic drug CBZ has been developed. Not only the drug solubility was increased by 

using DG4.5 but also a controlled release profile was achieved observing that a 40% of the CBZ was 

retained after 28-h dialysis. Moreover, drug cytotoxicity was reduced when CBZ was complexed within this 

dendrimer. Furthermore, the complex DG4.5-CBZ did not have a hemolytic activity or induced 

morphological changes in human red blood cells and presented high in vivo biocompatibility as no 

neurotoxicity, cardiotoxicity or malformations were observed in the zebrafish model. 

Considering all mentioned above, the DG4.5-CBZ could be incorporated into clinical trials, leading to an 

improvement of the already established treatment of epilepsy. Moreover, this work could be considered a 

starting point to study new treatments for other neurodegenerative diseases. In line with this idea, further 

experiments will be carried out to explore the ability of the DG4.5-CBZ complexes in reducing abnormal 

aggregation of β-amyloid proteins in cell culture and mammalian models. Finally, our work highlights the 

advantage of using negatively charged PAMAM dendrimers when designing stable and non-toxic drug 

delivery systems. 

 

Acknowledgments 

Dr. M. J. Prieto, Dr. S. del V. Alonso, Dr. C. F. Temprana and Dr. C. S. Martinez are members of the 

Scientific Research Program from the CONICET. Fellowship for D.E. Igartúa (CONICET Ph.D. student, 

N°Res 4845/15) is acknowledged. Authors would like to thank Dr. Claudio Valverde and Laboratorio de 

Bioquímica, Microbiología e Interacciones Biológicas en el Suelo (Universidad Nacional de Quilmes) for the 

use of the microscope. 

 



  

23 
 

Declaration of interest 

None. 

 

Funding 

This work was supported by the Universidad Nacional de Quilmes (UNQ) [PUNQ1388/15 and 

PUNQ1076/15]; the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [PIP-

CONICET#11220110100214]; and the Ministerio Nacional de Ciencia, Tecnología e Innovación Productiva 

(MINCYT). 

 

References 

Alrashood S. (2016). Chapter Three-Carbamazepine. Profiles of Drug Substances, Excipients and Related 
Methodology, 41, 133-321.  

Asthana A, Chauhan AS, Diwan PV, & Jain NK. (2005). Poly (amidoamine)(PAMAM) dendritic 
nanostructures for controlled sitespecific delivery of acidic anti-inflammatory active ingredient. AAPS 
PharmSciTech, 6(3), E536-E542.  

Beezer A, King A, Martin I, Mitchel J, Twyman L, & Wain C. (2003). Dendrimers as potential drug carriers; 
encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron, 59(22), 
3873-3880.  

Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I, Golder Z, et al. (2008). Zebrafish based 
assays for the assessment of cardiac, visual and gut function — potential safety screens for early 
drug discovery. Journal of Pharmacological and Toxicological Methods, 58(1), 59-68. doi: 
https://doi.org/10.1016/j.vascn.2008.05.130 

Bhadra D, Bhadra S, Jain S, & Jain N. (2003). A PEGylated dendritic nanoparticulate carrier of fluorouracil. 
International journal of pharmaceutics, 257(1), 111-124.  

Borenfreund E, & Puerner JA. (1985). Toxicity determined in vitro by morphological alterations and neutral 
red absorption. Toxicology letters, 24(2-3), 119-124.  

Brewster ME, Anderson WR, Estes KS, & Bodor N. (1990). Development of Aqueous Parenteral 
Formulations for Carbamazepine through the Use of Modified Cyclodextrins. Journal of 
Pharmaceutical Sciences, 80(4), 380-383. doi: 10.1002/jps.2600800420 

Budini M, Buratti E, Morselli E, & Criollo A. (2017). Autophagy and Its Impact on Neurodegenerative 
Diseases: New Roles for TDP-43 and C9orf72. Frontiers in Molecular Neuroscience, 10.  

Calienni MN, Feas DA, Igartúa DE, Chiaramoni NS, del Valle Alonso S, & Prieto MJ. (2017). 
Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and 
zebrafish developmental stages. Toxicology and Applied Pharmacology.  

D'emanuele A, & Attwood D. (2005). Dendrimer–drug interactions. Advanced drug delivery reviews, 57(15), 
2147-2162.  

Devarakonda B, Otto DP, Judefeind A, Hill RA, & de Villiers MM. (2007). Effect of pH on the solubility and 
release of furosemide from polyamidoamine (PAMAM) dendrimer complexes. International journal 
of pharmaceutics, 345(1), 142-153.  

Duncan R, & Izzo L. (2005). Dendrimer biocompatibility and toxicity. Advanced drug delivery reviews, 
57(15), 2215-2237.  

El-Zein H, Riad L, & El-Bary AA. (1998). Enhancement of carbamazepine dissolution: in vitro and in vivo 
evaluation. International journal of pharmaceutics, 168(2), 209-220.  

Feas DA, Igartúa DE, Calienni MN, Martinez CS, Pifano M, Chiaramoni NS, et al. (2017). Nutraceutical 
emulsion containing valproic acid (NE-VPA): a drug delivery system for reversion of seizures in 
zebrafish larvae epilepsy model. Journal of Pharmaceutical Investigation, 1-9.  



  

24 
 

Fotakis G, & Timbrell JA. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and 
protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology letters, 
160(2), 171-177.  

Gasparri J, Speroni L, Chiaramoni NS, & Valle Alonso Sd. (2011). Relationship between the adjuvant and 
cytotoxic effects of the positive charges and polymerization in liposomes. Journal of liposome 
research, 21(2), 124-133.  

Gavini E, Hegge AB, Rassu G, Sanna V, Testa C, Pirisino G, et al. (2006). Nasal administration of 
carbamazepine using chitosan microspheres: in vitro/in vivo studies. International journal of 
pharmaceutics, 307(1), 9-15.  

Gillies R, Didier N, & Denton M. (1986). Determination of cell number in monolayer cultures. Analytical 
biochemistry, 159(1), 109-113.  

Guo F, Liu X, Cai H, & Le W. (2017). Autophagy in neurodegenerative diseases: pathogenesis and therapy. 
Brain Pathology, n/a-n/a. doi: 10.1111/bpa.12545 

Harris H, & Rubinsztein DC. (2012). Control of autophagy as a therapy for neurodegenerative disease. 
Nature reviews neurology, 8(2), 108-117.  

He X, Li Z, Rizak JD, Wu S, Wang Z, He R, et al. (2017). Resveratrol Attenuates Formaldehyde Induced 
Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells. Frontiers in Neuroscience, 
10(598). doi: 10.3389/fnins.2016.00598 

Hemenway JN, Jarho P, Henri JT, Nair SK, VanderVelde D, Georg GI, et al. (2009). Preparation and 
physicochemical characterization of a novel water-soluble prodrug of carbamazepine. Journal of 
Pharmaceutical Sciences, 99(4), 1810-1825. doi: 10.1002/jps.21952 

Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, et al. (2010). An autophagy-enhancing drug 
promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science, 329(5988), 
229-232.  

Igartúa DE, Calienni MN, Feas DA, Chiaramoni NS, Valle Alonso SD, & Prieto MJ. (2015). Development of 
nutraceutical emulsions as risperidone delivery systems: characterization and toxicological studies. 
Journal of pharmaceutical sciences, 104(12), 4142-4152.  

Jain K, Kesharwani P, Gupta U, & Jain N. (2010). Dendrimer toxicity: Let's meet the challenge. International 
journal of pharmaceutics, 394(1), 122-142.  

Jiao Z, Zhong M-k, Shi X-j, Hu M, & Zhang J-h. (2003). Population pharmacokinetics of carbamazepine in 
Chinese epilepsy patients. Therapeutic drug monitoring, 25(3), 279-286.  

Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, & Soenen SJ. (2013). Assessing 
nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models 
for bridging the in vitro–in vivo gap. Chemical Society Reviews, 42(21), 8339-8359.  

Kakkar A, Traverso G, Farokhzad OC, Weissleder R, & Langer R. (2017). Evolution of macromolecular 
complexity in drug delivery systems. Nature Reviews Chemistry, 1(8), s41570-41017-40063.  

Kalomiraki M, Thermos K, & Chaniotakis NA. (2016). Dendrimers as tunable vectors of drug delivery 
systems and biomedical and ocular applications. International Journal of Nanomedicine, 11, 1-12. 
doi: 10.2147/IJN.S93069 

Kesharwani P, Jain K, & Jain NK. (2014). Dendrimer as nanocarrier for drug delivery. Progress in Polymer 
Science, 39(2), 268-307.  

Kobayashi Y, Ito S, Itai S, & Yamamoto K. (2000). Physicochemical properties and bioavailability of 
carbamazepine polymorphs and dihydrate. International journal of pharmaceutics, 193(2), 137-146.  

Kolhe P, Misra E, Kannan RM, Kannan S, & Lieh-Lai M. (2003). Drug complexation, in vitro release and 
cellular entry of dendrimers and hyperbranched polymers. International journal of pharmaceutics, 
259(1), 143-160.  

Kong ST, Lim SH, Chan E, & Ho PC. (2014). Estimation and comparison of carbamazepine population 
pharmacokinetics using dried blood spot and plasma concentrations from people with epilepsy: the 
clinical implication. The Journal of Clinical Pharmacology, 54(2), 225-233.  

Kueng W, Silber E, & Eppenberger U. (1989). Quantification of cells cultured on 96-well plates. Analytical 
biochemistry, 182(1), 16-19.  

Li L, Zhang S, Zhang X, Li T, Tang Y, Liu H, et al. (2013). Autophagy enhancer carbamazepine alleviates 
memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer's disease. 
Current Alzheimer Research, 10(4), 433-441.  

Maiti PK, Çaǧın T, Lin S-T, & Goddard WA. (2005). Effect of solvent and pH on the structure of PAMAM 
dendrimers. Macromolecules, 38(3), 979-991.  

Maiti PK, Çaǧın T, Wang G, & Goddard WA. (2004). Structure of PAMAM dendrimers: Generations 1 
through 11. Macromolecules, 37(16), 6236-6254.  



  

25 
 

Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener J, et al. (2000). Dendrimers:: 
Relationship between structure and biocompatibility in vitro, and preliminary studies on the 
biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. Journal of Controlled Release, 
65(1), 133-148.  

Markowicz-Piasecka M, & Mikiciuk-Olasik E. (2016). Dendrimers in drug delivery Nanobiomaterials in Drug 
Delivery (pp. 39-74): Elsevier. 

Martins RM, Siqueira S, Tacon LA, & Freitas LA. (2012). Microstructured ternary solid dispersions to 
improve carbamazepine solubility. Powder technology, 215, 156-165.  

Milović M, Djuriš J, Djekić L, Vasiljević D, & Ibrić S. (2012). Characterization and evaluation of solid self-
microemulsifying drug delivery systems with porous carriers as systems for improved 
carbamazepine release. International journal of pharmaceutics, 436(1), 58-65.  

Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation 
and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63.  

Mukherjee SP, Lyng FM, Garcia A, Davoren M, & Byrne HJ. (2010). Mechanistic studies of in vitro 
cytotoxicity of poly (amidoamine) dendrimers in mammalian cells. Toxicology and applied 
pharmacology, 248(3), 259-268.  

Popescu M-C, Filip D, Vasile C, Cruz C, Rueff J, Marcos M, et al. (2006). Characterization by Fourier 
transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. 
The Journal of Physical Chemistry B, 110(29), 14198-14211.  

Prajapati RN, Tekade RK, Gupta U, Gajbhiye V, & Jain NK. (2009). Dendimer-Mediated Solubilization, 
Formulation Development and in Vitro− in Vivo Assessment of Piroxicam. Molecular pharmaceutics, 
6(3), 940-950.  

Prieto M, Bacigalupe D, Pardini O, Amalvy J, Venturini C, Morilla M, et al. (2006). Nanomolar cationic 
dendrimeric sulfadiazine as potential antitoxoplasmic agent. International journal of pharmaceutics, 
326(1), 160-168.  

Prieto M, Schilrreff P, Tesoriero MD, Morilla M, & Romero E. (2008). Brain and muscle of Wistar rats are 
the main targets of intravenous dendrimeric sulfadiazine. International journal of pharmaceutics, 
360(1), 204-212.  

Prieto MJ, del Rio Zabala NE, Marotta CH, Bichara DR, Simonetta SH, Chiaramoni NS, et al. (2013). G4. 5 
PAMAM dendrimer-risperidone: Biodistribution and behavioral changes in in vivo model. Journal of 
Nanomedicine & Biotherapeutic Discovery, 4(121). doi: doi: 10.4172/2155-983X.1000121 

Prieto MJ, del Rio Zabala NE, Marotta CH, Gutierrez HC, Arevalo RA, Chiaramoni NS, et al. (2014). 
Optimization and in vivo toxicity evaluation of G4. 5 PAMAM dendrimer-risperidone complexes. 
PloS one, 9(2), e90393.  

Prieto MJ, Gutierrez HC, Arévalo RA, Chiaramoni NS, & del Valle Alonso S. (2012). Effect of risperidone 
and fluoxetine on the movement and neurochemical changes of zebrafish. Open Journal of 
Medicinal Chemistry, 2(4), 129.  

Prieto MJ, Temprana CF, del Río Zabala NE, Marotta CH, & del Valle Alonso S. (2011). Optimization and in 
vitro toxicity evaluation of G4 PAMAM dendrimer–risperidone complexes. European journal of 
medicinal chemistry, 46(3), 845-850.  

Röhricht M, Krisam J, Weise U, Kraus UR, & Düring RA. (2009). Elimination of carbamazepine, diclofenac 
and naproxen from treated wastewater by nanofiltration. CLEAN–Soil, Air, Water, 37(8), 638-641.  

Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, & Bernardino L. (2016). Nanoparticle-mediated brain 
drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of 
Controlled Release, 235, 34-47.  

Selderslaghs IWT, Hooyberghs J, Blust R, & Witters HE. (2013). Assessment of the developmental 
neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. 
Neurotoxicology and Teratology, 37(Supplement C), 44-56. doi: 
https://doi.org/10.1016/j.ntt.2013.01.003 

Serralheiro A, Alves G, Fortuna A, & Falcão A. (2014). Intranasal administration of carbamazepine to mice: 
a direct delivery pathway for brain targeting. European Journal of Pharmaceutical Sciences, 60, 32-
39.  

Sobotka JL, Alexander B, & Cook BL. (1990). A review of carbamazepine's hematologic reactions and 
monitoring recommendations. DICP, 24(12), 1214-1219.  

Stroink AR, Skillrud DM, Kiely JM, & Sundt Jr TM. (1984). Carbamazepine-induced hemolytic anemia. Acta 
haematologica, 72(5), 346-348.  



  

26 
 

Svenson S, & Tomalia DA. (2012). Dendrimers in biomedical applications—reflections on the field. 
Advanced Drug Delivery Reviews, 64(Supplement), 102-115. doi: 
https://doi.org/10.1016/j.addr.2012.09.030 

Temprana CF, Prieto MJ, Igartúa DE, Femia AL, Amor MS, & del Valle Alonso S. (2017). Diacetylenic lipids 
in the design of stable lipopolymers able to complex and protect plasmid DNA. PloS one, 12(10), 
e0186194.  

Tomalia DA, Naylor AM, & Goddard WA. (1990). Starburst dendrimers: Molecular‐ level control of size, 
shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte 
Chemie International Edition, 29(2), 138-175.  

Tomson T, Spina E, & Wedlund J-E. (1987). Minor additive inducing effects of phenobarbital on 
carbamazepine clearance in patients on combined carbamazepine-phenytoin therapy. Therapeutic 
drug monitoring, 9(1), 117-119.  

Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, et al. (2012). Terminology for biorelated polymers 
and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410.  

Vidal RL, Matus S, Bargsted L, & Hetz C. (2014). Targeting autophagy in neurodegenerative diseases. 
Trends in pharmacological sciences, 35(11), 583-591.  

Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, et al. (2008). Novel targets for Huntington's 
disease in an mTOR-independent autophagy pathway. Nature chemical biology, 4(5), 295-305.  

Wu T-k, Lin S-Y, Lin H-L, & Huang Y-T. (2011). Simultaneous DSC-FTIR microspectroscopy used to 
screen and detect the co-crystal formation in real time. Bioorganic & medicinal chemistry letters, 
21(10), 3148-3151.  

Yamamoto M, Suzuki N, Hatakeyama N, Kubo N, Tachi N, Kanno H, et al. (2007). Carbamazepine-induced 
hemolytic and aplastic crises associated with reduced glutathione peroxidase activity of 
erythrocytes. International journal of hematology, 86(4), 325-328.  

Yang X, He Ce, Li J, Chen H, Ma Q, Sui X, et al. (2014). Uptake of silica nanoparticles: neurotoxicity and 
Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicology 
letters, 229(1), 240-249.  

Yuen AW, Sander JW, Flugel D, Patsalos PN, Browning L, Bell GS, et al. (2008). Erythrocyte and plasma 
fatty acid profiles in patients with epilepsy: Does carbamazepine affect omega-3 fatty acid 
concentrations? Epilepsy & Behavior, 12(2), 317-323.  

Zhang J, Liu D, Zhang M, Sun Y, Zhang X, Guan G, et al. (2016). The cellular uptake mechanism, 
intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant 
breast cancer cells. International journal of nanomedicine, 11, 3677.  

Zhang L, Wang L, Wang R, Gao Y, Che H, Pan Y, et al. (2017). Evaluating the Effectiveness of GTM-1, 
Rapamycin, and Carbamazepine on Autophagy and Alzheimer Disease. Medical science monitor: 
international medical journal of experimental and clinical research, 23, 801.  

 

 

  



  

27 
 

Figure Legends 

 

Figure 1. Optimization of D:CBZ molar ratio. Different amounts of CBZ were combined with a constant quantity of 

DG4.0 or DG4.5 in methanolic solution to obtain different D:CBZ molar ratios. (A) Concentration of soluble CBZ after 

complexation process. Results are shown as mean ± SD. Significant differences respect to free CBZ were analyzed 

by TWO-WAY ANOVA test followed by Dunnett´s multiple comparisons post-test (**p<0.01, ****p< 0.0001). (B) Moles 

of CBZ per mole of DG4.0 or DG4.5 obtained after the complexation process. Data are shown as mean ± SD. 

 

Figure 2. Stability of D-CBZ complexes during storage and resistance to the lyophilization process. The time 

stability of free or complexed CBZ was studied after storage at 4, 25 or 37 °C, and after lyophilization.  (A) Percentage 

of CBZ (respect to initial concentration) at different times after complexation and storage at 4, 25 or 37 °C. (B) 

Concentration of CBZ before and after the lyophilization process. (C) Percentage of CBZ (respect to initial 

concentration) at different times after lyophilization and storage at 25 °C. (A-C) In all of the cases, results are shown 

as the mean ± SD. Significant differences respect to CBZ were analyzed by TWO-WAY ANOVA test followed by 

Dunnett´s multiple comparisons post-test (*p<0.05; **p<0.01; ***p<0.001; ****p< 0.0001) (Table S1).  

 

Figure 3. Interaction between CBZ and DG4.0 or DG4.5 by FTIR analysis. (A) FTIR spectrum of CBZ powder; (B) 

FTIR spectra of lyophilized DG4.0, DG4.0-CBZ, and PBS control; (C) FTIR spectra of lyophilized DG4.5, DG4.5-CBZ, 

and PBS control. (B-C) Shifts or disappearance of the maximums observed in the spectrum of dendrimers respect to 

D-CBZ complexes are included into the study because the complexes and dendrimers were lyophilized from buffer 

suspension, and phosphate salts have a strong signal in FTIR.   

 

Figure 4. In vitro release of CBZ from D-CBZ complexes in physiological pH 7.4. The in vitro release of CBZ from 

D-CBZ complexes was studied against buffer solution with pH 7.4 by using a micro-dialysis Eppendorf tube diffusion 

technique developed ad hoc. Results are shown as mean ± SD. Significant differences respect to CBZ were analyzed 

by TWO-WAY ANOVA test followed by Dunnett´s multiple comparisons post-test (*p<0.05; **p<0.01; ***p<0.001; 

****p< 0.0001) (Table S2).  

 

Figure 5. Ex vivo toxicity studied by hemolysis in human red blood cells. Hemolysis after 4- or 24-h treatments 

with CBZ, dendrimers or D-CBZ complexes. Hemolysis is expressed as a percentage of the hemoglobin release 

induced by the SDS positive control (100% hemolysis). Results are shown as mean ± SD. Significant differences 

respect to PBS negative control was performed by TWO-WAY ANOVA test followed by Dunnett´s multiple 

comparisons post-test. There were no significant differences for any of the formulations at the tested concentrations.  

 

Figure 6. In vitro toxicity studied in N2a cell culture by colorimetric methods.  Cytotoxicity measured as viability 

by the crystal violet (CV) staining, metabolic activity by the MTT assay, and lysosomal activity by the neutral red (NR) 

uptake at 24 hours post-incubation (hpi) with CBZ, dendrimers or D-CBZ complexes. All data are expressed as the 

percentage respect to non-treated cells control, which was considered as 100% of viability, 100% metabolic activity or 

100% neutral red uptake. Results are shown as the mean ± SD. Statistics were performed by ONE-WAY ANOVA test 

followed by Dunnett´s multiple comparisons post-test. Significantly different respect to the control (**p<0.01; 

***p<0.001; ****p< 0.0001).  
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Figure 7. In vivo toxicity studied in zebrafish larvae. (A) Viability of zebrafish larvae at 7 dpf after a 48-h treatment 

with CBZ or D-CBZ complexes. Viability is expressed as the percentage of the live larvae respect to the total of larvae, 

and data are shown as mean ± SD. Statistics were performed by ONE-WAY ANOVA test followed by Dunnett´s 

multiple comparisons post-test. Significantly different respect to CBZ (***p<0.001). (B) Spontaneous movement in 

zebrafish larvae after 1-, 4-, 24- and 48-h treatment with CBZ or D-CBZ complexes. Spontaneous movement is 

expressed as the percentage respect to movement in the non-treated larvae control, and results are shown as mean ± 

SD. None significant differences respect to CBZ was found after analysis by TWO-WAY ANOVA test followed by 

Dunnett´s multiple comparisons post-test. (C) Morphological changes scored based on the degree of anomalies of 

zebrafish larvae at 7 dpf after 48-h treatment with CBZ or D-CBZ complexes. Statistics were performed by ONE-WAY 

ANOVA test followed by Dunnett´s multiple comparisons post-test. Significantly different respect to CBZ 

(****p<0.0001). (D) Heart rate of zebrafish larvae at 7 dpf after 48-h treatment with CBZ or D-CBZ. Heart rate is 

expressed as the percentage of heartbeat in treated larvae respect to the heartbeat in the non-treated larvae control, 

and data are shown as mean ± SD. Significant differences respect to CBZ was performed by ONE-WAY ANOVA test 

followed by Dunnett´s multiple comparisons post-test (****p<0.0001). 

 

Figure 8. In vivo morphological changes studied in zebrafish larvae. Representative photographs of live 7-dpf 

zebrafish larvae after a 48-h treatment with 30 µM of CBZ or D-CBZ complexes. Significant morphological changes 

are indicated with arrows. 
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Table 1. D-CBZ complexation at 1:150 D:CBZ molar ratio (n=16).  

 Soluble CBZ (µM) CBZ moles per D mole 

CBZ 322.2 ± 52.72 - 

DG4.0-CBZ 834.8 ± 187.2 **** 21 ± 7 

DG4.5-CBZ 898.7 ± 279.4 **** 24 ± 11 

Results are shown as the mean ± SD. Significant differences respect to CBZ were analyzed by ONE-WAY ANOVA 

test followed by Dunnett´s multiple comparisons post-test (****p< 0.0001). No statistical difference between CBZ moles 

per D mole was observed by T-test when DG4.0-CBZ or DG4.5-CBZ was compared.  
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