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Abstract 33 

The gas-phase reaction of Cl atom with 2,2,2-trifluoroethylacrylate (k1), 1,1,1,3,3,3-34 

hexafluoroisopropylacrylate (k2), 2,2,2-trifluoroethylmethacrylate (k3) and 1,1,1,3,3,3-35 

hexafluoroisopropylmethacrylate (k4), have been investigated at 298 K and 1 atm using the 36 

relative method by gas chromatography coupled with flame ionization detection (GC-FID). 37 

The values obtained are (in cm3 molecule-1 s-1): k1(Cl+CH2=CHC(O)OCH2CF3) = (2.410.57) 38 

×10-10, k2(Cl+CH2=CHC(O)OCH(CF3)2) = (1.390.34) ×10-10, 39 

k3(Cl+CH2=C(CH3)C(O)OCH2CF3) = (2.220.45) ×10-10, and k4(Cl 40 

+CH2=C(CH3)C(O)OCH(CF3)2 = (2.440.52) × 10-10. Products identification studies were 41 

performed by solid-phase microextraction (SPME) method, with on-fiber products 42 

derivatization using o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, coupled 43 

with gas chromatography with mass spectrometry detection (GC-MS). Chloroacetone, 44 

trifluoroacetaldehyde and formaldehyde were observed as degradation products and a general 45 

mechanism is proposed. Additionally, reactivity trends and atmospheric implications are  46 

discussed. Significant ozone photochemical potentials (POCP) and acidification potentials 47 

lead to local and or regional impact of the esters under study although is expected to a have a 48 

minor impact on global warming and climate change.  49 

 50 

 51 

 52 
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1. Introduction 53 

Atmospheric chemistry is currently focused on a number of major environmental issues. 54 

Halogenated species, as unsaturated halogenated esters, has attracted a great deal of research 55 

interest with implications to gas phase interactions in the troposphere. They present an 56 

important chemistry since are widely emitted into the atmosphere from high industrial 57 

production, processing and disposal (Takagi et al., 1997; Lu et al., 2013; Zhao et al., 2013; 58 

Girard et al., 2014). The large-scale production is due to its many applications, among them 59 

we can mention: chemical extraction, manufacture of polymers, precursors in cosmetic 60 

aromatic bases, cleaning agents and components of electronics, which could result in release 61 

of these compounds into the atmosphere (Barnes, 2010). According to the oxygenated 62 

functionalities in the compound, many unsaturated OVOCs will be as reactive and sometimes 63 

more reactive than their analogous alkenes, also the double bond of the molecule is very 64 

receptive to the addition of oxidants such as tropospheric OH, NO3 radicals, and O3 65 

molecules. Reactions with Cl atoms play an important role in atmospheric chemistry since 66 

VOCs react with them generally in an order of magnitude faster than OH reactions. 67 

 It has been observed that on costal urban areas, for brief period of time at sunrise the Cl 68 

concentration produced by photolysis of molecular chlorine (Cl2) can be 1× 105 atoms cm-3 or 69 

higher in the marine boundary layer (Spicer et al., 1998; Lawler et al., 2009). Furthermore, it 70 

has been detected significant levels of photolabile nitrile chloride (ClNO2) species in mid 71 

continental areas, all of this has expanded the knowledge about the atmospheric degradation 72 

of VOCs with Cl atoms chemistry (Osthoff et al., 2008; Thornton et al., 2010; Mielke et al., 73 

2011, Philips et al., 2012). Unsaturated halogenated in these work contain Fluorine (F) atom 74 

and it is known that fluorine atom is the most electronegative of the elements its replacement 75 

by a hydrogen atom. The substitution of a hydrogen atom for a fluorine atom in an organic 76 

molecule modifies its thermal, chemical and biological characteristics. The bond formed by 77 



 

 

4 

 

C-F atoms is very strong, but the intramolecular interactions of the fluorocarbons are weak. 78 

As a result, a unique combination of fluorocarbon properties, such as chemical, thermal and 79 

biological inertia, low solubility in water and polar and non-polar organic solvents, high 80 

density, flow ability, compressibility and high dielectric constants are obtained (Johns and 81 

Stead, 2000). The widespread use of these fluoropolymers could have a great impact on the 82 

quality of the air and consequently on the environmental ones, among them we can mention 83 

the climatic change (McCulloch, 2003). The unsaturated halogenated esters acrylates and 84 

methacrylates have many industrial applications, since they have, monomers used for develop 85 

a family of fluorinated compounds that contain vinyl polymers for Hi-Tech applications 86 

(Boschet et al., 2010). Furthermore, fluorine containing polymers (fluoroelastomers) have 87 

several important applications e.g. in O-rings, gaskets and in different automobile parts which 88 

requires high temperature oil resistance property (Koiry et al., 2013). Halogenated acrylates 89 

and methacrylates are listed as a high (H) production (P) volume (V) chemicals in the OECD 90 

(Organisation for Economic Co-operation and Development) integrated HPV database 91 

(http://cs3-hq.oecd.org/scripts/hpv/index.asp).  We have previously reported the rate 92 

coefficients of fluorinated acrylates and methacrylates 2,2,2-trifluoroethylacrylate, 93 

1,1,1,3,3,3-hexafluoroisopropylacrylate, 2,2,2-trifluoroethylmethacrylate and 1,1,1,3,3,3-94 

hexafluoroisopropylmethacrylate initiated by OH radicals using relative method by GC-FID 95 

(Tovar and Teruel, 2014). In order to increase the knowledge of unsaturated fluoresters, it is 96 

necessary to assess the importance of other sink of these industrial fluorinated compounds as 97 

the gas-phase reaction of the unsaturated halogenated acrylates and methacrylates together 98 

with to study the products obtained to postulate atmospheric chemical mechanisms for Cl 99 

atoms reactions. Due to the importance of Cl-initiated degradation reactions and the absence 100 

of kinetic and product data, in this work, we present for the first time rate coefficients 101 

determinations of the reactions of 2,2,2-trifluoroethylacrylate (TFEA), 1,1,1,3,3,3-102 
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hexafluoroisopropylacrylate (HFIA), 2,2,2-trifluoroethylmethacrylate (TFEM) and 103 

1,1,1,3,3,3-hexafluoroisopropylmethacrylate (HFIM) with Cl atoms at 298 K and 760 Torr: 104 

 105 

Cl + CH2=CHC(O)OCH2CF3             → Products    (1) 106 

Cl + CH2=CHC(O)OCH(CF3)2         → Products     (2)   107 

Cl + CH2=C(CH3) C(O)OCH2CF3 → Products    (3) 108 

                      Cl    + CH2=C(CH3) C(O)OCH(CF3)2 → Products    (4) 109 

To the best of our knowledge, the rate coefficients for the reactions of Cl atoms with the 110 

halogenated unsaturated esters have not been previously reported. Hence, the kinetic data 111 

presented are the first determinations of the title reactions. Kinetic results are rationalized in 112 

terms of reactivity trends by comparison with others unsaturated halogenated esters. In 113 

addition, product studies using the GC-MS technique under atmospheric conditions were 114 

carried out for the (1-4) reactions and the degradation pathways in the atmosphere are 115 

discussed. Chloroacetone and formaldehyde were identified as the main products of reaction 116 

of methacrylates with Cl atoms. In regard to the reaction of 2,2,2-trifluoroacrylate with Cl 117 

atoms, formaldehyde and trifluoroacetaldeyde were identified as the main products of 118 

reaction, whereas that, in the reaction between 1,1,1,3,3,3-hexafluoroisopropilacrylate with 119 

Cl atoms, formaldehyde it has been identified, as unike product of this reaction.  120 

To assess the possible atmospheric implications of the studied reactions, atmospheric 121 

lifetimes of the fluorinated and unsaturated esters involved were calculated taking into 122 

account the experimental rate coefficients obtained in this work. Environmental impact is 123 

discussed at local, regional and global scale by the determination of ozone photochemical 124 

potential (POCP), acidification potential and global warming potential of the unsaturated 125 

esters studied in the present work. 126 

 127 
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2. Experimental 128 

The kinetic experiments were performed in a Teflon chamber of 80-liter placed in a wooden 129 

box with the internal walls covered with aluminum foil. Organic reactants were measured 130 

from calibrated bulbs and were introduced into the chamber through a stream of nitrogen. 131 

Then, the chamber was filled to its full capacity at atmospheric pressure with nitrogen. We 132 

have used nitogen as bath gas for the kinetics experiments and synthetic air for the products 133 

distribution analysis.  134 

Cl atoms were generated by photolysis at 254 nm of ClC(O)C(O)Cl: 135 

     ClC(O)C(O)Cl + hν 2Cl + 2CO    (5) 136 

Before each experiment, the reactor was cleaned by filling it with a mixture of O2 and N2 137 

which was photolyzed for 10 min using 6 germicidal lamps (Philips 30W) with a UV 138 

emission at 254 nm, to produce O3. After this procedure, the reactor was cleaned again by 139 

repeated flushing with N2 and checked before performing the experiments by gas 140 

chromatography that there were no observable impurities. Gas samples were taken from the 141 

Teflon reactor using calibrated gas syringes. The organic compounds were monitored by gas 142 

chromatography (Shimadzu GC-14B) coupled with flame ionization detection (FID), using a 143 

Porapak Q column (Alltech, 2.3 m) held at a temperature of 160 ºC for these compounds. 144 

In the presence of Cl atom, halogenated unsaturated esters (HUE) 2,2,2-145 

trifluoroethylacrylate(TFEA), 1,1,1,3,3,3-hexafluoroisopropylacrylate (HFIA), 2,2,2-146 

trifluoroethylmethacrylate (TFEM), 1,1,1,3,3,3-hexafluoroisopropylmethacrylate (HFIM) and 147 

the reference compounds, decay through the following reactions: 148 

   Cl + HUE          Products   (6) 149 

   Cl + Reference                   Products  (7) 150 
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Provided that the reference compound and the reactant are lost only by reactions (6) and (7), 151 

then it can be shown that: 152 
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where, [Fluorinated ester]0, [Reference]0, [Fluorinated ester]t and [Reference]t are the 154 

concentrations of the halogenated esters and references compounds at times t=0 and t, k6 and 155 

k7 are the rate coefficients of reactions (6) and (7), respectively. 156 

The relative rate technique relies on the assumption that these fluoroesters and the reference 157 

organics are removed only by reaction with the oxidant specie (Cl). To verify this 158 

assumption, mixtures of oxalyl chloride with N2 and both organics were prepared and 159 

allowed to stand in the dark during two hours. In all cases, the reaction of the organic species 160 

with the precursor of Cl(ClC(O)C(O)Cl), in the absence of UV light, was of negligible 161 

importance over the typical time periods used in this work. It has been realized test for 162 

possible photolysis of the compounds studied, for this, reactants in nitrogen, in the absence of 163 

oxidants, were irradiated using the output of all germicidal lamps surrounding the chamber 164 

for 30 min. It was not observed any photolysis of fluoroesters or references. The initial 165 

concentration used in the experiments were in the range of 180-200 ppm (1 ppm = 2.46 1013 166 

molecule cm-3 at 298 K and 760 Torr of total pressure) for fluorinated acrylates or 167 

methacrylates. The concentration of ClC(O)C(O)Cl 160 to 180 ppm in around 760 Torr of 168 

N2. A mixture of unsaturated halogenated ester/ ClC(O)C(O)Cl/air were analyzed after 169 

irradiation in order to identify the products formed in the reactions studied.  170 

Products identification experiments were performed using GC-MS analytical technique, a 171 

Shimadzu GC-MS QP 5050 spectrometer equipped with a capillary column ZB-5MS (5% 172 

phenyl, 95% dimethylpolysiloxane) of 30 m - 0,25 mm. Gas samples were removed from the 173 

Teflon chamber using solid phase microextraction (SPME) as a preconcentration technique of 174 
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the analytes. The SPME technique involves the extraction of analytes from the sample matrix 175 

using a silica fiber generally cover with an absorbent polymer, followed by desorption of 176 

analytes by the temperature on the injection port. In this study we have used the 177 

[divinylbenzene/Carboxen/polydimethylsiloxane] (DVB / CAR / PDMS) from Supelco, 178 

Bellefonte, PA, USA, indicated for this type of compounds. The exposure time was 1 minute, 179 

and 2 minutes of desorption in the injection port. The determinations were carried out under 180 

atmospheric conditions. For the Cl atoms reactions mixture of fluorinated ester/ 181 

ClC(O)C(O)Cl/air also were flushed into the Teflon bag. The photolysis time was 15 seconds 182 

for each experiment. In order to identify carbonyl products, the o-(2,3,4,5,6-183 

pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) derivatizing agent was used. The 184 

PFBHA reacts with carbonyl compounds forming a stable oxime. A 2 mL aqueous solution 185 

of PFBHA (25 mg/mL) was prepared in a 4 mL vial. The PFBHA was loaded on the SPME 186 

fiber during 90 seconds by head-space extraction. The fiber-PFBHA was exposed inside the 187 

chamber other 60 seconds to produce the oxime on the fiber to be transferred to the GC-MS 188 

injector. The desorption time was 2 min at 225°C. The column employed was Zebron ZB-189 

5MS (30 m x 0.25 mm x 0.25 μm). The temperature program was 80°C for 5 min, 100°C for 190 

5 min, 200°C for 15 min to 250°C at a rate of 15°/min for the Cl atoms reactions with 191 

fluorinated ester.  192 

3. Materials 193 

The following chemicals with purities declared by the supplier were used : N2 (AGA, 194 

99.999%), synthetic air (Air Liquide, 99.999%), 2,2,2-trifluoroethylacrylate (Aldrich, 99%), 195 

1,1,1,3,3,3-hexafluoroisopropylacrylate (Aldrich, 99%), 2,2,2-trifluoroethylmethacrylate  196 

(Aldrich, 99%), and 1,1,1,3,3,3-hexafluoroisopropylmethacrylate (Aldrich, 99%), vinyl 197 

propionate (Aldrich, 98%), 2-methyl-3-buten-2-ol (Aldrich, 96%), acrylonitrile (Baker, 198 
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99.5%),diethyl ether (Fluka, 99%),ethyl acrylate (Aldrich, 99%), oxalyl chloride (Aldrich, 199 

99%), o-(2,3,4,5,6-Pentafluorobenzyl) hydroxylamine hydrochloride (Aldrich, 98%). 200 

 201 

4. Results and discussion 202 

Relative rate coefficients for the reactions of Cl atoms with halogenated acrylates or 203 

methacrylates were determined. The data were fitted to a straight line by the linear least-204 

squares procedure. The losses of TFEA, HFIA, TFEM and HFIM by Cl atoms are shown 205 

with different reference compounds in Figs.1, 2, 3 and 4. For each reaction, four experiments 206 

were performed for the rate coefficient determination; nevertheless, only one example is 207 

displayed in Figs. 1-4. 208 

The data on relative rate coefficients (kFluorinated ester/kReference) and the absolute rate coefficients 209 

kFluorinated ester at room temperature (298K) are presented in Table 1. The ratios were obtained 210 

from the average values using different initial concentrations of the reactants. It is gratifying 211 

to note the agreement between the experiments conducted with different reference 212 

compounds. The rate coefficients obtained by averaging the values from different 213 

experiments were the following: 214 

kCl+ TFEA = (2.41 ± 0.57) × 10-10cm3 molecule-1 s-1 215 

kCl+HFIA = (1.39 ± 0.34) × 10-10cm3 molecule-1 s-1 216 

   kCl+TFEM = (2.22 ± 0.45) × 10-10 cm3 molecule-1 s-1 217 

kCl+HFIM = (2.44 ± 0.52) × 10-10 cm3 molecule-1 s-1 218 

The errors quoted are twice the standard deviation arising from the least squares fit of the 219 

straight lines, to which we have considered also the corresponding error on the reference rate 220 

coefficients. 221 
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The following compounds were used as reference reactions: acrylonitrile, ethyl acrylate, 222 

vinyl propionate, 2-methyl-3-buten-2-ol and diethyl ether to determine the rate coefficient of 223 

the reactions (1) to (4): 224 

                        Cl + CH2=CHCN                           Products                    (9) 225 

Cl + CH2=CHC(O)OCH2CH3        Products            (10) 226 

Cl+CH3CH2C(O)OCH=CH2     Products  (11) 227 

Cl +CH2=CHC(CH3)2OH             Products  (12) 228 

Cl + (C2H5)2O                               Products             (13) 229 

Where k9= (1.11 0.23)  10-10 (Teruel et al., 2007), k10= (2.53± 0.46)  10-10 (Teruel et al., 230 

2009), k11= (2.06 ± 0.36)  10-10 (Teruel et al., 2009), k12= (3.00 0.41)  10-10 (Takahashi et 231 

al., 2010), k13= (2.54 0.18)  10-10 (Nelson et al., 1990). All the k values are in units of cm3 232 

molecule-1 s-1.To the best of our knowledge, there are no other prior reported values of the 233 

rate coefficients for the reactions (1) to (4) of Cl atoms with halogenated unsaturated esters. 234 

Thus, the present work is the first kinetic study of these reactions and therefore no direct 235 

comparison with the literature could be made.236 

However, it is interesting to compare the rate coefficients of the reactions of Cl atoms with 237 

unsaturated esters with those that have fluorine substitution in the molecule in order to 238 

rationalize the effect of substituents on the reactivity of the esters toward Cl atoms. 239 

4.1. Reactivity trends 240 

Table 2 shows a comparison between the rate coefficients of the reactions of OH radicals and 241 

Cl atoms with a series of unsaturated esters and the kinetic data obtained in this study for 242 

halogenated unsaturated esters.  With regard to OH radicals reactions, it is possible to observe 243 

generally that when H atoms are replaced by F atoms the rate coefficient values decrease: 244 

kCH2=CHC(O)OCH2CH3 + OH= (1.70 ± 0.40)  10-11 cm3 molecule-1 s-1 > kCH2=CHC(O)OCH2CF3 + OH= 245 

(1.25 ± 0.13)  10-11 cm3 molecule-1 s-1, kCH2=C(CH3)C(O)OCH2CH3 + OH= (4.58 ± 0.59)  10-11 cm3 246 
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molecule-1 s-1 > kCH2=C(CH3)C(O)OCH2CF3 + OH= (2.54 ± 0.12)  10-11 cm3 molecule-1 s-1, 247 

kCH2=C(CH3)C(O)OCH(CH3)2 + OH=(2.28 ± 0.25)  10-11 cm3 molecule-1 s-1 > kCH2=C(CH3)C(O)OCH(CF3)2 + 248 

OH= (1.41 ± 0.11)  10-11 cm3 molecule-1 s-1.  This difference can be attributed to the negative 249 

inductive effect of the F atoms substituents (Hurley et al., 2007), therefore the –CF3 group 250 

reduces the partial negative charge, then electrophilic addition of OH radicals to the double 251 

bond in halogenated esters is less favored compared to the addition to non-halogenated 252 

unsaturated esters. On the other hand, for Cl atoms reactions, the rate coefficients of 253 

unsaturated and non-halogenated esters are similar to the halogenated and unsaturated esters 254 

within experimental uncertainties. Therefore, the effect of –F atoms substituents on the 255 

reactivity of the double bond for Cl atoms is less important than the effect observed with OH 256 

addition, probably because the reactions with Cl atoms, in general, are less selective than the 257 

reaction in organic compounds with OH radicals (Bravo et al, 2013). The rate coefficients 258 

values reported in this work for the reactions studied are in close agreement with the rate 259 

coefficients of Cl atoms with similar unsaturated esters. Rodríguez et al., have reported 260 

values (in units of cm3 molecule-1 s-1) for the rate coefficients of Cl + allyl trifluoroacetate 261 

and Cl + vinyl trifluoroacetate reactions of (1.75  0.21)  10-10 and (2.08   0.16)  10-10, 262 

respectively using a 200 L Teflon bag and GC-FID as detection system (Rodríguez et al., 263 

2016). 264 

 265 

4.2. Products identification study 266 

In addition to the kinetic study, the products of the reaction of halogenated esters studied in 267 

this work with Cl atoms were identified and the gas phase mechanisms were postulated. 268 

For the compounds under study, Cl atoms reactions proceed mainly by initial addition of Cl 269 

to the >C=C< bond and, in absence of NOx, the alkyl radicals formed react with O2 to lead 270 

peroxy radicals. These peroxy radicals will undergo self- and cross-peroxy reactions which 271 
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will result, in the formation of 1,2-chloroalkoxy radicals (Calvert et al., 2000). This behavior 272 

has also been observed in the reaction with Cl atoms with unsaturated halogenated esters 273 

(Rodríguez et al., 2016).  274 

The 1,2-chloroalkoxy radicals can lead the formation of final products by different pathways: 275 

Simplified exemplary reaction mechanisms for the addition reactions of Cl atoms with the 276 

halogenated acrylates and methacrylates in the absence of NOx  are shown in Figures 5 and 6, 277 

respectively. 278 

Cl reaction with TFEA and HFIA 279 

Regarding to the reaction of Cl atoms with acrylates, possible fates of the chloroalkoxy 280 

radicals formed includes: 281 

i) Reaction with O2 to give CF3RCHOC(O)C(O)CH2Cl and HO2
•
 radical. 282 

ii) Chloroalkoxy radical scission between C2 and C3, to give HC(O)CH2Cl and 283 

CF3RCHOC(O)C(O•) radical. 284 

iii) Chloroalkoxy radical scission between C1 and C2, to give CF3RCHOC(O)CHO and 285 

HC•(Cl)H radical. 286 

In the reaction of acrylates with Cl atoms we observed trifluoroacetaldehyde (CF3C(O)H) as 287 

unique product of reaction of TFEA with Cl atoms. This could be explained by considering 288 

the addition of Cl to the double bond >C=C<. CF3C(O)H was observed in our experimental 289 

conditions and using the derivatizing agent o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine 290 

hydrochloride (PFBHA) to monitor carbonyl compounds. The presence of 291 

trifluoroacetaldehyde was observed with fragments of m/z 293 (for trifluoroacetaldoxime), 292 

181 and 44 (see Figure 5 channel ii). An example of the chromatogram obtained is shown in 293 

Fig. 7. On the other hand, it could not be observed any product formation in the reaction of 294 

HFIA with Cl atoms in our experimental conditions.  295 
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Cl reaction with TFEM and HFIM  296 

 Regarding to the reaction of Cl with methacrylates, possible fates of the chloroalkoxy 297 

radicals formed includes: 298 

i)  -CH3 elimination to give CF3RCHOC(O)C(O)CH2Cl and CH3
•
 radical. 299 

ii) Chloroalkoxy radical scission between C2 and C3, to give CF3RCHOC(O)C(O•) 300 

radical and CH3C(O)CH2Cl. 301 

iii) Chloroalkoxy radical scission between C1 and C2, to give CF3RCH2OC(O)C(O)CH3 302 

and HC•(Cl)H radical. 303 

From the analysis of the chromatogram obtained by GC-MS, it could be observed the 304 

formation of chloroacetone (CH3C(O)CH2Cl) and formaldehyde (HCOH) as products of the 305 

reaction of methacrylates with Cl atoms with the fraction m/z= 43 characteristic of the 306 

chloroacetone. Chloroacetone is produced through, C-C scission (see Figure 6 channel ii). In 307 

our experimental conditions and using the derivatizing agent o-(2,3,4,5,6-pentafluorobenzyl) 308 

hydroxylamine hydrochloride (PFBHA) to monitor carbonyl compounds, we have observed 309 

the presence of formaldehyde solely in the reactions of Cl atoms with the fluorinated 310 

methacrylates. In this case, the presence of formaldehyde was observed with fragments of 311 

m/z 225 (for formaldoxime), 181 and 44 (see Figure 6 channel i). These results are in 312 

agreement a previous work performed by in situ FTIR for the reaction of methyl methacrylate 313 

with Cl atoms (Blanco et al., 2011), where it was observed chloroacetone and formaldehyde 314 

with yields of of (41 ± 6) % and (23 ± 3) %, respectively. An example of the chromatogram 315 

obtained is shown in Fig. 8. Formyl chloride and methyl pyruvate, coproducts reported in the 316 

study of nonfluorinated methacrylates, have not been observed in the present experiments.  317 

 318 

 319 
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5. Atmospheric implications  320 

Tropospheric lifetimes, x, of the halogenated acrylates and methacrylates studied in this 321 

work were calculated through the expression: x = 1/kx[X] with X = Cl. Table 3 lists the 322 

atmospheric lifetimes with respect to the reaction with Cl atoms  and OH radicals obtained in 323 

our previous work (Tovar and Teruel, 2014) for comparative purposes. In the case of Cl 324 

reactions, these calculations were performed, considering a global average chlorine 325 

concentration of 1 × 104 atoms cm-3 (Wingenter et al., 1996). We can observe that the 326 

reactions of the halogenated esters with Cl atoms are between 5 and 8 days, this will probably 327 

have important impact in coastal areas (Thornton et al., 2010). Regarding to reactions with 328 

OH radicals, the atmospheric lifetimes are between 5 and 11 hours. Furthermore, the 329 

atmospheric lifetimes with O3 molecules have been calculated using the ‘Environmental 330 

Protection Agency’ rate constant calculation software, AOPWINv1.91 (17) being obtained an 331 

atmospheric lifetime between 1 and 7 days. Unfortunately, no kinetic data are available for 332 

the reaction of these compounds with NO3 radicals. The short lifetimes calculated for these 333 

compounds indicate that they could degraded close to the emission source areas, causing a 334 

local impact potentially leading photo-oxidants in the atmosphere, responsible for the 335 

formation of photochemical smog. It is possible to observe that the main tropospheric 336 

degradation pathway for the compounds studied is the reaction with OH radical. Although, in 337 

marine and certain polluted continental areas where the Cl atoms concentration can reach 338 

levels of 1× 105 or more, Cl-atom initiated reactions could compete with the OH reaction 339 

(Singh et al., 1996; Riedel et al., 2013). Halogenated products of these reactions studied, such 340 

as halogenated glyoxylates and pyruvates, could then react with the OH radical or Cl atoms to 341 

generate fluorinated aldehydes that could contribute to the formation of ozone and secondary 342 

organic aerosols (SOA) (Ofner et al., 2013; Zhang et al., 2017). The interactions with SOA 343 

occur in the gas phase and in the particle phase, it is known that halogens are involved in the 344 
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ageing process of organic aerosols (Kroll et al., 2011). In our experiemental results, 345 

chloroacetone has been identified as reaction product of TFEM and HFIM with Cl, although 346 

the main oxidant of this compound in the atmosphere is the OH radical, it is known that its 347 

reaction with Cl atoms can generate compounds as HCl and HCOCl (Carr et al., 2003). On 348 

the other hand, halogenated formaldehyde formed in atmospheric degradation of VOCs is one 349 

the most reactive and important species in tropospheric photochemistry and ozone formation 350 

(Graedel, 1978). It has been observed that atmospheric lifetimes are rather short, therefore, it 351 

is expected that it will contribute significantly to the formation of ozone and other 352 

photooxidants in the atmosphere near their emission source. For this reason, the ozone 353 

photochemical potential (POCP) could be used as a modeling method to estimate the 354 

potential of ozone creation of VOCs relative to that of ethene which is given the value 355 

100 (Derwent et al., 2007; Jenkin et al., 1998). This estimated method gives values of POCP 356 

for TFEA, HFIA, TFEM and HFIM around, 36, 28, 90, and 42 respectively. It can be 357 

observed that, in relation to ethene as reference compound, the TFEM could contribute 358 

significantly to the formation of tropospheric ozone. Formaldehyde (HCHO) is observed in 359 

the atmospheric degradation of halogenated methacrylates, with a εPOCP of 119 (Derwent et 360 

al., 2007). It is known that, this small aldehyde is one of the most reactive and most important 361 

species in tropospheric photochemistry and ozone formation (Calvert et al., 2011). In 362 

addition, it is necessary to mention that Cl-initiated oxidation could be of equal importance to 363 

OH radicals, mainly in regions with high emissions, such as coastal and marine areas. In such 364 

cases, the chemistry of Cl should also be considered, and this may lead to an increase of εPOCP 365 

values. 366 

Moreover, it is important to mention that one of the environmental problems today is that of 367 

acid rain 21. Although H2SO4, HNO3 and HCl are the most relevant acid species in the 368 

atmosphere, it is important to note that the tropospheric oxidation of VOCs containing Cl, F, 369 
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N or S in their chemical structures could contribute significantly to atmospheric acidification 370 

22. In accordance with the above an Acidification Potential "AP" can be defined as the 371 

number of acid equivalent potentials (H+) per unit mass of a given compound X with respect 372 

to the number of H + per unit mass of the reference compound, with SO2 being the proposed 373 

gas reference. The number of acid equivalent potentials in molecule X can be obtained by the 374 

number of Cl, F, N atoms and 2 times the number of S atoms present in the structure. Thus, 375 

the AP for X related to SO2is given by (de Leeuw , 1993): 376 

(14) 377 

Where MSO2 and M Unsaturated ester are the molecular weights of the reference compound (sulfur 378 

dioxide) and the compound in study respectively, and nx number of atoms of Cl, F, N and S 379 

present in the unsaturated ester structure. Analysis of potential acidification indicated in 380 

Table 3, show that the capacity of acidifying of the unsaturated halogenated esters are close 381 

to the SO2 (between 0.57 to 0.81) . This indicates that these compounds and their atmospheric 382 

degradation products could be involved in harmful "acid rain" events that are recorded in 383 

polluted atmospheres, if they are removed from the air by wet deposition processes. 384 

In conclusion, the compounds studied have shorts atmospheric lifetimes and it is known that, 385 

homologous halogenated unsaturated esters which have been studied recently have short 386 

lifetime and low GWP, so they are expected to have a minor impact on global warming and 387 

climate change (Rodríguez et al., 2016). In addition, εPOCP is relatively low, so compounds 388 

are expected to have no significant local effects on ozone formation, except in areas with 389 

increased levels of Cl atoms where their chemistry could increase local ozone formation. In 390 

relation to the products, it is expected that halogenated carboxylic compounds generated by 391 

the oxidation of halogenated methacrylates and acrylates could removed by heterogeneous 392 

processes, contributing to the acidification of precipitation, producing harmful effects in both 393 

humans and biota. 394 
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Figure captions 575 

Fig. 1: Relative kinetic plot of the reaction of Cl atoms with TFEA using Acrylonitrile (■) 576 

and Ethyl acrylate (▲) as references at 298K and 760 Torr. 577 

 578 

Fig. 2: Relative kinetic plot of the reaction of Cl atoms with HFIA using Acrylonitrile (■) 579 

and Vinyl Propionate (●) as references at 298K and 760 Torr. 580 

 581 

Fig. 3: Relative kinetic plot of the reaction of Cl atoms with TFEM using (■) 2-Methyl-3-582 

buten-2-ol and Vinyl Propionate (●) as references at 298K and 760 Torr. 583 

 584 

Fig. 4: Relative kinetic plot of the reaction of Cl atoms with HFIM using (■) Acrylonitrile 585 

and Diethyl ether (●) as references at 298K and 760 Torr. 586 

 587 

Fig. 5: Simplified mechanism for the Cl atom initiated oxidation of TFEA and HFIA via 588 

addition of Cl the double bond. The identified products are shown in filled line in the reaction 589 

between TFEA and Cl atoms.  590 

 591 

Fig. 6: Simplified mechanism for the Cl atom initiated oxidation of TFEM and HFIM via 592 

addition of to the terminal carbon of the double bond. The identified products are shown in 593 

filled line, which were observed in both reactions studied. 594 
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 767 
 768 

Fig. 6. 769 

  770 

 Table 1 771 
Reference compound, measured rate coefficient ratios, kFluorinated ester/kreference, and the obtained 772 

rate coefficients for the reactions of Cl atoms with TFEA, HFIA, TFEM and HFIM at 298 K 773 

in 760 Torr of nitrogen. 774 

 775 

 776 

Fluorinated ester Reference 
kFluorinated 

ester/kReference. 
k(cm3 molecule-1s-1) 

 Acrylonitrile (1.950.01) (2.160.24)×10-10 
CH2=CHC(O)OCH2CF3 + Cl Acrylonitrile (2.190.06) (2.430.57)×10-10 

 Ethyl acrylate (0.930.01) (2.350.45)×10-10 
 Ethyl acrylate (1.070.02) (2.710.54)×10-10 
 Average  (2.410.57)×10-10 
 Acrylonitrile (1.240.01) (1.380.29)×10-10 

 Acrylonitrile (0.970.02) (1.080.24)×10-10 
CH2=CHC(O)OCH(CF3)2+ Cl Vinyl Propionate (0.730.02) (1.500.30)×10-10 

 Vinyl Propionate (0.770.03) (1.590.34)×10-10 
 Average  (1.390.34)×10-10 
 2-Methyl-3-buten-2-ol (0.730.02) (2.190.36)×10-10 
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 2-Methyl-3-buten-2-ol (0.780.01)   (2.340.35)×10-10 
CH2=C(CH3)C(O)OCH2CF3+ Cl Vinyl Propionate (1.140.02) (2.350.45)×10-10 

 Vinyl Propionate (0.970.02) (2.000.39)×10-10 
 Average  (2.220.45)×10-10 
 Diethyl ether (0.980.04) (2.48±0.28)×10-10 
 Diethyl ether (0.920.01) (2.33±0.19)×10-10 

CH2=C(CH3)C(O)OCH(CF3)2+ Cl Acrylonitrile (1.970.05) (2.180.44)×10-10 
 Acrylonitrile (2.580.06) (2.780.52)×10-10 
 Average  (2.440.52)×10-10 

 777 

  778 

 779 

 780 

 781 
 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

Table 2 799 
Comparison of the rate coefficients values for the reaction of OH radicals with hydrogenated 800 

esters and fluorinated acrylates and methacrylates at 298 K. 801 

VOC kOH(cm3 molecule-1s-1)  kCl(cm3 molecule-1s-1)  

CH2=CHC(O)OCH2CF3 (1.25 ± 0.13) ×10-11a (2.41 0.57) ×10-10b 

CH2=CHC(O)OCH2CH3 (1.70 ± 0.40) ×10-11c (2.53 ± 0.46) ×10-10d 

CH2=CHC(O)OCH(CF3)2 (1.41 ± 0.11) ×10-11a (1.39 0.34) ×10-10b 

CH2=CHC(O)OCH(CH3)2 - - 

CH2=C(CH3)C(O)OCH2CF3 (2.54 ± 0.12) ×10-11a (2.22 ± 0.45) ×10-10b 

CH2=C(CH3)C(O)OCH2CH3 (4.58 ± 0.59) ×10-11e (2.71 0.21) ×10-10f 

CH2=C(CH3)C(O)OCH(CF3)2 (1.65 ± 0.14) ×10-11a (2.44 ± 0.52) ×10-10b 

CH2=C(CH3)C(O)OCH(CH3)2 ( 2.28 ± 0.25) ×10-11g (2.50 0.78) ×10-10g 

 802 
a (Tovar and Teruel, 2014) 803 
b This work. 804 
c (Teruel et. al, 2006) 805 
d (Teruel et. al, 2009) 806 
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e (Blanco et. al, 2006) 807 
f  (Porrero et. al, 2010) 808 
 g (Blanco et. al, 2009) 809 
  810 
 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

Table 3 837 

Estimated tropospheric lifetimes of the halogenates acrylates and methacrylates studied in 838 

this work with different troposphere oxidants. 839 

 840 

VOC OH
a Cl

b O3
c 

TFEA 11 hours 5 days 7 days 

HFIA 10 hours 8 days 7 days 

TFEM 5 hours 5 days 1 days 

HFIM 8 hours 5 days 1 days 
a (Tovar and Teruel, 2014) 841 
b This work. 842 
c (US Environmental Protection Agency, 2000) 843 
 844 
 845 
 846 

 847 

 848 

 849 

 850 

 851 

 852 
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 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

Table 4 883 

 884 
Potential for acidification of unsaturated halogenated esters studied and SO2 as reference. 885 
 886 

 887 
Unsaturated fluoroester Molecular Weights ntotal P 

CH2=CHC(O)OCH2CF3 154 3 0.62 

CH2=CHC(O)OCH(CF3)2 222 6 0.86 

CH2=C(CH3)C(O)OCH2CF3 168 3 0.57 

CH2=C(CH3)C(O)OCH(CF3)2 236 6 0.81 

SO2 64  1 


