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Abstract
The classical results on oversampling and undersampling (or aliasing) of functions in
Paley–Wiener spaces are generalized to the case of functions in de Branges spaces
arising from regular Schrödinger operators with a wide range of potentials.
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1 Introduction

This paper deals with the subject of oversampling and undersampling—the latter also
known as aliasing in the engineering and signal processing literature—in the context
of de Branges Hilbert spaces of entire functions (dB spaces for short). These notions
play a prominent role in the theory of Paley–Wiener spaces [15,23]. Since Paley–
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Wiener spaces are leading examples of dB spaces, questions related to oversampling
and undersampling in dB spaces emerge naturally.

Paley–Wiener spaces stem from the Fourier transform of functions with given com-
pact support centred at zero, viz.,

PWa :=
{
f (z) =

∫ a

−a
e−i xzφ(x)dx : φ ∈ L2(−a, a)

}
.

By the Whittaker–Shannon–Kotel’nikov theorem, any function f (z) ∈ PWa is
decomposed as follows.

f (z) =
∑
n∈Z

f
(nπ

a

)
Ga

(
z,

nπ

a

)
, Ga (z, t) := sin [a(z − t)]

a(z − t)
, (1.1)

where the convergence of the series is uniform in any compact subset of C. The
function Ga (z, t) is referred to as the sampling kernel.

In oversampling, the starting point is a function f (z) ∈ PWa ⊂ PWb (a < b).
Then, in addition to (1.1), one has

f (z) =
∑
n∈Z

f
(nπ

b

)
Gb

(
z,

nπ

b

)

Moreover, f (z) admits a different representation

f (z) =
∑
n∈Z

f
(nπ

b

)
G̃ab

(
z,

nπ

b

)
, (1.2)

with amodified sampling kernel G̃ab(z, t) depending on a and b (see [15, Thm. 7.2.5]).
While the convergence of the sampling formula (1.1) is unaffected by l2 perturbations
of the samples f

( nπ
a

)
, formula (1.2) is more robust because it is convergent even

under l∞ perturbations of the samples. That is, if the sequence {εn}n∈Z is bounded and
one defines

f̃ (z) :=
∑
n∈Z

[
f
(nπ

b

)
+ εn

]
G̃ab

(
z,

nπ

b

)
, (1.3)

then | f (z) − f̃ (z)| is uniformly bounded in compact subsets of C [15, Thm. 7.2.5].
Undersampling, on the other hand, looks for the approximation of a function f (z)

inPWb\PWa by another one formally constructed using the sampling formula (1.1),
namely,

f̂ (z) =
∑
n∈Z

f
(nπ

a

)
Ga

(
z,

nπ

a

)
. (1.4)

The series in (1.4) is indeed convergent and, moreover, | f (z) − f̂ (z)| is uniformly
bounded in compact subsets of C. Formula (1.4) yields in fact an approximation
not only for functions in PWb\PWa but for the Fourier transform of elements in
L1(R) ∩ L2(R) [15, Thm. 7.2.9].
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Oversampling and undersampling are, to some extent, consequences of the fact that
the chain of Paley–Wiener spaces PWs , s ∈ (0,∞), is totally ordered by inclusion.
As this is a property shared by all dB spaces in the precise sense of [4, Thm.35], it is
expected that analogous notions should make sense in this latter class of spaces. We
note that sampling formulas generalizing (1.1) are known for arbitrary reproducing
kernel Hilbert spaces (see e.g. Kramer-type formulas in [7,8,18,20]), dB spaces among
them. Analysis of error due to noisy samples and aliasing, among other sources, in
Paley–Wiener spaces goes back at least to [14].More recent literature on the subject is,
for instance, [1–3,12]. However, to the best of our knowledge, estimates for oversam-
pling and undersampling are not known for dB spaces apart from the Paley–Wiener
class.

A function f (z) belonging to a dB space B obviously admits a representation in
terms of an orthogonal basis. In particular,

f (z) =
∑

t∈spec(S(γ ))

f (t)
k(z, t)

k(t, t)
, (1.5)

where k(z, w) is the reproducing kernel of B and S(γ ) is a canonical selfadjoint
extension of the operator of multiplication by the independent variable in B. The
expansion (1.5) is a sampling formula with k(z, t)/k(t, t) being its sampling kernel.
Note that (1.1) is a particular realization of (1.5) for the dB space PWa .

In order to obtain oversampling and undersampling estimates in analogy to the
Paley–Wiener case, we look into dB spaces of the form

Bs =
{
f (z) =

∫ s

0
ξ(x, z)φ(x) dx : φ ∈ L2(0, s)

}
, (1.6)

where ξ(x, z) solves

− d2

dx2
ϕ + V (x)ϕ = zϕ, x ∈ (0, s), z ∈ C,

for some s ∈ (0,∞) and with Neumann boundary condition at x = 0 (see Sect. 2).
Here V ∈ L1(0, s) is a real function. By construction Bs ⊂ Bs′ whenever s < s′ (for
more on this, see [17]).

Define

Ks(z, t) := ks(z, t)

ks(t, t)
,

where ks(z, w) is the reproducing kernel of the space Bs . If Ss(γ ) is a selfadjoint
extension of the multiplication operator in Bs , then any f (z) ∈ Bs has the represen-
tation

f (z) =
∑

t∈spec(Ss (γ ))

f (t)Ks (z, t) .

Our main results are Theorems 3.6 and 4.7, which can be summarized as follows:
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Theorem (oversampling) Assume that V is real-valued and in AC[0, π ] (the set of
absolutely continuous functions in [0, π ]). Consider an arbitrary f (z) ∈ Ba, where
a ∈ (0, π). For a given {εt } ∈ l∞, define

f̃ (z) :=
∑

t∈spec(Sπ (π/2))

K̃aπ (z, t) ( f (t) + εt ) ,

where K̃ab(z, t) is given in (3.6). Then, for every compact set K ofC, there is a constant
C(a, K , V ) > 0 such that

∣∣ f (z) − f̃ (z)
∣∣ ≤ C(a, K , V ) ‖ε‖∞ , z ∈ K .

We remark that the bound is uniform for f (z) ∈ Ba . Note that K̃ab(z, t) is a
modified sampling kernel analogous to the one in (1.3).

Theorem (undersampling) Assume V is real-valued and in AC[0, b] with b > π .
Given g(z) ∈ Bb\Bπ , define

ĝ(z) :=
∑

t∈spec(Sπ (π/2))

g(t)Kπ (z, t) .

Then, for each compact set K ⊂ C, there is a constant D(b, K , V ) > 0 such that

|g(z) − ĝ(z)| ≤ D(b, K , V )

∫ b

π

|ψ(x)| dx

uniformly on K , where ψ ∈ L2(0, b) obeys g(z) = 〈ξ(·, z), ψ(·)〉L2(0,b).

These results are somewhat limited in several respects. First, we show oversampling
relative to the pair Ba ⊂ Bπ , and undersampling relative to the pair Bπ ⊂ Bb (for dB
spaces defined according to (1.6)). These particular choices are related to a convenient
simplification in the proofs, but our results can be extended to an arbitrary pairBa ⊂ Bb

by a scaling argument. Second, the sampling formulae use the spectra of selfadjoint
operatorswithNeumannboundary condition at the left endpoint. This choice simplifies
the asymptotic formulae for eigenvalues of the associated Schrödinger operator; it can
also be removed but at the expense of a somewhat clumsier analysis. In our opinion
this extra workloadwould not add anything substantial to the results. Finally, andmore
importantly from our point of view, our assumption on the potential functions is a bit
too restrictive. In view of [17], we believe that our results should be valid just requiring
V ∈ L1(0, s), but relaxing our present assumption on V would require some major
changes in the details of our proofs. Further generalizations of the results presented
here (in particular, involving a wider class of dB spaces) are the subject of a future
work.

About the organization of this work: Sect. 2 recalls the necessary elements on de
Branges spaces and regular Schrödinger operators. Section 3 deals with oversampling.
Undersampling is treated in Sect. 4. The “Appendix” contains some technical results.
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2 dB Spaces and Schrödinger Operators

There are various ways of defining a de Branges space (see [4, Sec. 19], [17, Sec.
2], [21]). We recall the following definition: a Hilbert space of entire functions B is a
de Branges (dB space) when it has a reproducing kernel k(z, w) and is isometrically
invariant under the mappings f (z) �→ f #(z) := f (z) and

f (z) �→
(
z − w

z − w

)Ordw( f )

f (z) , w ∈ C ,

where Ordw( f ) is the order of w as a zero of f . The class of dB spaces appearing in
this work has the following additional properties:

(a1) Given any real point x , there is a function f ∈ B such that f (x) 
= 0.
(a2) B is regular, i. e., for any w ∈ C and f ∈ B, (z − w)−1 ( f (z) − f (w)) ∈ B.

A distinctive structural property of dB spaces is that the set of dB subspaces of a
given dB space is totally ordered by inclusion [4, Thm. 35]. For regular dB spaces (in
the sense of (a2)) this means that, if B1 and B2 are subspaces of a dB space that are
themselves dB spaces, then either B1 ⊂ B2 or B1 ⊃ B2 [6, Sec. 6.5].

The operator S of multiplication by the independent variable in a dB space B is
defined by

(S f )(z) = z f (z), dom(S) := { f ∈ B : S f ∈ B}. (2.1)

This operator is closed, symmetric and has deficiency indices (1, 1).
In view of (a1), the spectral core of S is empty (cf. [10, Sec. 4]), i. e., for any z ∈ C,

the operator (S − z I )−1 is bounded although, as a consequence of the indices being
(1, 1), its domain has codimension one. We consider dB spaces such that S is densely
defined and denote by S(γ ), γ ∈ [0, π), the selfadjoint restrictions of S∗.

Since
〈
(S∗ − w)k(·, w), f (·)〉 = 〈k(·, w), (S − w) f (·)〉 = 0 for all f (z) ∈

dom(S), we have k(z, w) ∈ ker(S∗ − w I ) for any w ∈ C. Thus

{k(z, t) : t ∈ spec(S(γ ))} is an orthogonal basis, (2.2)

where spec(S(γ )) denotes the spectrum of S(γ ). Hence, the sampling formula

f (z) =
∑

t∈spec(S(γ ))

f (t)
k(z, t)

k(t, t)
, f ∈ B, (2.3)

holds true. The convergence of this series is in the dB space, which in turn implies
uniform convergence in compact subsets of C.

The dB spaces under consideration in this work are related to symmetric operators
arising from regular Schrödinger differential expressions. The construction is similar
to the one developed in [17], although there are other ways of generating dB spaces
from differential equations of the Sturm–Liouville type [5].
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Consider a differential expression of the form

τ := − d2

dx2
+ V (x),

where we assume

(v1) V is real-valued and belongs to L1(0, s) for arbitrary s > 0.

For each s > 0, τ determines a closed symmetric operator Hs in L2(0, s),

dom(Hs) := {ϕ ∈ L2(0, s) : τϕ ∈ L2(0, s), ϕ
′(0) = ϕ(s) = ϕ′(s) = 0}

Hsϕ := τϕ.

This operator is known to have deficiency indices (1, 1) and empty spectral core, that
is,

{z ∈ C : there is Cz > 0 such that ‖(Hs − z I )ϕ‖ ≥ Cz ‖ϕ‖} = C.

The selfadjoint extensions of Hs are given by

dom (Hs(γ )) :=
{

ϕ ∈ L2(0, s) : τϕ ∈ L2(0, s),
ϕ′(0) = 0, ϕ(s) cos γ + ϕ′(s) sin γ = 0

}

Hs(γ ) ϕ := τϕ,

(2.4)

with γ ∈ [0, π). Finally, the adjoint operator of Hs is

dom(H∗
s ) := {

ϕ ∈ L2(0, s) : τϕ ∈ L2(0, s) , ϕ′(0) = 0
}
, H∗

s ϕ := τϕ.

Let ξ : R+ × C → C be the solution of the eigenvalue problem

τξ(x, z) = zξ(x, z), ξ(0, z) = 1, ξ ′(0, z) = 0.

(The derivative is taken with respect to the first argument.) The function ξ(x, z) is real
entire for any fixed x ∈ R+ [13, Thm.1.1.1], [22, Thm.9.1]. Also, ξ(·, z) ∈ L2(0, s)
for any z ∈ C. Using [21, Sec. 4] one then establishes that ξ(·, z) is entire as an
L2(0, s)-valued map. Note that ξ(·, z) depends on the potential V but does not depend
on the right endpoint s.

According to [19, Props. 2.12 and 2.14] [21, Thm.16], the functions

f (z) = 〈ξ(·, z), ϕ(·)〉L2(0,s) , (2.5)

with ϕ ∈ L2(0, s), form a dB space Bs with the norm given by

‖ f ‖Bs
= ‖ϕ‖L2(0,s) . (2.6)

A straightforward computation shows that the reproducing kernel of Bs is

ks(z, w) = 〈ξ(·, z), ξ(·, w)〉L2(0,s) . (2.7)
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Remark 1 In view of (2.7), ks(z, w) and ξ(·, w) are related by the isometry (2.5).
Hence, using (2.2) and expression (2.6) for the norm in Bs , one obtains

ϕ(x) =
∑

t∈spec(Hs (γ ))

1

ks(t, t)
〈ξ(·, t), ϕ(·)〉L2(0,s) ξ(x, t), ϕ ∈ L2(0, s), (2.8)

where the series converges in the L2-norm.

If r < s, then Br is a proper dB subspace of Bs . Indeed, {Br : r ∈ (0, s)} is a
chain of dB subspaces of Bs in accordance with [4, Thm. 35]. The isometry from
L2(0, s) onto Bs induced by (2.5) transforms Hs into the operator of multiplication
by the independent variable in Bs (see (2.1)), the latter will subsequently be denoted
by Ss . Also, the selfadjoint extensions Hs(γ ) are transformed into the selfadjoint
extensions Ss(γ ) of Ss . When referring to unitary invariants (such as the spectrum),
we use interchangeably either Hs(γ ) or Ss(γ ) throughout this text.

Remark 2 The space Bs constructed from L2(0, s) via (2.5) depends on the potential
V , which is assumed to satisfy (v1). However, as shown in [17, Thm. 4.1], the set
of entire functions in Bs is the same for all V ∈ L1(0, s); what changes with V is
the inner product in Bs . Noteworthily, since the operator Ss of multiplication by the
independent variable is defined in its maximal domain (see (2.1)), it has always the
same domain and range and acts in the same way; yet, by modifying the metric of
the space, each V ∈ L1(0, s) gives rise to a different family of selfadjoint extensions
of Ss . As a consequence, every function in Bs can be sampled by (2.3) using any
sequence {λn} as sampling points, as long as there exists V ∈ L1(0, s) such that {λn}
is the spectrum of some selfadjoint extension of the corresponding operator Hs . This
fact can be considered as a generalization of the notion of irregular sampling, quite
well studied in Paley–Wiener spaces by means of classical analysis; the Kadec’s 1/4
Theorem is a chief example of this kind of results [9].

3 Oversampling

The oversampling of a function in Ba is related to the fact that it can be sampled as a
function inBb and the sampling kernel can bemodified in such a way that the sampling
series is convergent under l∞ perturbations of the samples (see the Sect. 1).

Let 0 < a < b < ∞ and V be as in (v1). Any ϕ ∈ L2(0, a) can be identified with
an element in L2(0, b) since

ϕ = ϕχ[0,a] + 0χ(a,b], (3.1)

where χE denotes the characteristic function of a set E . Define

R(x) = Rab(x) := χ[0,a](x) + b − x

b − a
χ(a,b](x), x ∈ [0, b]. (3.2)
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Taking into account (2.8) with s = b, (3.1) and (3.2) imply

ϕ(x) =
∑

t∈spec(Hb(γ ))

1

kb(t, t)
〈ξ(·, t), ϕ(·)〉L2(0,b) R(x)ξ(x, t), (3.3)

where the convergence is in L2(0, b). Plugging (3.3) into (2.5) with s = b, we obtain

f (z) =
∑

t∈spec(Hb(γ ))

1

kb(t, t)
〈ξ(·, z),R(·)ξ(·, t)〉L2(0,b) f (t), z ∈ C, (3.4)

which converges uniformly in compact subsets of C.

Hypothesis 3.1 Given 0 < a < b, the series

∑
t∈spec(Hb(γ ))

1

kb(t, t)

∣∣〈ξ(·, z),Rab(·)ξ(·, t)〉L2(0,b)

∣∣ (3.5)

converges uniformly in compact subsets of C.

Assume that Hypothesis 3.1 is met. Enumerate any given sequence ε ∈ l∞ such
that ε = {εt }t∈spec(Hb(γ )). Define

K̃ab(z, t) := 1

kb(t, t)
〈ξ(·, z),Rab(·) ξ(·, t)〉L2(0,b) . (3.6)

In view of (3.4), the function

f̃ (z) :=
∑

t∈spec(Hb(γ ))

K̃ab(z, t) ( f (t) + εt ) , z ∈ C, (3.7)

is well defined and the defining series converges uniformly in compact subsets of C.
Moreover,

∣∣ f̃ (z) − f (z)
∣∣ ≤ ‖ε‖l∞

∑
t∈spec(Hb(γ ))

1

kb(t, t)

∣∣〈ξ(·, z),R(·) ξ(·, t)〉L2(0,b)

∣∣ ,

for all z ∈ C. Thus, the difference | f̃ (z) − f (z)| is uniformly bounded in compact
subsets of C. Below we prove that Hypothesis 3.1 holds true when

(v2) V is real-valued and in AC[0, b] (hence it satisfies (v1) for s ≤ b).

This is performed in two stages, the first one deals with the case V ≡ 0, the second
one employs perturbative methods to consider the general case.

If V ≡ 0, the function ξ given in Sect. 2 is

ξ(x, z) = cos(
√
z x), x ∈ R+. (3.8)
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Whenever we refer to the function ξ corresponding to V ≡ 0, we write the right-
hand-side of (3.8). We reserve the use of the symbol ξ only for the case V 
≡ 0. Also,
throughout this paper we use the main branch of the square root function.

As mentioned in the Sect. 1, for the sake of simplicity we assume b = π and fix
γ = π/2. A straightforward calculation yields

spec (Hπ (π/2)) = {n2 : n ∈ N ∪ {0}}. (3.9)

Moreover, by substituting (3.8) into (2.7), we verify that the reproducing kernel
k̊π (z, w) corresponding to the case V ≡ 0 satisfies

k̊π (n2, n2) =
{

π if n = 0,
π
2 if n ∈ N.

(3.10)

In the remainder of this section, we denote 〈·, ·〉L2(0,π) simply as 〈·, ·〉.
Proposition 3.2 Hypothesis 3.1 holds true under the assumption V ≡ 0, b = π , and
γ = π/2.

Proof Consider a compact set K in C such that spec(Hπ (π/2)) intersects K only at
n20 with n0 ∈ N. It will be clear at the end of the proof that there is no loss of generality
in this assumption. First note that

∣∣〈cos(√z ·),R(·) cos(n0 ·)〉∣∣ is uniformly bounded
in K (one can use the Cauchy–Schwarz inequality and note that the factor depending
on z is continuous in K ). On the other hand, by Lemma A.5,

∑
n 
=n0

∣∣∣〈 cos(√z ·),R(·) cos(n ·)〉∣∣∣

= 1

2

∑
n 
=n0

∣∣∣∣cos((
√
z + n)a) − (−1)n cos(

√
zπ)

(π − a)(
√
z + n)2

+ cos((
√
z − n)a) − (−1)n cos(

√
zπ)

(π − a)(
√
z − n)2

∣∣∣∣

≤ eπ|Im√
z|

(π − a)

∑
n 
=n0

(
1∣∣√z + n

∣∣2 + 1∣∣√z − n
∣∣2

)
.

Thus, taking into account (3.10), the series (3.5) converges uniformly in K . ��
Now, let us address the case of non-zero V satisfying (v2). As before we set b = π

andγ = π/2.Also,we assume spec(Hπ (π/2)) = {λn}∞n=0 ordered such thatλn−1<λn
for all n ∈ N. The subsequent analysis make use of the following auxiliary functions.

Definition 3.3 For each x ∈ [0, π ], n ∈ N and z ∈ C, consider

ρ(x) := 1

2

∫ x

0
V (y)dy − x

2π

∫ π

0
V (y)dy,

T (x, n) := ξ(x, λn) − cos(nx) − ρ(x)

n
sin(nx), (3.11)

F(x, z) := ξ(x, z) − cos(
√
z x).
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Lemma 3.4 Let V be as in (v2) with b = π . There exists N ∈ N such that, if n ≥ N,
then

∣∣∣〈ξ(·, z),R(·)ξ(·, λn)
〉 − 〈

cos(
√
z ·),R(·) cos(n ·)〉∣∣∣ ≤ Cπ

e|Im√
z|π

n2

(
1 + 1 + |z|

1 + π |z|1/2
)

,

for every z ∈ C. Here Cπ is a positive number depending on V .

Proof In terms of the functions introduced in Definition 3.3, one writes

〈
ξ(·, z),R(·)ξ(·, λn)

〉 − 〈
cos(

√
z ·),R(·) cos(n ·)〉

=
∫ π

0

[
cos(

√
zx)R(x)

ρ(x)

n
sin(nx) + F(x, z)R(x)

ρ(x)

n
sin(nx)

+ F(x, z)R(x) cos(nx) + cos(
√
zx)R(x)T (x, n)

+ F(x, z)R(x)T (x, n)
]
dx . (3.12)

It will be shown that each of the five terms on the right-hand side of (3.12) is appro-
priately bounded. For the first term, one uses the inequality (A.11) of Lemma A.4
and the first inequality of Lemma A.7. The estimate of the second term is obtain by
combining (A.12) of Lemma A.4 and the second inequality of Lemma A.7. The third
term on the right-hand side of (3.12) is estimated in Lemma A.6.

As regards the fourth and fifth terms in (3.12), one proceeds as follows. From
Lemma A.3(ii), it follows that

|T (x, n)| ≤ D

n2
, D > 0,

uniformly with respect to x ∈ [0, π ] for n sufficiently large. Also, |R(x)| ≤ 1 accord-
ing to (3.2). Therefore, one has

∣∣∣∣
∫ π

0
T (x, n)R(x) cos(

√
zx)dx

∣∣∣∣ ≤ C1

n2
e|Im

√
z|π (3.13)

since
|cos(√zx)| ≤ exp(|Im√

z|π), x ∈ [0, π ].
The bound for the remaining term follows by a similar reasoning taking into account
(A.4). Thus,

∣∣∣∣
∫ π

0
T (x, n)R(x)F(x, z)dx

∣∣∣∣ ≤ C2

n2
π2

1 + π |z|1/2 e|Im
√
z|π . (3.14)

By combining the estimates of the first three terms, together with (3.13) and (3.14),
the bound of the statement is established. ��
Proposition 3.5 Let V be as in (v2). If b = π and γ = π/2, then Hypothesis 3.1 holds
true.
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Proof From Lemma A.3(iii) we know that kπ (λn, λn) − k̊π (n2, n2) = O(n−2) as
n → ∞. This implies that

kπ (λn, λn) ≥ k̊π (n2, n2)

2
= π

4

for n sufficiently large, where we have used (3.10). Hence,

∣∣∣∣ 1

kπ (λn, λn)
− 1

k̊π (n2, n2)

∣∣∣∣ =
∣∣kπ (λn, λn) − π

2

∣∣
π
2 kπ (λn, λn)

≤ 8

π2

∣∣∣kπ (λn, λn) − π

2

∣∣∣

for n suficiently large. Again resorting to Lemma A.3(iii), one obtains

1

kπ (λn, λn)
− 1

k̊π (n2, n2)
= O(n−2), n → ∞. (3.15)

Due to Lemma 3.4 and (3.15) there exists N ∈ N such that, if n ≥ N , then

∣∣∣∣∣
〈
ξ(·, z),R(·)ξ(·, λn)

〉
kπ (λn, λn)

−
〈
cos(

√
z ·),R(·) cos(n ·)〉
k̊π (n2, n2)

∣∣∣∣∣ ≤ c1(z)

n2
,

for all z ∈ C, and where c1 : C → R is a positive continuous function. As a con-
sequence of the previous inequality, there exists another positive continuous function
c2 : C → R such that

∞∑
n=0

∣∣∣∣∣
〈
ξ(·, z),R(·)ξ(·, λn)

〉
kπ (λn, λn)

−
〈
cos(

√
z ·),R(·) cos(n ·)〉
k̊π (n2, n2)

∣∣∣∣∣ ≤ c2(z).

Hence, by Proposition 3.2, the series (3.5) converges uniformly in compact subsets of
C. ��

Arguing as in the paragraph below Hypothesis 3.1, one arrives at the following
assertion in which the oversampling procedure is established (see the Sect. 1).

Theorem 3.6 Suppose V obeys (v2) with b = π . Consider Ba with a ∈ (0, π). Then,
for every compact set K ⊂ C, there exist a constant C(a, K , V ) > 0 such that

∣∣ f (z) − f̃ (z)
∣∣ ≤ C(a, K , V ) ‖ε‖∞ , z ∈ K ,

for all f (z) ∈ Ba, where ε = {εt } is any bounded real sequence and f̃ (z) is given by
(3.7) with b = π and γ = π/2.
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4 Undersampling

In this section,we treat undersamplingof functions inBb\Ba (a < b)with the sampling
points given by the spectrum of Sa(γ ) as explained in the Sect. 1.

Hypothesis 4.1 For a < b and each z ∈ C, the series

∑
t∈spec(Ha(γ ))

ka(t, z)

ka(t, t)
ξ(x, t) (4.1)

converges absolutely and uniformly with respect to x ∈ [0, b].
Remark 3 Note that (2.7) and (2.8) imply that the series

∑
t∈spec(Ha(γ ))

ka(t, z)

ka(t, t)
ξ(·, t) (4.2)

converges to ξ(·, z) in L2(0, a) for each z ∈ C. Due to (2.2), if z = λ ∈ spec(Ha(γ )),
then ka(t, λ) = 0 for t ∈ spec(Ha(γ ))\{λ}. in which case the series (4.2) and (4.1)
have only one term.

Lemma 4.2 Assume that Hypothesis 4.1 is met. Define

ξ exta (x, z) :=
∑

t∈spec(Ha(γ ))

ka(t, z)

ka(t, t)
ξ(x, t), x ∈ [0, b], z ∈ C .

Then, for each z ∈ C,

(i) ξ exta (·, z) is continuous in [0, b],
(ii) ξ exta (x, z) = ξ(x, z) for a. e. x ∈ [0, a], and
(iii) the function ha(z) := sup

x∈[a,b]
|ξ exta (x, z) − ξ(x, z)| is continuous in C.

Moreover,

(iv) if ψ ∈ L2(0, b) and g(z) ∈ Bb are related by the isometry (2.5), then

〈
ξ exta (·, z), ψ(·)〉L2(0,b)

=
∑

t∈spec(Ha(γ ))

ka(t, z)

ka(t, t)
g(t), z ∈ C. (4.3)

Proof Enumerate spec (Ha (γ )) = {λn}∞n=0 such that λn−1<λn for all n ∈ N. Then (i)
is a straightforward consequence of Hypothesis 4.1. Due to (i), ξ exta (·, z) is an element
of L2(0, a) for each z ∈ C. Thus, Hypothesis 4.1 implies

lim
m→∞

∥∥∥∥∥ξ exta (·, z) −
m∑

n=0

ka(λn, z)

ka(λn, λn)
ξ(·, λn)

∥∥∥∥∥
L2(0,a)

= 0.
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This, along with Remark 3, yields (ii). Item (iii) follows from Lemma A.1. To prove
(iv), apply the dominated convergence theorem, which holds because of Hypothesis
4.1,

〈
ξ exta (·, z), ψ(·)〉L2(0,b)

= lim
m→∞

m∑
n=0

ka(λn, z)

ka(λn, λn)

∫ b

0
ξ(x, λn)ψ(x) dx .

��
Assume that Hypothesis 4.1 holds true. Suppose that ψ ∈ L2(0, b) and g(z) ∈ Bb

are related by the isometry (2.5), that is,

g(z) = 〈ξ(·, z), ψ(·)〉L2(0,b) , z ∈ C. (4.4)

Define
ĝ(z) := 〈

ξ exta (·, z), ψ(·)〉L2(0,b)
, z ∈ C. (4.5)

Then, due to Lemma 4.2(ii),

|g(z) − ĝ(z)| =
∣∣∣∣
∫ b

a

(
ξ(x, z) − ξ exta (x, z)

)
ψ(x) dx

∣∣∣∣ ≤ ha(z)
∫ b

a
|ψ(x)| dx,

where the function ha has been defined in Lemma 4.2(iii). Therefore, for each ψ ∈
L2(0, b), the difference |g(z) − ĝ(z)| is uniformly bounded in compact subsets of C.
Below we prove that Hypothesis 4.1 holds true when V satisfies (v2) with b > π . As
in the previous section, this is performed in two stages, the first one deals with the
particular case V ≡ 0 and the second one treats the general case.

In keeping with the simplification made in the previous section, we consider only
the case a = π and γ = π/2.

Using trigonometric identities and Eqs. (2.7) and (3.8) one verifies that

k̊π (n2, z) =
∫ π

0
cos(nx) cos(

√
zx)dx = (−1)n+1

n2 − z

√
z sin(

√
zπ) . (4.6)

whenever n ∈ N∪ {0} and z ∈ C\{n2}. Recall that k̊π denotes the reproducing kernel
within Bπ associated with V ≡ 0.

Proposition 4.3 Hypothesis 4.1 holds true under the assumption V ≡ 0, a = π , and
γ = π/2.

Proof Let K be a compact subset of C. As in the proof of Proposition 3.2, assume
without loss of generality that n20 is the only point of spec(Hπ (π/2)) in K (n0 ∈
N). Due to (3.8)–(3.10), it suffices to show the uniform convergence of the series∑

n 
=n0 |k̊π (n2, z)| in K . By (4.6), one obtains

∑
n 
=n0

∣∣∣k̊π (n2, z)
∣∣∣ ≤ ∣∣√z sin(

√
zπ)

∣∣ ∑
n 
=n0

1∣∣n2 − z
∣∣ .
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��
Now we address the case of nontrivial potential V satisfying (v2) with b > π . Let

spec (Hπ (π/2)) = {λn}∞n=0 such that λn−1<λn for all n ∈ N. We aim to study the
difference

kπ (λn, z)

kπ (λn, λn)
ξ(x, λn) − k̊π (n2, z)

k̊π (n2, n2)
cos(nx), x ∈ [0, b], z ∈ C,

for any given b > π and all n ∈ N large enough.

Lemma 4.4 For any V satisfying (v2) with b > π , there exists an N ∈ N such that, if
n ≥ N, then

∣∣∣kπ (λn, z) − k̊π (n2, z)
∣∣∣ ≤ Dπ

e|Im√
z|π

n2

(
1 + 1 + |z|

1 + π |z|1/2
)

,

for every z ∈ C. Here Dπ is a positive real number depending on V .

Proof In view of (2.7) and Definition 3.3,

kπ (λn, z) − k̊π (n2, z) =
∫ π

0

[
cos(nx)F(x, z) + ρ(x)

n
sin(nx) cos(

√
z x)

+ ρ(x)

n
sin(nx)F(x, z) + T (x, n) cos(

√
z x) + T (x, n)F(x, z)

]
dx .

We proceed as in the proof of Lemma 3.4. The first three terms on the right-hand side
of the last equality are estimated by Lemma A.4. The remaining terms have estimates
obtained in the same way as the estimates (3.13) and (3.14). ��
Lemma 4.5 Assume that V satisfies (v2) and b > π . Then, the asymptotic formula

ξ(x, λn) − cos(nx) = O(n−1), n → ∞,

holds uniformly with respect to x ∈ [0, b].
Proof Using Lemma A.3(i) and repeating the reasoning leading to (3.15), one arrives
at

λ
−1/2
n − n−1 = O(n−1), n → ∞.

This asymptotic formula and (A.4) yield

ξ(x, λn) − cos(
√

λn x) = O(n−1), n → ∞.

Finally, since

∣∣∣cos(√λn x) − cos(nx)
∣∣∣ = |sin(αnx)|

∣∣∣√λnx − nx
∣∣∣ ≤

∣∣∣√λn − n
∣∣∣ b

for some αn between
√

λn and n, the statement follows from Lemma A.3(i). ��
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Proposition 4.6 Let V be as in (v2) with b > π . Set a = π and γ = π/2. Then,
Hypothesis 4.1 holds true.

Proof Due to Lemmas 4.4 and 4.5, along with (3.15), there exists N ∈ N and a
continuous positive function c3 : C → R such that∣∣∣∣∣

kπ (λn, z)

kπ (λn, λn)
ξ(x, λn) − k̊π (n2, z)

k̊π (n2, n2)
cos(n x)

∣∣∣∣∣ ≤ c3(z)

n2
, z ∈ C, x ∈ [0, b]. (4.7)

for all n ≥ N ; we note that c3 may depend on b and V . The estimate (4.7) in turn
implies ∞∑

n=0

∣∣∣∣∣
kπ (λn, z)

kπ (λn, λn)
ξ(x, λn) − k̊π (n2, z)

k̊π (n2, n2)
cos(n x)

∣∣∣∣∣ ≤ c4(z)

uniformly with respect to x ∈ [0, b], where c4 : C → R is another continuous positive
function that may also depend on b and V . The claimed assertion now follows from
Proposition 4.3. ��
Theorem 4.7 Suppose V obeys (v2) for b > π . Assume that ψ ∈ L2(0, b) and g(z) ∈
Bb are related by (4.4). For every compact K ⊂ C, there exist a constant D(b, K , V ) >

0 such that

|g(z) − ĝ(z)| ≤ D(b, K , V )

∫ b

π

|ψ(x)| dx, z ∈ K ,

where ĝ(z) is given by (4.5) with a = π , i. e., ĝ(z) is given by the series (4.3) with
a = π and γ = π/2.
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Appendix A: Auxiliary results

Lemma A.1 Let Y be a compact interval of R. Suppose θ : C × Y → [0,∞) is
continuous. Then, � : C → [0,∞) given by �(z) := sup{θ(z, y) : y ∈ Y } is
continuous.

Proof For each z ∈ C, fix ϑ(z) ∈ Y such that

θ
(
z, ϑ(z)

) = sup{θ(z, y) : y ∈ Y } = �(z) . (A.1)

Take an arbitrary z0 ∈ C. Fix r0 > 0 and let K := {w ∈ C : |z0 − w| ≤ r0}. Due to
the compactness of K × Y , the map θ �K×Y is uniformly continuous. Hence, given
ε > 0 there exists δ > 0 such that

http://creativecommons.org/licenses/by/4.0/
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|z − w| < δ and |y − v| < δ imply |θ(z, y) − θ(w, v)| <
ε

2
, (A.2)

for any (z, y) , (w, v) ∈ K ×Y . Takew ∈ K such that |z0 − w| < δ. If v ∈ Y satisfies
|ϑ(z0) − v| < δ then, in view of (A.2),

∣∣θ(
z0, ϑ(z0)

)∣∣ − |θ(w, v)| ≤ ∣∣θ(
z0, ϑ(z0)

) − θ(w, v)
∣∣ <

ε

2
.

Due to (A.1) and the fact that θ is non negative,�(z0)−�(w) ≤ �(z0)−θ(w, v) < ε.
Now, let v ∈ Y such that |ϑ(w) − v| < δ. According to (A.2),

∣∣θ(
w,ϑ(w)

)∣∣ − |θ(z0, v)| ≤ ∣∣θ(
w,ϑ(w)

) − θ(z0, v)
∣∣ <

ε

2
.

Hence, �(w) − �(z0) ≤ �(w) − θ(z0, v) < ε. Therefore, we have proven that
−ε < �(z0) − �(w) < ε whenever |z0 − w| < δ. ��

The following Lemma is the analogue of [11, Lemma2.2] for Neumann-like bound-
ary conditions.

Lemma A.2 Given a > 0, suppose that V ∈ L1(0, a). Then, for each z ∈ C, the
unique solution of the initial value problem

− ξ ′′(x, z) + V (x)ξ(x, z) = zξ(x, z) , 0 ≤ x ≤ a,

ξ(0, z) = 1, ξ ′(0, z) = 0,

satisfies the integral equation

ξ(x, z) = cos
(√

zx
) +

∫ x

0
G(z, x, y)V (y)ξ(y, z)dy , (A.3)

where

G(z, x, y) = 1√
z
sin

(√
z (x − y)

)

is the corresponding Green’s function. This solution satisfies the estimate

∣∣ξ(x, z) − cos
(√

zx
)∣∣ ≤ C

x

1 + |z|1/2 x e
|Im√

z|x
∫ x

0

y |V (y)|
1 + |z|1/2 y dy (A.4)

for some constant C = C(a, V ) > 0. Furthermore, the derivative obeys

ξ ′(x, z) = −√
z sin

(√
zx

) +
∫ x

0

∂

∂x
G(z, x, y)V (y)ξ(y, z)dy , (A.5)

and satisfies the estimate

∣∣ξ ′(x, z) + √
z sin

(√
zx

)∣∣ ≤ Ce|Im
√
z|x

∫ x

0
|V (y)| dy. (A.6)
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Proof Define

ξ0(x, z) := cos
(√

zx
)
, ξn+1(x, z) :=

∫ x

0
G(z, x, y)V (y)ξn(y, z)dy, n ∈ N.

Since
∣∣cos (√

zx
)∣∣ ≤ exp(

∣∣Im√
z
∣∣ x) and

|G(z, x, y)| ≤ C0
x

1 + |z|1/2x e
|Im√

z|(x−y), 0 ≤ y ≤ x,

for some constant C0 > 0 (cf. [11, LemmaA.1]), one has

|ξ1(x, z)| ≤ C0 ‖V ‖L1

x

1 + |z|1/2x e
|Im√

z|x .

An induction argument then shows

|ξn+1(x, z)| ≤ ‖V ‖L1 C
n+1
0

(n + 1)!
x

1 + |z|1/2x e
|Im√

z|x
(∫ x

0

y |V (y)|
1 + |z|1/2 y dy

)n

(A.7)

for all n ∈ N. It follows that

ξ(x, z) :=
∞∑
n=0

ξn(x, z)

converges uniformly with respect to x ∈ [0, a] for all z ∈ C and satisfies (A.3). The
estimate (A.4) readily follows from (A.7) after noticing that

∫ x

0

y |V (y)|
1 + |z|1/2 y dy ≤ a ‖V ‖L1 .

The assertions (A.5) and (A.6) are proved by similar arguments so we omit the details.
��

The next results refer to the functions ρ, T , and F introduced in Definition 3.3, as well
as the reproducing kernel kb(z, w) from (2.7) and the particular case k̊b(z, w) when
V ≡ 0.

Lemma A.3 Assume that V satisfies (v2) with b = π . Let Hπ (π/2) be the selfadjoint
operator defined in accordance with (2.4). Enumerate spec(Hπ (π/2)) in increasing
order and denote spec(Hπ (π/2)) = {λn}∞n=0. Then, the following assertions hold true.

(i)
√

λn = n + O(n−1) as n → ∞,
(ii) T (x, n) = O(n−2) as n → ∞, uniformly with respect to x ∈ [0, π ],
(iii) kπ (λn, λn) = k̊π (n2, n2) + O(n−2) as n → ∞.
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Proof Items (i) and (ii) are shown in [13, Sec.1.2.2]. We note that the asymptotic
formulae in [13] are obtained assuming that V ′ is bounded in [0, π ]. However, one
can see that it suffices to require V ′ ∈ L1(0, π).

We turn to the proof of (iii). Let us recall that

kπ (λn, λn) = 〈ξ(·, λn), ξ(·, λn)〉L2(0,π) =
∫ π

o
|ξ(x, λn)|2 dx =

∫ π

o
ξ2(x, λn)dx,

while

k̊π (n2, n2) =
∫ π

0
(cos nx)2dx .

A straightforward computation shows that

sup
0≤x≤π

|ρ(x)| ≤ ‖V ‖L1(0,π) , sup
0≤x≤π

∣∣ρ′(x)
∣∣ ≤ ‖V ‖L1(0,π) .

Together with (3.11) and (ii), these inequalities imply

ξ2(x, λn) = (cos nx)2 + ρ(x)

n
sin(2nx) + O

(
n−2

)
, n → ∞, (A.8)

uniformly with respect to x ∈ [0, π ]. Using integration by parts along with the fact
that ρ(0) = ρ(π) = 0, one obtains

∣∣∣∣
∫ π

0
ρ(x) sin(2nx)dx

∣∣∣∣ ≤ 1

2n

∫ π

0

∣∣ρ′(x) cos(2nx)
∣∣ dx . (A.9)

Assertion (iii) follows from (A.8) and (A.9). ��
Lemma A.4 Assume V satisfies the hypothesis of Lemma A.3. Consider an arbitrary
a ∈ (0, π ]. Then, for all z ∈ C and n ∈ N, the following inequalities hold true:

∣∣∣∣
∫ π

0
F(x, z) cos(n x) dx

∣∣∣∣ ≤ C1
eπ|Im√

z|
n2

(
1 + 1 + |z|

1 + π |z|1/2
)

, (A.10)

∣∣∣∣
∫ a

0
ρ(x) cos(

√
z x) sin(nx)dx

∣∣∣∣ ≤ C2
eπ|Im√

z|
n

(
1 + |z|

1 + π |z|1/2
)

, (A.11)

∣∣∣∣
∫ a

0
ρ(x)F(x, z) sin(nx)dx

∣∣∣∣ ≤ C3
eπ|Im√

z|
n

(
1 + 1

1 + |z|1/2 π

)
. (A.12)

Here, C1 > 0 depends on V while C2 > 0 and C3 > 0 may, in addition, depend on a.

Proof Integrating by parts one obtains,

∣∣∣∣
∫ π

0
F(x, z) cos(nx)dx

∣∣∣∣ ≤ 1

n2

(
2 sup
x∈[0,π ]

∣∣F ′(x, z)
∣∣ + π sup

x∈[0,π ]
∣∣F ′′(x, z)

∣∣
)

.
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On one hand, due to (A.6),

sup
x∈[0,π ]

∣∣F ′(x, z)
∣∣ ≤ CV exp(

∣∣Im√
z
∣∣π).

On the other hand, since F ′′(x, z) = V (x)ξ(x, z) − zF(x, z), it follows from (A.4)
that ∣∣F ′′(x, z)

∣∣ ≤ eπ|Im√
z|

(
CV x

1 + |z|1/2 x
(‖V ‖L1 + |z|) + ‖V ‖L1

)
.

This implies (A.10).
The proof of (A.11) repeats the argumentation above: integrate by parts and observe

that

sup
x∈[0,a]

∣∣ρ(x) cos(
√
z x)

∣∣ ≤ ‖V ‖L1 e
π|Im√

z|,

sup
x∈[0,a]

∣∣∣∣ d

dx
ρ(x) cos(

√
z x)

∣∣∣∣ ≤ ‖V ‖L1 e
π|Im√

z|
( |z| C π

1 + |z|1/2 π
+ 1

)
.

The proof of (A.12) follows a similar reasoning. ��
Lemma A.5 Set a ∈ (0, π) and considerRaπ given by (3.2). Then, for any n ∈ N∪{0}
and z ∈ C\{n2},

〈
cos(

√
z ·),Raπ (·) cos(n ·)

〉
= 1

2(π − a)

(
cos

(
(
√
z + n)a

) − (−1)n cos(
√
z π)

(
√
z + n)2

+ cos
(
(
√
z − n)a

) − (−1)n cos(
√
z π)

(
√
z − n)2

)
.

Proof On one hand, the identity

cos(
√
zx) cos(nx) = 2−1( cos((√z + n)x) + cos((

√
z − n)x)

)

leads to

∫ a

0
cos(

√
zx) cos(nx) dx = 1

2

(
sin

(
(
√
z + n)a

)
√
z + n

+ sin
(
(
√
z − n)a

)
√
z − n

)
.

On the other hand,

∫ π

a
cos(

√
zx) cos(nx)

(
π − x

π − a

)
dx

= − 1

2(π − a)

(∫ π

a
x cos

(
(
√
z + n)x

)
dx +

∫ π

a
x cos

(
(
√
z − n)x

)
dx

)

+ π

2(π − a)

(
sin

(
(
√
z + n)x

)
√
z + n

+ sin
(
(
√
z − n)x

)
√
z − n

) ∣∣∣∣
x=π

x=a

.
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Another integration by parts yields

∫ π

a
x cos((

√
z ± n)x) dx

= (−1)n cos(
√
zπ) − cos

(
(
√
z ± n)a

)
(
√
z ± n)2

+ (−1)n sin(
√
zπ) − a sin

(
(
√
z ± n)a

)
√
z ± n

.

This completes the proof. ��

Lemma A.6 Set a ∈ (0, π) and consider Raπ given by (3.2). Then, for every z ∈ C

and n ∈ N,

∣∣∣∣
∫ π

0
F(x, z)Raπ (x) cos(nx)dx

∣∣∣∣ ≤ C
eπ|Im√

z|
n2

(
1 + 1 + |z|

1 + π |z|1/2
)

,

where C > 0 may depend on V .

Proof Integration by parts yields

∫ a

0
F(x, z) cos(nx) dx = 1

n

(
F(a, z) sin(na) −

∫ a

0
F ′(x, z) sin(nx) dx

)
,

(A.13)∫ π

a
F(x, z) cos(nx) dx = −1

n

(
F(a, z) sin(na) +

∫ π

a
F ′(x, z) sin(nx) dx

)
,

(A.14)

and

∫ π

a
x F(x, z) cos(nx)dx = − 1

n

(
aF(a, z) sin(na) +

∫ π

a
x F ′(x, z) sin(nx) dx

+
∫ π

a
F(x, z) sin(nx) dx

)
. (A.15)

Now, (A.14) and (A.15) imply

∫ π

a
F(x, z)

(
π − x

π − a

)
cos(nx) dx

= − π

(π − a)n

(
F(a, z) sin(na) +

∫ π

a
F ′(x, z) sin(nx)dx

)

+ 1

(π − a)n

(
aF(a, z) sin(na) +

∫ π

a
x F ′(x, z) sin(nx)dx

+
∫ π

a
F(x, z) sin(nx)dx

)
. (A.16)
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Then, (A.13) and (A.16) yield

∫ π

0
F(x, z)R(x) cos(nx) dx

= −1

n

∫ a

0
F ′(x, z) sin(nx) dx − π

(π − a)n

∫ π

a
F ′(x, z) sin(nx) dx

+ 1

(π − a)n

( ∫ π

a
x F ′(x, z) sin(nx) dx +

∫ π

a
F(x, z) sin(nx)dx

)
.

The claimed assertion now follows by an argument similar to the proof of LemmaA.4.
��

Lemma A.7 Let V be as in (v2) with b = π . Fix a ∈ (0, π). Then,

∣∣∣∣
∫ π

a
cos(

√
z x)

(
π − x

π − a

)
ρ(x) sin(nx) dx

∣∣∣∣ ≤ C

n
eπ|Im√

z|
(
1 + |z|

1 + π |z|1/2
)

,

and

∣∣∣∣
∫ π

a
F(x, z)

(
π − x

π − a

)
ρ(x) sin(nx) dx

∣∣∣∣ ≤ C

n
eπ|Im√

z|
(
1 + 1

1 + π |z|1/2
)

,

for arbitrary z ∈ C and n ∈ N.

Proof We prove the first inequality. The second one is proved analogously. Arguing
as in the beginning of the proof of Lemma A.4, one obtains

∣∣∣∣
∫ π

a
cos(

√
z x)

(
π − x

π − a

)
ρ(x) sin(nx) dx

∣∣∣∣ ≤ 1

n
(2M1(z) + πM2(z)) ,

where

M1(z) := sup

{∣∣∣∣cos(√z x)
π − x

π − a
ρ(x)

∣∣∣∣ : x ∈ [a, π ]
}

,

and

M2(z) := sup

{∣∣∣∣ d

dx

(
cos(

√
z x)

π − x

π − a
ρ(x)

)∣∣∣∣ : x ∈ [a, π ]
}

.

��
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