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3 Swedish Institute of Space Physics, Uppsala, Sweden.
4 Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
5 Instituto de F́ısica de Buenos Aires, CONICET-UBA,

Ciudad Universitaria, 1428, Buenos Aires, Argentina.

Three-dimensional direct numerical simulations are used to study the energy cascade rate in

isothermal compressible magnetohydrodynamic turbulence. Our analysis is guided by a two-point

exact law derived recently for this problem in which flux, source, hybrid, and mixed terms are

present. The relative importance of each term is studied for different initial subsonic Mach numbers

MS and different magnetic guide fields B0. The dominant contribution to the energy cascade rate

comes from the compressible flux, which depends weakly on the magnetic guide field B0, unlike the

other terms whose modulus increase significantly with MS and B0. In particular, for strong B0 the

source and hybrid terms are dominant at small scales with almost the same amplitude but with

a different sign. A statistical analysis made with an isotropic decomposition based on the SO(3)

rotation group is shown to generate spurious results in presence of B0, when compared with an

axisymmetric decomposition better suited to the geometry of the problem. Our numerical results

are eventually compared with previous analyses made with in-situ measurements in the solar wind

and the terrestrial magnetosheath.

I. INTRODUCTION

Exact results in fully developed turbulence represent

strong boundary conditions that any model must sat-

isfy [1], however there are only a few of such predictions.

The so-called “4/5 law” is an exact relation for incom-

pressible hydrodynamic (HD) turbulence. In the infinite

Reynolds number limit and assuming space homogeneity,

isotropy and time stationary, this law expresses how the

two-point third-order structure function for the velocity

field is connected to the energy cascade rate ε. In par-

ticular, in Fourier space this exact relation leads dimen-

sionally to the well-known Kolmogorov energy spectrum

Ek ∼ ε2/3k−5/3 [2, 3]. For incompressible magnetohydro-

dynamic (IMHD) turbulence, Chandrasekhar [4] derived

such an exact relation under the assumptions of infinite

kinetic and magnetic Reynolds numbers, time stationar-

ity, space homogeneity, and full isotropy (i.e., rotation

and mirror symmetries). Later, Politano and Pouquet

[5, 6] derived the so-called 4/3 law for IMHD turbulence,

which gives a simple relation between two-point third-

order structure functions, the distance between the two

points, and the energy dissipation rate.

The validity of the exact law in IMHD turbulence has

been the subject of several numerical tests [see, e.g. 7–10].

For example, Mininni and Pouquet [7] reported high spa-

tial resolution results for decaying IMHD turbulence in

which the energy dissipation rate seemed to reach asymp-

totically a constant value at large Reynolds numbers.

An extension of the exact IMHD law in presence of a

constant velocity shear was proposed and tested numer-

ically with direct numerical simulations (DNS) of two-

dimensional (2D) IMHD [9]. Among several other uses,

the exact laws for IMHD turbulence provides a precise

identification of the inertial range [see, e.g., 11, and ref-

erences therein], and an estimate of the energy cascade

rate and the Reynolds numbers in experiments of tur-

bulence, in particular when dissipation mechanisms are

unknown such as in near-Earth space plasmas [12–15].

Under the classical assumptions of homogeneity, sta-



2

tionarity, and infinite kinetic/magnetic Reynolds num-

bers, Banerjee and Galtier [16] derived an exact law

for isothermal compressible MHD (CMHD) turbulence.

Their results revealed the presence of a new type of term

that acts in the inertial range as a source (or a sink) for

the energy cascade rate [see also, 17]. It is worth notic-

ing that in IMHD turbulence there is only one type of

term, the flux, that transfers energy in the inertial range

[1, 18]. Because of its complexity, the expression of the

exact law in CMHD is not unique [e.g., see 19]. For ex-

ample, Andrés and Sahraoui [20] have re-derived the law

using the plasma velocity, the compressible Alfvén veloc-

ity, and the plasma density as primitive variables. The

authors found four different categories of terms that are

involved in the inertial range. Besides the flux and the

sources previously reported, the authors also found two

new types of terms to which they referred to as hybrid and

β-dependent terms (with β the ratio between the plasma

and magnetic pressure). It is the main goal of the present

paper to investigate numerically the relative importance

and the contribution of each of these terms to the exact

law in CMHD isothermal turbulence.

The role of density fluctuations in the solar wind en-

ergy cascade rate was investigated by Carbone et al. [21].

Using Ulysses solar wind data the authors found a bet-

ter scaling relation with a heuristic compressible model

than with the IMHD exact relation, showing therefore

the relevance of density fluctuations in the cascade pro-

cess (see a discussion of this model in Hadid et al. [22]).

Following a more rigorous approach, Banerjee et al. [23]

used the exact law for isothermal CMHD [16] to analyze

the fast solar wind data from the THEMIS mission. The

authors performed a term-by-term analysis, showed the

existence of an inertial range over more than two decades

of scales, and found that the compressible fluctuations

increase (from 2 to 4 times) the estimation of the turbu-

lent cascade rate with respect to the estimations stem-

ming from the incompressible model. Hadid et al. [22] ex-

tended the previous analysis (still using THEMIS data)

to the slow solar wind which is known to be more com-

pressible. In this case they found that the compressible

energy cascade rate is increased even further (because of

higher density fluctuations in the slow solar wind when

compared to the fast wind) and that it obeys a power-

law scaling with the turbulent Mach number. However,

it is worth noticing that in all these recent studies [22–

24] several source terms of the exact CMHD law have

been neglected. It is the goal of the present paper to

check carefully if the assumptions made to neglect these

terms are indeed satisfied in DNS close to the solar wind

conditions.

Recently, several new results have been obtained in

compressible turbulence that are worth mentioning here.

For example, Zank et al. [25] used the nearly incompress-

ible MHD (NI MHD) equations [e.g., see 26] to describe

solar wind homogeneous or inhomogeneous turbulence

for plasma β . 1. The authors presented a NI MHD

formulation describing the transport throughout the so-

lar wind of turbulence which was in its majority 2D, and

with a small slab component. Using Voyager 1 measure-

ments, Zank et al. [27] showed that inner heliosheath fast

and slow MHD waves incident on the heliopause gener-

ate, in the very local interstellar medium (LISM), only

fast MHD waves that propagate into this medium. The

authors suggested that this may be the origin of com-

pressible turbulence in the LISM.

On the other hand, Yang et al. [28] used DNS of me-

chanically forced CMHD turbulence to study the de-

gree to which some turbulence theories proposed for in-

compressible flows remain applicable in the compress-

ible case. In particular, intermittency, coherent struc-

tures, and energy cascade rates were studied with dif-

ferent forcing mechanisms. Grete et al. [29] extended

the classical shell-to-shell energy transfer analysis to the

isothermal compressible regime. The authors derived

four new transfer functions in order to measure, e.g., the

energy exchange via the magnetic pressure. Andrés et al.

[30] showed direct numerical evidence of the excitation

of magnetosonic and Alfvén waves in three-dimensional

(3D) CMHD turbulence at small sonic Mach numbers.

Using spatio-temporal spectra, in the low β regime, the

authors found excitation of compressible and incompress-

ible fluctuations, with a clear transfer of energy towards

Alfvénic and 2D modes. However, in the high β regime,

fast and slow magnetosonic waves were present with no

clear signature of Alfvén waves, a significant part of the

energy being carried by 2D turbulent eddies. Finally,

Andrés et al. [31] have derived an exact law for 3D ho-

mogeneous compressible isothermal Hall magnetohydro-

dynamic turbulence, without the assumption of isotropy.
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The authors showed that the Hall current introduces new

flux and source terms that act at the small scales (compa-

rable or smaller than the ion skin depth) to significantly

impact the turbulence dynamics.

The main goal of the present paper is thus to investi-

gate the energy cascade rate in isothermal CMHD turbu-

lence using 3D DNS. We present a comprehensive anal-

ysis of the exact law, with a particular emphasis on the

nature of each term involved in the nonlinear cascade

of energy, and on the role of the background magnetic

field B0. Furthermore, we discuss our numerical results

in the context of the original observational results from

Refs. [22, 23]. We expect that our numerical findings will

help to clarify some subtle issues regarding the use of the

compressible exact law in DNS and spacecraft data.

The paper is organized as follows: in Sec. II A we de-

scribe the CMHD equations; in Sec. II B we present the

exact law for fully developed isothermal CMHD turbu-

lence; in Sec. II C and IID we introduce the numerical

code and techniques used to compute the different cor-

relation functions; in Sec. III we expose our numerical

results and, finally, in Sec. IV we discuss the main find-

ings and their implications for the observational studies

in the near-Earth space.

II. THEORY

A. Compressible MHD

The 3D CMHD equations correspond to the continu-

ity equation for the mass density, the momentum equa-

tion for the velocity field in which the Lorentz force is

included, the induction equation for the magnetic field,

and the differential Gauss’ law. These equations can be

written as [see, e.g., 30, 32],

∂ρ

∂t
= −∇ · (ρu), (1)

∂u

∂t
= −u ·∇u− ∇P

ρ
+

(∇×B)×B

4πρ
+ fk + dk, (2)

∂B

∂t
= ∇× (u×B) + fm + dm, (3)

∇ ·B = 0, (4)

where u is the velocity field fluctuation, B = B0+b is the

total magnetic field, ρ is the mass density, and P is the

scalar pressure. For the sake of simplicity we assume that

the plasma follows an isothermal equation of state, P =

c2sρ, where cs is the constant sound speed, which allows

us to close the hierarchy of the fluid equations (no energy

equation is further needed). Finally, fk,m are respectively

a mechanical and the curl of the electromotive large-scale

forcings, and dk,m are respectively the small-scale kinetic

and magnetic dissipation terms.

Alternatively to the magnetic field B, the compress-

ible Alfvén velocity uA ≡ B/
√
4πρ can be used (where

ρ is time and space dependent). In this manner, both

field variables, u and uA, are expressed in speed units.

Therefore, Eqs. (1)-(4) can be cast as [33],

∂e

∂t
= −u ·∇e− c2s∇ · u, (5)

∂u

∂t
= −u ·∇u+ uA ·∇uA − 1

ρ
∇(P + PM )

− uA(∇ · uA) + fk + dk, (6)

∂uA

∂t
= −u ·∇uA + uA ·∇u− uA

2
(∇ · u) + fm + dm,

(7)

uA ·∇ρ = −2ρ(∇ · uA), (8)

where PM ≡ ρu2
A
/2 is the magnetic pressure. Note that

we have written Eq. (3) as a function of the internal

compressible energy for an isothermal plasma, i.e., e ≡
c2s ln(ρ/ρ0), where ρ0 is a constant (of reference) mass

density. In the rest of the paper we shall assume that the

fields considered are regular and therefore differentiable.

Singular fields may exist in the inviscid case, leading to

the appearance of anomalous dissipation [34–36].

B. Exact law for CMHD turbulence

Following the usual assumptions for fully developed ho-

mogeneous turbulence (i.e., infinite kinetic and magnetic

Reynolds numbers and a steady state with a balance be-

tween forcing and dissipation [11, 16, 17, 37]), an exact

law for CMHD turbulence can be obtained as [16, 20],
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−2εC =
1

2
∇r ·

〈

[(δ(ρu) · δu+ δ(ρuA) · δuA + 2δeδρ
]

δu− [δ(ρu) · δuA + δu · δ(ρuA)]δuA

〉

+ 〈[R′
E − 1

2
(R′

B +RB)− E′ +
P ′
M − P ′

2
](∇ · u) + [RE − 1

2
(RB +R′

B)− E +
PM − P

2
](∇′ · u′)〉

+ 〈[(RH − R′
H)− ρ̄(u′ · uA) +H ′](∇ · uA) + [(R′

H −RH)− ρ̄(u · u′
A) +H ](∇′ · u′

A)〉

+
1

2
〈
(

e′ +
uA

2

′
2
)[

∇ · (ρu)
]

+
(

e+
uA

2

2
)[

∇
′ · (ρ′u′)

]

〉

− 1

2
〈β−1

′

∇
′ · (e′ρu) + β−1

∇ · (eρ′u′)〉, (9)

where εC is the total compressible energy cascade rate.

We have defined the total energy and the density-

weighted cross-helicity respectively as

E(x) ≡ ρ

2
(u · u+ uA · uA) + ρe, (10)

H(x) ≡ ρ(u · uA), (11)

and their associated two-point correlation functions as,

RE(x,x
′) ≡ ρ

2
(u · u′ + uA · u′

A) + ρe′, (12)

RH(x,x′) ≡ ρ

2
(u · u′

A + uA · u′). (13)

In addition, we have defined the magnetic energy density

RB(x,x
′) ≡ ρ(uA · u′

A
)/2, the prime denotes field eval-

uation at x′ = x + ℓ (ℓ being the displacement vector)

and the angular bracket 〈·〉 denotes an ensemble average.

It is worth mentioning that the properties of spatial ho-

mogeneity implies (assuming ergodicity) that the results

of averaging over a large number of realizations can be

obtained equally well by averaging over a large region

of space for one realization [38]. Finally, we have intro-

duced the usual increments and local mean definitions,

i.e. δα ≡ α′ − α and ᾱ ≡ (α′ + α)/2 (with α any scalar

function), respectively.

We recall that the derivation of the exact law (9) does

not require the assumption of isotropy and that it is in-

dependent of the dissipation mechanisms acting in the

plasma (assuming that the dissipation acts only at the

smallest scales in the system) [see also, 11, 17, 37]. In a

compact form, the exact law for CMHD turbulence (i.e.,

Eq. 9) can be schematically written as,

−2εC =
1

2
∇ℓ · FC + SC + SH +Mβ, (14)

where FC, SC, SH and Mβ represent the total compress-

ible flux, source, hybrid and β-dependent terms, respec-

tively, with by definition

FC ≡ 〈[(δ(ρu) · δu+ δ(ρuA) · δuA + 2δeδρ
]

δu− [δ(ρu) · δuA + δu · δ(ρuA)]δuA〉, (15)

SC ≡ 〈[R′
E − 1

2
(R′

B +RB)](∇ · u) + [RE − 1

2
(RB +R′

B)](∇
′ · u′)〉

+ 〈[(RH −R′
H)− ρ̄(u′ · uA)](∇ · uA) + [(R′

H −RH)− ρ̄(u · u′
A)](∇

′ · u′
A)〉, (16)

SH ≡ 〈
(P ′

M − P ′

2
− E′

)

(∇ · u) +
(PM − P

2
− E

)

(∇′ · u′)〉+ 〈H ′(∇ · uA) +H(∇′ · u′
A)〉

+
1

2
〈
(

e′ +
uA

2

′
2
)[

∇ · (ρu)
]

+
(

e+
uA

2

2
)[

∇
′ · (ρ′u′)

]

〉, (17)

Mβ ≡ − 1

2
〈β−1

′

∇
′ · (e′ρu) + β−1

∇ · (eρ′u′)〉. (18)

Eq. (15) is the energy flux, which is the usual term present in the exact law of incompressible turbulence [20].
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This term is written as a global divergence of products

of increments of different variables. It is worth men-

tioning that the total compressible flux (15) is a com-

bination of fourth- and third-order terms, which makes a

major difference with the incompressible case where the

flux terms are usually third-order correlation functions.

The appearance of a fourth-order correlation function is

a direct consequence of the total energy definition in the

CMHD model (see Eq. 10). The purely compressible

source terms in Eq. (16) may act as a source (or a

sink) for the mean energy cascade rate in the inertial

range. These terms involve two-point correlation func-

tions (namely RE , RB and RH) and are proportional to

the divergence of the Alfvén and kinetic velocity fields.

The hybrid term offers the freedom to be written either

as a flux- or as a source-like term. However, when written

as a flux-like term it cannot be expressed as the product

of increments, as the usual flux in incompressible HD and

MHD turbulence [2–6, 39] or the flux term in Eq. 15. On

the other hand, the mixed β-dependent term (already

reported as a flux-like term in Banerjee and Galtier [16]

under some condition) has no counterpart in compress-

ible HD turbulence [17, 40] and cannot, in general, be

expressed either as purely flux or a source. Besides, the

mixed β-dependent term stems from the magnetic pres-

sure gradient term in the momentum equation (1).

The schematic representation (14) reflects the true na-

ture of each term in the exact law for CMHD turbulence

[20]. In order to understand the impact of each contribu-

tion in the nonlinear energy cascade rate, we have used

this particular organization. It is worth mentioning that

in the observational works of Refs. [22, 23], FC, part of

Mβ (under the assumption of statistical stationarity of

the β parameter), and part of SH were considered in the

evaluation of the solar wind energy cascade rate. The

remaining terms were considered as sources and assumed

to be sub-dominant in the inertial range [see, 41]. We

will return to this issue in Sec. IV.

Integrating Eq. (14) over a cylinder of radius ℓ⊥, we

can obtain an approximate scalar relation for anisotropic

turbulence in a symbolic form (assuming that perpendic-

ular correlation functions do not depend in ℓ‖ and parallel

correlation functions do not depend in ℓ⊥),

−4εCℓ⊥ = FC +QSC
+QSH

+QMβ
, (19)

Run B0 MS 〈δEu〉 〈δEb〉

I 0 1/4 0.13 0.14

II 2 1/4 0.15 0.05

III 8 1/4 0.16 0.06

IV 0 1/2 0.13 0.14

Table I. Parameters used in Runs I to IV: B0 is the mag-

netic guide field, MS is the sonic Mach number, 〈δEu〉 and

〈δEB〉 are the average fluctuating kinetic and magnetic ener-

gies reached in the stationary state.

where FC ≡ FC · ℓ⊥/ℓ⊥ and the integral functions corre-

spond to

QT ≡ 2

ℓ⊥

∫ ℓ⊥

0

T(ℓ∗⊥)ℓ
∗
⊥dℓ

∗
⊥, (20)

with T(ℓ⊥) = SC(ℓ⊥), SH(ℓ⊥) and Mβ(ℓ⊥), respectively.

C. Numerical code

The 3D CMHD Eqs. (1)-(4) are numerically solved using

the Fourier pseudo-spectral code GHOST [42, 43] with a

new module for compressible flows based on previous de-

velopments [44, 45]. The numerical scheme used ensures

the exact energy conservation for the continuous time

spatially discrete equations [43] (as well as conservation

of all other quadratic invariants in the system). We used

a linear spatial resolution of N = 512 grid points in each

direction in a cubic periodic box. For simplicity, we used

identical dimensionless viscosity and magnetic diffusivity,

ν = η = 1.25× 10−3 (i.e., the magnetic Prandtl number

is one). In all our runs, kmin = 1 for a box of length

L0 = 2π and N = 512 leads to a maximum wavenumber

kmax = N/3 ∼ 170 (de-aliasing rule). At all times, we

have checked that kD/kmax < 1, kD being the dissipation

wave number.

The initial state of our simulations corresponds to den-

sity, velocity and magnetic fields amplitude fluctuations

equal to zero. For all times t > 0, the velocity field and

the magnetic vector potential are forced by a solenoidal

mechanical and an electromotive forcing, respectively, at

the largest scales of the numerical box (i.e., 1 ≤ kf ≤ 3).

The mechanical and electromotive forcings are random

and uncorrelated, and they inject neither kinetic nor
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magnetic helicity. Furthermore, the set of random phases

of the two forces are independent. Random phases were

also slowly evolving in time, to avoid introducing long-

term correlations, but also to prevent introducing very

fast time scales. To this end, a new set of random phases

is generated for each forcing function every 1/2 turnover

time. Finally, the forcing are linearly interpolated from

their previous states to the new random states on 1/2

turnover time, and the process is then repeated (for more

details about the random forcing used here, see [30]). We

performed four numerical simulations with initial sub-

sonic Mach numbers MS = u0/cs (tipically, u0 ∼ 1)

and with different background magnetic field B0 (see Ta-

ble I). This allows us to investigate different regimes of

CMHD turbulence, with a special emphasis on the mag-

netic guide field and the level of compressibility of the

plasma. In all cases studied here B0 is along the ẑ axis.

D. Correlation functions

For the computation of correlation functions in mul-

tiple directions (and thus to increase statistical conver-

gence by averaging over all these directions), we use the

angle-averaged technique presented in Taylor et al. [46].

This technique avoids the need to use 3D interpolations

to compute the correlation functions in directions for

which the evaluation points do not lie on grid points.

This significantly reduces the computational cost of any

geometrical decomposition of the flow [47]. In partic-

ular, and considering that we have simulations without

and with a magnetic guide field, for which we can expect

the fields to be respectively statistically isotropic or ax-

isymmetric, we have used two decompositions: the one

based on the SO(3) rotation group for isotropic turbu-

lence, and another one based on the SO(2)×R symmetry

group (i.e., rotations in the x̂− ŷ plane plus translations

in the ẑ direction) for anisotropic (axisymmetric) turbu-

lence.

The procedure used to average each term in Eqs. (9)

over several directions can be summarized as follows: in

the isotropic SO(3) decomposition, the correlation func-

tions are computed along different directions generated

by the vectors (all are in units of grid points in the simula-

tion box) (1,0,0), (1,1,0), (1,1,1), (2,1,0), (2,1,1), (2,2,1),

(3,1,0), (3,1,1) and taking all the index and sign per-

mutations of the three coordinates (and removing any

vector that is a positive or negative multiple of any other

vector in the set) [46, 48]. This procedure generates 73

unique directions. In this manner, the SO(3) decom-

position gives the correlation functions as a function of

73 radial directions covering almost all the sphere [46],

whose averaging results in the isotropic correlation func-

tions that depend on ℓ.

In the SO(2) case, the correlation functions are com-

puted using 12 different directions generated by integer

multiples of the vectors (1,0,0), (1,1,0), (2,1,0), (3,1,0),

(0,1,0), (-1,1,0), (-1,2,0), (-2,1,0), (-1,2,0), (-1,3,0), (-

3,1,0), (-1,3,0) (again, all vectors are in units of grid

points in the simulation box), and the vector (0,0,1) for

the translations in z direction. Once all structure func-

tions were calculated, the correlation functions are ob-

tained by averaging over the 12 directions in the x̂ − ŷ

plane, and the parallel structure functions can be com-

puted directly using the generator in the ẑ direction. In

other words, the SO(2) decomposition gives the correla-

tion functions along 12 polar directions in the x̂−ŷ plane

and after averaging, one obtains a final correlation func-

tion as a function of the perpendicular polar direction

(i.e., ℓ⊥) while R corresponds to the correlation function

along the ẑ direction (i.e., with spatial increments ℓ‖)

[49].

It is worth mentioning that Eq. (9) is valid for the

mean values and not for each particular direction. In

each of these decompositions we thus average the 73 (or

12) correlation functions of each term in Eq. (9) to in-

vestigate their relative importance in the compressible

energy cascade rate. Although the SO(3) decomposition

is better suited for isotropic turbulence, it has been used

before to investigate anisotropic turbulence for the anal-

ysis of experimental results [50, 51] and numerical sim-

ulations [48, 52–54]. The SO(2)×R decomposition, de-

signed specifically from the symmetry group of axisym-

metric turbulence, has been developed and used to inves-

tigate anisotropic turbulence using numerical simulations

in [49]. In all cases, an improvement in the statistical

convergence of correlation functions was observed when

compared with correlation functions computed in only a

few directions.
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Figure 1. Run I: B0 = 0 and MS = 0.25. Mean value of the

compressible flux FC (black), source SC (dark blue), hybrid

SH (gray) and β-dependent Mβ (light blue) terms of the exact

law (19) computed using the anisotropic (a) and isotropic

(b) decompositions. Solid lines correspond to positive values

while dashed lines correspond to negative values. Inset: total

energy cascade rate computed using Eq. (19).

III. NUMERICAL RESULTS

For all runs in Table I, we computed the terms in the

RHS of the exact law (9) using both the anisotropic and

the isotropic decomposition techniques presented in Sec.

II C. We investigate the different components and the
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Figure 2. Run II: B0 = 2 and MS = 0.25. Same description

as in Fig. 1 applies.

energy cascade rate as we vary the sonic Mach number

and the magnetic guide field in our simulations.

Figures 1(a) and 1(b) show for Run I the terms in the

RHS of Eq. (19) as a function of the perpendicular (ℓ⊥)

and the isotropic (ℓ) scale obtained using the anisotropic

and isotropic decomposition, respectively. Since there is

no privileged direction in Run I (B0 = |B0| = 0), we

find approximately the same variation and amplitude for

the different terms as well as for the total energy cascade

rate, independently of the decomposition used.
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10−1 100ℓ⊥

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(a)

run III−Anisotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0ℓ⊥

10−4

10−2

100

εC

10−1 100
ℓ

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(b)

run III− Isotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0

ℓ

10−6

10−4

10−2

εC

Figure 3. Run III: B0 = 8 and MS = 0.25. Same description

as in Fig. 1 applies.

There are indications of a fully developed turbulence

regime that is compatible with a Kolmogorov-like scaling

[2, 7, 11, 25, 55] and with a constant energy cascade rate

(see inset in Fig. 1). Note that at this moderate spatial

resolution we cannot expect a wide inertial range. Nev-

ertheless, the one evidenced here is sufficient for a first

quantitative study of the different contributions to the

exact law.

In the same format as Fig. 1, Figs. 2 and 3 display the

results for Runs II and III respectively. As expected, the

presence of a magnetic guide field B0 strongly affects the

statistical results. First, the compressible flux decreases

slightly when B0 is applied. We also see the appearance

of a negative contribution (for Runs II and III) when the

isotropic decomposition is used; this disrupts the scaling

law that emerges. A comparison with the anisotropic de-

composition reveals that the disruptions are a spurious

effect due to the assumption of isotropy, which is not

fulfilled in the runs with moderate to strong magnetic

guide field [e.g., see 56]. Second, we find an increase

of the source, hybrid and β-dependent (although in this

case it is less important) integral terms when the mag-

netic guide field increases. For Run III, the source and

hybrid terms become even dominant (in absolute value)

at small scales; however, since they have the same am-

plitude but with a different sign they cancel each other

leaving the compressible flux as the main contribution

to the cascade rate. Still for Run III, it is interesting

to note that it is precisely when the compressible flux

dominates (in absolute value) that the source and hybrid

terms behave differently. Finally, we see that the com-

pressible cascade rate εC is more difficult to evaluate in

presence of B0 because the inertial range becomes nar-

rower (a higher spatial resolution seems to be necessary

to get a reliable evaluation of this quantity). Note that

in this case the fluctuating kinetic and magnetic energies

become smaller (by a factor of ∼ 3) in comparison with

the cases without guide field, resulting from the fact that

we kept the forcing amplitude fixed for all simulations

independently of the value of B0.

A. Flux term

The compressible flux in expression (15) can be decom-

posed as FC = F1a + F1b + F2 with

F1a ≡
〈

[(δ(ρu) · δu+ δ(ρuA) · δuA

]

δu〉, (21)

F1b ≡− 〈[δ(ρu) · δuA + δu · δ(ρuA)]δuA

〉

, (22)

F2 ≡ 2〈δeδρδu〉. (23)

The term F1 = F1a + F1b can be identified as the com-

pressible version of the (incompressible) MHD Yaglom

flux [18] and F2 corresponds to a new purely compress-

ible flux. Figure 4 shows the total compressible flux FC

and its components F1a, F1b and F2 as a function of ℓ⊥
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−1
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−5
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−F1a

−F1b

−F2

Figure 4. (a) Total compressible flux FC (solid) and its com-

ponents F1a (dashed-dot), F1b (dot) and F2 (dashed) as a

function of ℓ⊥, for Runs I (gray) and IV (black).

−0.2 0.0 0.2

e

0.0

0.5

1.0

×107

(a)run I

run IV

0.9 1.0 1.1

ρ

0.0

0.5

1.0

×107

(b)run I

run IV

0.0 0.5 1.0

|u⊥|

0.0

0.2

0.4

0.6

0.8

×107

(c)

run I

run IV

0.0 0.5 1.0

M turb

S

0.0

0.2

0.4

0.6

0.8

×107

(d)

run I

run IV

Figure 5. Histograms of the internal energy e (a), the mass

density ρ (b), the absolute value of the perpendicular velocity

|u⊥| (c) and the turbulent sonic Mach number M turb
S (d), for

runs I (grey) and IV (black lines).

for Runs I and IV (B0 = 0) for MS = 0.25 and MS = 0.5

respectively. Figure 5 displays the histograms over all

the numerical domain of the internal compressible en-

ergy e, density values ρ, the absolute value of the per-

pendicular velocity |u⊥|, and the turbulent Mach number

M turb
S ≡ urms/cs for Runs I and IV. In Fig. 4 one can see

that as the sonic Mach number increases the purely com-

pressible component F2 experiences a strong increase (at

least one order of magnitude through all spatial perpen-

dicular scales), while the Yaglom-like terms F1a and F1b

remain approximately the same. Furthermore, while e

and |u⊥| have almost the same statistical values for both

runs, the distribution of density values forMS = 0.5 has a

larger spread around the reference density value (ρ0 = 1)

than the one for MS = 0.25. In particular, we obtain a

Gaussian distribution for the internal energy e, which is

compatible with previous results in the literature [e.g.,

see 57–60]. Note that the internal energy is a quantity

that is relevant for star formation dynamics [61]. The

large spread in density values plus the different turbu-

lent Mach numbers in both runs explain the strong in-

crease in amplitude of F2. However, we see that even for

MS = 0.5 the contribution of F2 to the total compress-

ible flux remains negligible, which may be explained by

the relatively low density fluctuations δρ/ρ . 10% as can

be seen in Fig. 5 (b). Therefore, for small initial values

of the sonic Mach number and zero magnetic guide field,

the dominant contribution in the total compressible flux

is due to the Yaglom-like terms.

Finally, we recall that in the present runs we used a

solenoidal mechanical forcing for the velocity field. In

runs with a balanced solenoidal/compressible external

forcing, one may expect to obtain different results. This

issue is particularly relevant in distant astrophysical plas-

mas such as the interstellar medium or supernova rem-

nants [58, 62].

B. Source, hybrid and β-dependent terms

The source, hybrid and β-dependent terms of the exact

law (9) arise exclusively because of the compressibility

of the plasma [30] (in the incompressible case they are

exactly null). In particular, while the source and hybrid

terms are proportional to ∇ ·u, ∇ ·uA and ∇ · (ρu), the
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Figure 6. Total source term SC (light gray) and its compo-

nents SC1 (dot black) and SC2 (dashed black) as a function of

ℓ⊥ for Runs I (a) , II (b) and III (c).

mixed β-dependent term is proportional to ∇ · (e′ρu).
All these terms may modify the energy cascade rate in

the inertial range, which is assumed to be constant at

those scales.

The source (16) can be cast as SC = SC1 + SC2, with

SC1 ≡ 〈[R′
E − 1

2
(R′

B +RB)](∇ · u)

+ [RE − 1

2
(RB +R′

B)](∇
′ · u′)〉, (24)

SC2 ≡ 〈[(RH −R′
H)− ρ̄(u′ · uA)](∇ · uA)

+ [(R′
H −RH)− ρ̄(u · u′

A)](∇
′ · u′

A)〉, (25)

where SC1 and SC2 correspond to the terms proportional

to ∇ · u and ∇ · uA, respectively. The hybrid term (17)

(which can be expressed as a source or flux-like term

10
−7

10
−5

10
−3

run I

|SH1|

|SH2|

|SH3|

|SH|

10
−6

10
−5

10
−4

10
−3

10
−2

run II

10
−1

10
0

ℓ⊥

10
−5

10
−4

10
−3

10
−2

(a)

(b)

(c)

run III

Figure 7. Total hybrid term SH (light gray) and its compo-

nents SH1 (dot black), SH2 (dashed black) and SH3 (dashed-

dot black) as a function of ℓ⊥ for Runs I (a), II (b) and III

(c).

[16, 20]) can be cast as SH = SH1 + SH2 + SH3, with

SH1 ≡〈
(P ′

M − P ′

2
− E′

)

(∇ · u) +
(PM − P

2
− E

)

(∇′ · u′)〉,
(26)

SH2 ≡〈H ′(∇ · uA) +H(∇′ · u′
A)〉, (27)

SH3 ≡1

2
〈
(

e′ +
u

′
2
A

2

)[

∇ · (ρu)
]

+
(

e+
u2
A

2

)[

∇
′ · (ρ′u′)

]

〉,
(28)

where SH1, SH2 and SH3 correspond to the terms propor-

tional to ∇ · u, ∇ · uA and ∇ · (ρu), respectively. Note

that in recent observational works [22, 23], only the com-

ponent SH3 was used to compute the solar wind energy

cascade rate, besides the flux terms of Eq. 15. The rest of

the hybrid components, i.e., SH1 and SH2, were assumed
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Figure 8. β-dependent terms Mβ as a function of ℓ⊥ for (a)

Runs I (light gray), II (gray) and III (black), and for (b) Run

I (light gray) and IV (black), respectively.

to be sub-dominant in the inertial range. We will return

to this point in Sec. IV.

Figures 6 and 7 show the absolute values of the source

and hybrid terms as a function of ℓ⊥ for Runs I, II and

III. Like above, the total (integrated) source and hybrid

terms increase with increasing magnetic guide field (but

while keeping the sonic Mach number constant). This

behavior reflects the fact that SC and SH are explicitly

proportional to B0 since uA includes the mean plus the

fluctuations of the magnetic field. Furthermore, both

terms tend to the same value in the small-scale limit.

Under the assumption of statistical stationarity of the

β parameter, the β-dependent term (18) can be con-

verted into flux-like and be more easily measured using

single-spacecraft data [see, 20, 22, 23]. However, in the

present paper, we do not assume such additional hypoth-

esis about the β parameter. Figure 8(a) displays the to-

tal β-dependent term Mβ as a function of ℓ⊥ for B0 = 0,

B0 = 2 and B0 = 8 with MS = 0.25 (i.e., Runs I, II and

III respectively) while Fig. 8(b) shows the same quantity

for MS = 0.25 and MS = 0.5 with B0 = 0 (Runs I and

IV respectively). As for the other contributions, when

we increase the magnetic guide field, the β-dependent

term increases. We see, however, that it remains mainly

smaller than the other contributions and in particular

smaller than the compressible flux, which is compatible

with the analysis shown in Figs. 1 to 3. Finally, from

Fig. 8(b) we note that this term has a strong dependence

on the Mach number, as does the mass density fluctua-

tions (see Fig. 5). This can be also concluded directly

from Eq. (18). Note that in contrast to previous results

[22], here we consider the total density values, i.e., the

mean plus the fluctuation part.

IV. DISCUSSION AND CONCLUSION

We have presented a first detailed 3D numerical analy-

sis of the exact law for fully developed isothermal CMHD

turbulence [16, 20]. Following Andrés and Sahraoui [20],

we have separated the different contributions of the ex-

act law in four types of terms, i.e., the compressible flux,

source, hybrid and β-dependent terms. We run differ-

ent simulations with varying initial Mach number and

magnetic guide field. For all the runs, the compressible

flux was found to be the dominant component in the

exact law for CMHD turbulence. Furthermore, and as

expected, this term is not strongly affected by the pres-

ence of a magnetic guide field B0 since it is a product of

increments (and because the total density does not vary

significantly between two points in space). In contrast,

B0 was found to have a strong impact on the remain-

ing terms of the exact law (9) [see also, 20] and also

on the anisotropy of the flow [30, 56, 63–72]. Our nu-

merical findings show a clear increase in SC, SH and Mβ

terms as B0 is increased from 0 to 8. However, in all

these cases the addition of these terms remain negligible

with respect to the total compressible flux. Therefore,

our energy cascade rate estimate has only a weak depen-

dence on the magnetic guide field. It is worth mention-

ing that this result may be quite different if we consider

the case of a strong guide field (B0 > 10), a supersonic

turbulence (MS > 1) and/or compressive driving of the

velocity field.

Using in-situ measurements from the THEMIS mis-

sion, Banerjee et al. [23] and Hadid et al. [22] have inves-

tigated the role of compressible fluctuations in the MHD

energy cascade rate for the fast and slow solar winds.

Those works were extended recently to the terrestrial
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magnetosheath where a first estimation of the energy cas-

cade rate is obtained [24]. The authors computed some of

the terms of the exact law (9) and compared their relative

impact on the total compressible energy cascade rate εC .

In these original works, the authors used an isotropic de-

composition to compute the Yaglom-like term (i.e., F1),

the compressible flux (i.e., F2) and a third flux-like term

F3, which is a combination of a part of the hybrid and

the β-dependent (assuming statistical stationarity of β)

terms. In particular,

F3 = 2

〈(

ē+ β−1e+
u2
A

2

)

δ(ρ1u)

〉

, (29)

where ρ1 corresponds to the density fluctuations (the

part proportional to ρ0 has been written as a source and

has not been computed). It is straightforward to identify

the parts of SH3 and Mβ which are involved in Eq. (29).

In Refs. [22, 23], the authors have found for the major-

ity of the analyzed events comparable values of the com-

pressible energy cascade rate εC and the incompressible

one εI (computed from the exact law for IMHD turbu-

lence [5, 6]). That statistical result is compatible with

our numerical findings, in which the Yaglom-like flux is

the dominant component of Eq. (9) and is very close

to the incompressible Yaglom term [18]. However, some

of the spacecraft observations showed that the compress-

ible Yaglom flux and/or the (F2 + F3) term can play

a leading role in amplifying εC with respect to εI , in

particular in the slow solar wind (see Fig. 10 in Ha-

did et al. [22]). There are two possible explanations

to those situations, which are not necessarily mutually

exclusive. First, those events have larger density (and

magnetic field) fluctuations that go beyond the values

covered by our simulations in particular in the slow solar

wind where δρ/ρ . 20% and the turbulent Mach num-

ber MS
turb . 0.8. This should be particularly true for

the events that showed higher ratio of F1/FI up to 10

(see Fig. 10 in [22]). The other possibility is that some

missing (source) terms would have compensated (at least

partly) the F3 term in those works, as we showed in the

present simulations. Indeed, as recalled above, the ob-

servational results in Refs. [22–24] considered only the

contributions from SH3, while our simulations results in-

dicate that the other terms, SH1 and SH2, may well have

equal contribution, and consequently should be consid-

ered. As we mentioned in Sec. III B, the compressible

source terms involve local divergences that cannot be

computed reliably using a single spacecraft because of

the entanglement of the space and time variations (see

Eq. 16). Thus, in Refs. [22–24], the authors had to as-

sume that those terms are sub-dominant in the inertial

range (this was also based on numerical simulations of

supersonic hydrodynamic turbulence [41]). A future im-

provement of those observational works would be to try

to estimate the missing (source and hybrid) terms us-

ing multispacecraft data from the Cluster or the MMS

mission to evaluate the local vector field divergences.

However, such methods remain to be developed. From

the numerical viewpoint, the improvement of the present

work would consist in making the code capable of captur-

ing higher density fluctuations and higher Mach numbers

than those studied here. This is needed to meet the phys-

ical conditions observed in particular in planetary mag-

netosheaths [24]. These problems will be investigated in

forthcoming works.
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