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The behavior of the quark condensates at zero chemical potential and finite temperature sub-
ject to an external magnetic field is studied within the three flavor Nambu–Jona-Lasinio model
with Polyakov loop (PNJL) and its extension, the so-called entangled PNJL model (EPNJL). A
comparison with recent lattice QCD data is performed and it is shown that at T = 0 MeV the
light quark condensates are in quantitative agreement. At finite temperature, although there is an
overall reasonable agreement with several lattice results, it is shown that in the lattice calculations
the effect due to the electric charge quark difference is stronger and the restoration of the u quark
chiral symmetry starts at lower temperatures. When considering the EPNJL model with a Polyakov
loop scale parameter that depends on the magnetic field, it is possible to obtain an earlier rise of
the Polyakov loop with the increase of the magnetic field and due to the entanglement, the inverse
magnetic catalysis is found as in the lattice QCD calculations.

PACS numbers: 24.10.Jv, 11.10.-z, 25.75.Nq / Keywords: EPNJL, PNJL, Polyakov loop,magnetic fields,
transition temperatures, susceptibilities

I. INTRODUCTION

Understanding matter under extremely intense mag-
netic fields is one of the most interesting topics in modern
physics due to its relevance for studies involving compact
objects like magnetars [1], measurements in heavy ion
collisions at very high energies [2, 3] or the first phases
of the Universe [4].

The structure of the QCD phase diagram in the pres-
ence of an external magnetic field has been subject of
several studies [5–10], in particular, at zero chemical po-
tential µ = 0 (the T −eB plane), see [11–14] for a review.
The first analysis about the influence of the magnetic
field on the chiral-symmetry breaking within the frame-
work of the standard Nambu–Jona-Lasinio (NJL) model
was made in the late 1980s [15]. Recently, the influence
of strong magnetic fields on the QCD phase diagram cov-
ering the whole T − µ plane was investigated within the
SU(3) NJL in the mean field approximation [16]. For fi-
nite chemical potentials it is found that the location of
the critical end point occurs at larger temperatures for
stronger fields.

At zero chemical potential, almost all low-energy ef-
fective models, including the NJL–type models, as well
as lattice QCD (LQCD) calculations [17–20], found an
enhancement of the condensate due to the magnetic field
(magnetic catalysis) independently of the temperature.
The magnetic catalysis is the result of a stronger coupling
of a quark-antiquark pair in the presence of the external
magnetic field once the spins of the quarks are aligned
along the direction of induced magnetic field according

to their helicities. This effect leads to an increase of the
transition temperature for chiral symmetry restoration as
a function of B. However, a recent LQCD study [11, 21],
for Nf = 2 + 1 flavors with physical quarks and pion
masses, shows a different behavior in the transition tem-
perature, in particular, the suppression of the light con-
densates (u and d quarks) by the magnetic field, an effect
known as inverse magnetic catalysis. This suppression in
the crossover region gives a nonmonotonic behavior of the
condensates as a function of the magnetic field, resulting
in a decreasing transition temperature with an increasing
magnetic field.

In [22], the reaction of the low-lying Dirac modes to
the magnetic field was studied, showing that large values
of the Polyakov loop are favored by the magnetic field.
Therefore, just as the chiral transition temperature, also
the deconfinement transition temperature is a decreasing
function of the magnetic field. A review of the predictions
from low-energy approximations of QCD and previous
lattice simulations is given in [11–14].

Calculations of deconfinement and chiral pseudo-
critical temperatures with the SU(2) Polyakov NJL
(PNJL) [23] model and the entangled PNJL (EPNJL)
[24] influenced by magnetic fields have been discussed in
[13, 25]. As in almost all other low-energy QCD models,
these two models predict that the critical temperature for
chiral symmetry restoration increases with the increase of
an external magnetic field. It was also shown that within
the EPNJL that the splitting between the chiral and de-
confinement transition temperatures is smaller than the
splitting predicted by the PNJL model [13].
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In the present work we analyze the effects of high in-
tensity magnetic fields on strongly interacting matter us-
ing the SU(3) versions of the PNJL and EPNJL mod-
els, mainly through the behavior of the light quark con-
densate and the chiral and the deconfinement transition
temperatures. Although these models do not describe
the inverse magnetic catalysis effect observed in the lat-
tice calculations of [11] at the transition temperature,
some other features such as the behavior of the u and d
condensates with an external magnetic field B for zero
temperature, are well reproduced. We also show that it
is possible to account for the inverse magnetic catalysis
effect through the parametrization of the Polyakov loop.

This paper is organized as follows. In Sec. II, we
present the (E)PNJL models used in this work, the
Polyakov loop potential, and the parameterizations cho-
sen. In Sec. III, the transition temperatures are cal-
culated as a function of the magnetic field, and results
are compared with LQCD and other effective models. In
Sec. IV, the behavior of the condensates with temper-
ature and the magnetic field intensity is compared with
the LQCD results. Then, in Sec. V, we show a possible
way of reproducing the inverse magnetic catalysis within
the EPNJL model.

II. MODEL AND FORMALISM

We describe quark matter subject to strong magnetic
fields within the SU(3) PNJL model. The PNJL La-
grangian is given by [23]:

L = ψ̄f [iγµD
µ − m̂f ]ψf + Lsym + Ldet

+ U
(

Φ, Φ̄;T
)

−
1

4
FµνF

µν , (1)

where the quark sector is described by the SU(3) version
of the NJL model which includes scalar-pseudoscalar and
the t’Hooft six fermion interactions that models the axial
U(1)A symmetry breaking [26], with Lsym and Ldet given
by [27]:

Lsym = G

8
∑

a=0

[

(ψ̄fλaψf )2 + (ψ̄f iγ5λaψf )2
]

,

Ldet = −K
{

detf

[

ψ̄f (1 + γ5)ψf

]

+ detf

[

ψ̄f (1 − γ5)ψf

]}

where ψf = (u, d, s)T represents a quark field with three
flavors, m̂c = diagf (mu,md,ms) is the corresponding

(current) mass matrix, λ0 =
√

2/3I where I is the unit
matrix in the three flavor space, and 0 < λa ≤ 8 de-
note the Gell-Mann matrices. The coupling between the
magnetic field B and quarks, and between the effective
gluon field and quarks are implemented via the covariant
derivative Dµ = ∂µ − iqfA

µ
EM − iAµ where qf represents

the quark electric charge (qd = qs = −qu/2 = −e/3),
AEM

µ = δµ2x1B is a static and constant magnetic field

in the z direction and Fµν = ∂µA
EM
ν − ∂νA

EM
µ . In

the Polyakov gauge and at finite temperature the spa-
tial components of the gluon field are neglected: Aµ =
δµ

0A
0 = −iδµ

4A
4. The trace of the Polyakov line defined

by Φ = 1
Nc

〈〈P exp i
∫ β

0
dτ A4 (~x, τ) 〉〉

β
is the Polyakov

loop.
To describe the pure gauge sector an effective potential

U
(

Φ, Φ̄;T
)

is chosen in order to reproduce the results
obtained in lattice calculations [28]:

U
(

Φ, Φ̄;T
)

T 4
= −

a (T )

2
Φ̄Φ

+ b(T )ln
[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

, (2)

where a (T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2
, b(T ) = b3

(

T0

T

)3
.

The standard choice of the parameters for the effective
potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75.

The effective potential exhibits a phase transition from
color confinement (T < T0, Φ = 0) to color deconfine-
ment (T > T0, Φ 6= 0), where T0 is the critical tem-
perature for the deconfinement phase transition in pure
gauge. We take T0 = 210 MeV to account for quark
back-reaction.

Besides the PNJL model, whereG denotes the coupling
constant of the scalar-type four-quark interaction in the
NJL sector, we consider an effective vertex depending on
the Polyakov loop (G(Φ, Φ̄)): the EPNJL model. This
effective vertex

G(Φ, Φ̄) = G
[

1 − α1ΦΦ̄ − α2(Φ3 + Φ̄3)
]

. (3)

generates entanglement interactions between the
Polyakov loop and the chiral condensate [24]. For
reasons of consistency we use T0 = 210 MeV also in the
EPNJL model.

The parameters of the model, Λ a sharp cutoff in 3-
momentum space, only for the divergent ultraviolet inte-
grals, the coupling constants G and K and the current
quark masses m0

u and m0
s are determined by fitting fπ,

mπ , mK and mη′ to their empirical values. We con-
sider Λ = 602.3 MeV, mu = md = 5.5 MeV, ms = 140.7
MeV, GΛ2 = 1.385 and KΛ5 = 12.36 as in [29]. The
parameter set (α1, α2) must satisfy the triangle region
{−1.5α1 + 0.3 < α2 < −0.86α1 + 0.32α2 , α2 > 0} , with
T0 = 150 MeV. We choose α1 = 0.25 and α2 = 0.10.

The thermodynamical potential for the three flavor
quark sector, Ω, is written as

Ω(T, B) = U(Φ, Φ̄, T ) +G(Φ, Φ̄)
∑

f=u, d, s

〈q̄fqf 〉
2

+ 4K 〈q̄uqu〉 〈q̄dqd〉 〈q̄sqs〉

+
∑

f=u, d, s

(

Ωvac
f + Ωmag

f + Ωmed
f

)

, (4)

where the vacuum Ωvac
f , the magnetic Ωmag

f , the medium

contributions Ωmed
f and the quark condensates 〈q̄fqf 〉

have been evaluated with great detail in [30, 31].
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eB PNJL EPNJL

(GeV2) T u
c T d

c T χ
c T Φ

c T u
c T d

c T χ
c T Φ

c

0 200 200 200 171 187 187 187 184

0.2 209 208 208 172 193 193 193 187

0.4 226 224 225 174 206 205 206 195

0.6 246 242 244 178 222 221 222 204

0.8 267 257 262 182 240 237 238 214

1 288 271 279 186 257 252 255 224

TABLE I. Pseudo-critical temperatures in MeV for the chi-
ral transition (T χ

c = (T χ
u + T χ

d )/2) and for the deconfinement

(T Φ

c ) for both, PNJL and EPNJL, models with T0 = 210 MeV.

To obtain the mean field equations we must mini-
mize the thermodynamical potential (4) with respect to
〈q̄fqf 〉, Φ and Φ̄ [30–32]. Finally, according to [21] we
define the change of the light condensate due to the mag-
netic field as

∆Σf (B, T ) = Σf (B, T ) − Σf (0, T ), (5)

with

Σf (B, T ) =
2mf

m2
πf

2
π

[〈q̄fqf 〉 (B, T ) − 〈q̄fqf 〉 (0, 0)]+1 (6)

where the factor m2
πf

2
π in the denominator contains the

pion mass in the vacuum (mπ = 135 MeV) and (the chiral
limit of the) pion decay constant (fπ = 87.9) MeV in
PNJL model.

III. PNJL AND EPNJL MODELS IN AN

EXTERNAL MAGNETIC FIELD

At zero temperature the chiral symmetry of QCD is
explicitly broken. Consequently, at high temperature it
is expected that chiral symmetry be restored. At eB = 0
both, PNJL and EPNJL, models show a crossover transi-
tion: we can only establish a pseudo-critical temperature
which depends on the observable used to define it [32].
To identify the pseudo-critical temperature for the chi-
ral transition T χ

c = (T χ
u + T χ

d )/2 (being T χ
u and T χ

d the
transition temperatures for u and d quarks, respectively)
and for the deconfinement (TΦ

c ), we use the location of
the peaks for the vacuum normalized quark condensates
and the Polyakov loop field Φ susceptibilities given, re-
spectively, by

Cf = −mπ∂σf/∂T, σf = 〈q̄fqf 〉 (B, T )/ 〈q̄fqf 〉 (B, 0),

CΦ = mπ∂Φ/∂T. (7)

The multiplication by mπ is only to ensure that the sus-
ceptibilities are dimensionless.

The pseudo-critical temperatures for u and d quark
transitions become different as eB increases, within both

PNJL

150

200

250

T
c
(M

eV
)

Tu
c

T d
c

Tχ
c

TΦ
c

EPNJL

150

200

250

T
c
(M

eV
)

0 0.2 0.4 0.6 0.8 1

eB (GeV2)

FIG. 1. Pseudo-critical temperatures for the chiral transi-
tion, T χ

u , T χ

d , (T χ
c = (T χ

u + T χ

d )/2) and for the deconfinement

(T Φ

c ) vs the magnetic field intensity for PNJL (top) and EP-
NJL (bottom).

PNJL and EPNJL, see Fig. 1 and Table I, although a
stronger difference occurs for PNJL. Due to its larger
electric charge, the u quark has an effective mass that
becomes larger, which is manifested in the behavior of
the respective condensate, see Figs. 2 (a) and (c) respec-
tively for PNJL and EPNJL, so the partial restoration of
chiral symmetry in the u sector is delayed and the respec-
tive transition occurs at a higher temperature than the
transition in the d sector. It is also observed that as the
magnetic field becomes stronger, the separation between
the temperatures T χ

c and TΦ
c increases, see Figs. 2 (b)

and (d), and in Table I. This effect is much stronger for
the PNJL than the EPNJL, see Fig. 1. In fact, although
the entanglement imposed between the quarks and the
Polyakov loop in the EPNJL makes both temperatures
T χ

c and TΦ
c almost coincident if eB = 0, a very strong

magnetic field destroys this coincidence.
It is also interesting to note from Fig. 1 that for both

models, we can find a phase in which quark matter is (sta-
tistically) deconfined, but chiral symmetry is still broken.
As pointed out in [33] this phase can be called constituent
quark phase (CQP).

In the PNJL, the magnetic field has a smaller impact
on the location of the deconfinement crossover as already
noticed in [25] for the SU(2) sector: TΦ

c has just a weak
increase, ∼ 15 MeV if eB increases from 0 to 1 GeV2.

This value is comparable with the corresponding 79
MeV increase of the chiral transition temperature. More-
over, the Polyakov loop susceptibilities become narrower
with an increasing magnetic field and eventually for suffi-
cient strong magnetic fields a first order phase transition
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FIG. 2. Vacuum normalized condensates σf and the Polyakov loop Φ (top) and their susceptibilities, Cf and CΦ (bottom),
vs T for eB = 0 and eB = 0.8 GeV2, obtained within the PNJL (left) and the EPNJL (right).

PNJL EPNJL

A α A α

T u
c (B)/T u

c (0) 1.38 × 10−3 1.50 6.71 × 10−4 1.65

T d
c (B)/T d

c (0) 1.20 × 10−3 1.52 5.90 × 10−4 1.68

T χ
c (B)/T χ

c (0) 1.29 × 10−3 1.51 6.31 × 10−4 1.67

T Φ

c (B)/T Φ

c (0) 5.87 × 10−5 1.90 4.42 × 10−4 1.61

TABLE II. Coefficient A and exponent α of the expansion of
the transition temperatures for small values of the magnetic
field eB, see Eq. (8).

takes place. It is interesting to see a quite different behav-
ior within the EPNJL, where the deconfinement crossover
suffers a shift of 40 MeV , if eB increases from 0 to 1
GeV2. Due to the entanglement the Polyakov loop sus-
ceptibility peak is shifted towards higher temperatures,
together with the Cu and Cd peaks, which move ∼ 68
MeV, when eB goes from 0 to 1 GeV2. However, also due
to the entanglement interaction, the Cu and Cd peaks do
not move to so high temperatures as in the PNJL model.

The PNJL condensate susceptibilities display small
peaks around the peak of CΦ related to the fastening of
the phase transition induced by the Polyakov loop [32].
They do not signal a phase transition since the varia-
tion of the order parameter around this temperature is
small. A similar effect is seen in the EPNJL Polyakov
loop susceptibility close to the peak of the Cu and Cd.

To try to understand the dependence of T i
c on eB we

perform the parametrization of the phase transition line
introduced in Refs. [17, 34], valid for small values of the

magnetic field (eB . 0.5 GeV2):

T i
c(B)

T i
c(0)

= 1 +A

(

eB

m2
π

)α

(8)

The numerical values of the best-fit coefficients are given
in Table II. The results show what Fig. 1 also reveals:
the curvature for the Polyakov transition is softer in the
PNJL model than in the EPNJL model due to the en-
tanglement interactions between the Polyakov loop and
the chiral condensate in this last model.

IV. THE PNJL AND EPNJL MODELS VERSUS

THE LATTICE RESULTS

Next, we focus our study on the quark condensates as
functions of eB at T = 0, having in mind the comparison
of the PNJL and EPNJL models with lattice results for
the quark condensates subject to an external magnetic
field [21]. Note that for T = 0 the three models NJL,
PNJL, and EPNJL coincide. In Fig. 3 (a) we compare
the PNJL model results for the change of the renormal-
ized condensate ∆Σ = ∆(Σu + Σd)/2 with lattice results
extracted from [21]. Our results agree quantitatively well
and even at eB = 1 GeV2, the discrepancy of the order
of ∼ 10 %, is much smaller than the prediction of chi-
ral perturbation theory and SU(2) PNJL model (see Ref.
[21]). As expected, for small fields (eB < m2

π) we obtain

a quadratic dependence of ∆Σ on eB and a linear depen-
dence for higher fields (eB ≫ m2

π) [18]. In Table III we
present the lattice results for the light condensates at zero
temperature, as functions of eB [21], together with the
results obtained for the PNJL model. The average of the
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FIG. 3. ∆Σ vs eB (a) at T = 0 for PNJL and the lattice
results of [21] and (b) within PNJL for several temperatures
(in MeV) close to the transition temperature.

T = 0
eB = 0 eB = 0.2 GeV2 eB = 0.4 GeV2

+/2 − +/2 − +/2 −

(E)PNJL 1 0 1.11 0.08 1.32 0.23

Latt. [21] 1 0 1.14(2) 0.09(2) 1.37(2) 0.28(2)

T = 0
eB = 0.6 GeV2 eB = 0.8 GeV2 eB = 1.0 GeV2

+/2 − +/2 − +/2 −

(E)PNJL 1.55 0.40 1.79 0.58 2.02 0.76

Latt. [21] 1.63(3) 0.47(3) 1.90(3) 0.67(3) 2.16(3) 0.87(3)

TABLE III. Results obtained for the PNJL (EPNJL) model
together with the continuum extrapolated lattice results for
the light condensates at T = 0 [21]. Columns labeled “+/2”
contain the light condensates average, while those with “−”
contain the difference.

light condensates (“+/2”) is in very good agreement with
lattice results, especially at low magnetic fields. Even for
eB = 1 GeV2 the average of the light condensates does
not differ more than ∼ 10%.

In Fig. 3 (b) the average of u and d condensates is plot-
ted as a function of the magnetic field intensity for several
temperatures in the PNJL model. For T < T χ

c (eB = 0)
the condensates average increases with eB due to the
magnetic catalysis effect, being its value greater the
higher the temperature. When T > T χ

c (eB = 0) we
are in the region where the partial restoration of chiral
symmetry already took place. In this region there are
two competitive effects: the partial restoration of chiral
symmetry and the magnetic catalysis. The former effect

b)

a)

PNJL
EPNJL

0

0.5

1

1.5

2

(Σ
u
+

Σ
d
)/
2

eB = 0.8
0.6
0.4
0.2
0.0

0

0.2

0.4

0.6

Σ
u
−

Σ
d

0 0.25 0.5 0.75 1 1.25 1.5

T/Tχ
c

FIG. 4. (a) Light quark condensate average and (b) light
quark condensate difference and corresponding lattice results
taken from [11, 21] vs T for several values of eB.

prevails at lower values of eB, making the condensates
average approximately zero. The latter effect becomes
dominant as the magnetic field increases and the average
condensate becomes nonzero. Let us take as an exam-
ple the case T = 270 MeV: since T = 270 MeV is larger
than T χ

c (eB = 0) MeV, the average condensate is approx-
imately zero for small values of eB and starts to increase
around eB = 0.6 GeV2, a magnetic field strong enough
to prevent the restoration of chiral symmetry that would
have occurred at zero magnetic field.

The results within the EPNJL model are qualitatively
similar to the results of the PNJL model. However, it is
important to make some comments on the new features
of EPNJL. From Table I it is seen that the coincidence
existing between the deconfinement and chiral transition
temperatures at eB = 0 is destroyed in the presence of
an external magnetic field. When compared with PNJL,
the effect of entanglement present in the EPNJL is seen
on the larger (smaller) increase of TΦ

c (T χ
c ) as already

explained.

In Table III we also list the values for the difference
between u and d quark condensates (“−”), at T = 0,
in comparison with lattice calculations. Once again the
results are in good agreement namely for lower values
of eB, although, a significative difference between PNJL
and lattice calculations occurs for larger values of eB,
with the lattice predicting a larger difference between
both condensates. This means that the effect due to the
electric charge quark difference is stronger in lattice cal-
culations.
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FIG. 5. The quark condensates Σi (top), the difference between the u and d quark condensates (middle), and derivatives of
the quark condensates versus T for PNJL (black) and EPNJL (red) and two magnetic field intensities, eB = 0.4 GeV2 (top
figures) and eB = 0.8 GeV2 (bottom figures).

In Fig. 4 (a) the average and (b) the difference be-
tween light quark condensate is plotted as a function
of T/T χ

c (eB) for several values of eB for PNJL (dashed
lines), EPNJL (full lines) and lattice data [11, 21]. The
temperature normalization was done in order to remove
the inverse magnetic catalysis effect in the lattice results.
The lattice results for the condensates and the critical
temperatures were taken from [11, 21]. The comparison
plotted in Fig. 4 (a) for the average of the light conden-
sates shows that in general PNJL and EPNJL have the
same behavior as the lattice results except for a too fast
drop at the respective transition temperatures. The ef-
fect of a stronger magnetic catalysis for the u quark, due
to its larger electric charge, present in both models at
finite temperatures is clear in Fig. 4 (b): the larger the
magnetic field the larger the difference between u and d
condensates, and the respective chiral transition temper-
atures (see Table I). This feature is particularly strong
close to the transition temperature, where the curves for
stronger fields have a larger bump. This behavior was
already found in [35] where the authors have employed
the instanton-liquid model, modified by the Harrington-
Shepard caloron solution at finite temperature to inves-
tigate the chiral restoration in the presence of a strong
external magnetic field. After the transition temperature
T χ

c , the masses of the quarks are smaller, due to the par-
tial restoration of chiral symmetry, prevailing this effect
over the magnetic catalysis. For these temperatures the
u and d quark condensate difference is small.

The bump appears in the u, d condensate difference

both within PNJL and EPNJL and becomes stronger as
the magnetic field increases (see Fig. 4). To understand
the reason of this feature, we show in Fig. 5 the con-
densates Σi, Σu − Σd, and the Σi susceptibilities, for
eB = 0.4 and eB = 0.8 GeV2 in both models, removing
the temperature renormalization. The appearance of the
peaks is due to the change of the behavior of the sus-
ceptibilities. This effect is clearer for eB = 0.8 GeV2.
The vertical gray lines indicate the temperature of the
Σu − Σd maximum. For temperatures below this value,
|dΣd/dT | > |dΣu/dT |, and above the bump the oppo-
site happens. Due to the charge difference, the magnetic
catalysis is stronger for u than d quarks, therefore (a) at
lower temperatures, the decrease of the d condensate with
temperature is faster, because the partial restoration of
chiral symmetry in the u sector is delayed; (b) at tem-
peratures close to the transition temperature, Σu must
decrease with temperature faster than the Σd. Therefore,
Σu − Σd remains constant at low temperatures, then, it
increases up to a value below the d chiral transition tem-
perature, and finally, decreases until the chiral symmetry
is restored. At variance, the lattice results [21], predict a
monotonous decrease of Σu−Σd with T , possibly showing
that the partial restoration of chiral symmetry in both
the u and d sector occur simultaneously.

Lattice results [11] show that the transition remains
an analytic crossover for magnetic fields at least up to
1 GeV2. In particular, the u quark transition width de-
creases only mildly and the height grows significantly. In
Fig. 6 the susceptibilities Cu and Cd are plotted as a
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FIG. 6. Relative changes in the temperature dependence
of chiral susceptibility for quark u (full lines) and d (dashed
lines) and for different values of eB, within PNJL (top) and
EPNJL (bottom). The width increases with eB.

function of Tc − Tc(eB) for several magnetic field inten-
sities. In both models the widths of these susceptibilities
do not change much with the magnetic field intensity
even if they show opposite behaviors, which can be seen
by taking the width of the peak at half maximum. In
the PNJL model for the u quark we see that there is
a decrease from ∼ 31.1 to ∼ 21.7 MeV as the external
field is increased from zero to eB = 0.4 GeV2 and then
it remains almost constant. The eB = 0 width of the
peak at half maximum of Cu and Cd is large due to the
influence of the deconfinement transition which can be
seen in Fig. 2 (b) (red and blue dashed lines). For the
d quark we have a similar behavior except for eB ≈ 1
GeV2 where there is a strong increase of the width due
to the influence of the u quark transition on the d quark
transition. The influence of the d quark transition on the
u quark transition also exists but it is very weak. Both
behaviors are due to the split of the respective transitions
as eB increases.

Contrary to what happens in the PNJL model, the
behavior for the EPNJL model shows an increase of the
widths from ∼ 8.5(8.5) to ∼ 14.7(16.7) MeV as the exter-
nal field increases from zero to eB = 1 GeV2 for the u(d)
quarks. This behavior is mainly explained by the sep-
aration of the deconfinement and chiral transitions and
the influence of the first one on the second one due to
the entanglement interaction. The height also presents
different behaviors in both models, and different from
LQCD: in the PNJL the height increases ∼ 18% for Cu

and decreases ∼ 21% for Cd, for eB between 0 and 1

GeV2. Within the EPNJL, Cu decreases ∼ 38% from
eB = 0 to 1 GeV2. This result is a consequence of the
entanglement with the Polyakov loop (see Fig. 2).

Due to the charge difference, the magnetic field softens
more the d transition than the u transition once the peaks
height is always bigger for the u quark in both models.

V. INVERSE MAGNETIC CATALYSIS AT

FINITE T

So far, we have seen that SU(3) (E)PNJL reproduces
quite well the lattice QCD quark condensate behavior in
an external magnetic field except for the inverse magnetic
catalysis effect predicted by lattice QCD calculations at
temperatures of the order of the transition temperature
and high magnetic fields, and the width of the suscepti-
bilities at the transition. In the (E)PNJL the deconfine-
ment is described by the Polyakov loop which couples
weakly to the magnetic field as referred above. It should
be noted that the Polyakov loop potential was originally
parametrized in order to reproduce the pure gluonic lat-
tice data.

Later, it was realized that the inclusion of dynami-
cal quarks leads to a decrease of the scale parameter T0.
Since strong magnetic fields have certainly an effect on
dynamical quarks, one expects that their presence could
affect the value of T0. In a recent lattice calculation [22],
it is argued that the inverse magnetic catalysis may be a
consequence of how the gluonic sector reacts to the pres-
ence of a magnetic field: the distribution of gluon fields
may change as an indirect effect of the magnetic field
mediated by quark loops that destroys the chiral conden-
sate. This behavior happens around and above the de-
confinement temperature differently from lattice results
at zero temperature [18], where the modified distribu-
tion of gluon fields contributes to increase the magnetic
catalysis. The authors have shown that the change of the
renormalized Polyakov loop increases sharply with the
magnetic field around the transition temperature, and
that the transition temperature decreases with the mag-
netic field. Therefore, the back-reaction of the quarks on
the gauge fields should be incorporated in effective mod-
els in order to describe the inverse magnetic catalysis.

On the other hand, it is known the effect of screening
of the gluon interactions in a magnetic field in the re-
gion of momenta relevant for the chiral symmetry break-
ing dynamics [36]. In this region, gluons acquire a mass

Mg of order
√

Nfαs|eB|, with Mg being the mass of
a quark-antiquark composite state coupled to the gluon
field. In a strong enough magnetic field, this mass Mg

for gluons becomes larger. This, along with the property
of the asymptotic freedom (αs decreases with increasing
eB), leads to the suppression of the chiral condensate. It
was also shown that the confinement scale in the pres-
ence of a strong magnetic field is much less than the
corresponding scale in QCD without magnetic field [36].
Also calculations in the large Nc limit of the quark mass
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gap in a magnetic field showed that the quark mass gap
does not grow much beyond ΛQCD. In this scenario, the
screening effects for gluons were not explicitly taken into
account. By introducing 1/Nc corrections the screening
effects should grow as eB increases leading to the reduc-
tion of the pseudo-critical temperatures [37].

One possible approach to mimic the reaction of the
gluon sector to the presence of an external magnetic
field is to choose a magnetic field dependent T0(eB), in
order to reproduce the correct transition temperatures
given by lattice [11, 22]. This type of procedure on T0

had already been proposed in [38] in a different context:
based on renormalization group arguments, an explicit
quark chemical potential and Nf dependence on T0 in
the Polyakov loop potential takes into account the back-
reaction of the quark degrees of freedom on the Polyakov
loop.

We next start from the lattice results and analyze
whether they can be reproduced within the PNJL and/or
EPNJL models imposing a dependence of the Polyakov
loop on the magnetic field. This dependence will be in-
cluded through the parameter T0. However, it should be
pointed out that a too small value of T0 leads to a first
order phase transition within PNJL and EPNJL, and,
therefore, the range of T0 values of interest is limited to
the values that maintain the crossover transition.

Within the PNJL it is not possible to implement the
above scheme because the chiral transition temperatures
increase strongly with the external magnetic field. In
order to bring these temperatures down it would be nec-
essary to use very small values of T0, for which the
deconfinement phase transition becomes of first order.
However, within EPNJL the chiral condensates and the
Polyakov loop are entangled. Thus, the chiral transition
temperatures are pulled down to temperatures close to
the deconfinement transition temperature. This model,
however, still predicts a first order transition for both
transitions when T0 is too small at moderate magnetic
fields.

In order to proceed, we take a magnetic field dependent
T0(eB) of the form

T0(eB) = T0(eB = 0) + ζ(eB)2 + ξ(eB)4, (9)

fitted to the transition temperature for the strange quark
number susceptibility data, that is viewed as a quantity
signaling the deconfinement transition, extracted from
[11].

For eB = 0 we have T0 = 186 MeV, in agreement
with the T0 value that encodes the back-reaction of the
matter sector to the gluon sector for Nf = 2+1 massless
flavors [39]. The respective transition temperatures are
TΦ

c = 173.9 and T χ
c = 176.0 MeV (see Table IV). The

values of ζ and ξ in Eq. (9) are also given in Table
IV. This parametrization of T0(eB) can lead to inverse
magnetic catalysis, see Fig. 7 blue line, and allows to
describe the back-reaction on the Polyakov loop due to
the presence of an external magnetic field for eB . 0.25
GeV2. Above this value a first order phase transition

T0(eB = 0) T Φ

c T χ
c eBmax ζ ξ

[MeV] [MeV] [MeV] [GeV2] [MeV/GeV4] [MeV/GeV8]

186 173.9 176.0 0.25 −646.491 78.8961

195 177.4 179.9 0.3 −845.467 2813.38

270 214.0 216.0 0.61 −162.632 −545.027

TABLE IV. Pseudo-critical temperatures for chiral transition
and for the deconfinement in the EPNJL model for different
values of T0(eB = 0).
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)

a)

180

200

220

T
c
M
eV

0 0.1 0.2 0.3 0.4 0.5 0.6

eB (GeV2)

Tχ

c

TΦ
c

FIG. 7. (a) T0 as a function of eB defined by Eq. (9) for the
different values of T0(eB = 0) presented in Table IV and (b)
the corresponding pseudo-critical temperatures as a function
of eB for different values of T0(eB).

is obtained. A similar scenario also occurs if T0(eB) is
fitted to reproduce the upper limit of the deconfinement
transition shown in Fig. 10 of [11]. At eB = 0 we have
T0 = 195 MeV with TΦ

c = 177.4 MeV and T χ
c = 179.9

MeV. This parametrization is valid for eB . 0.3 GeV2

(see Table IV and Fig. 7, red line).
A larger range of validity would have been obtained

if the quark back-reaction had not been accounted for
(Fig. 7, black lines). In this case we would have for
eB = 0, T0 = 270 MeV as obtained in pure gauge, which
gives TΦ

c = 214 MeV, 40 MeV higher than the predic-
tion of lattice QCD data in [11]. This parametrization
also shown in Table IV, reproduces lattice QCD data for
TΦ

c (eB) [11], shifted by an amount of 40 MeV, for mag-
netic fields up to 0.61 GeV2. Above 0.61 GeV2, a first
order phase transition is obtained. We next use the last
scenario to illustrate our results because larger magnetic
fields are achieved.

In Fig. 8 (a), ∆Σ is plotted as a function of the mag-
netic field for eB < 0.61 GeV2 and several temperatures
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FIG. 8. (a) ∆Σ vs eB GeV2 for several temperatures (in MeV) within the EPNJL model with T0(eB) defined in Eq. (9) and
(b) the Polyakov loop vs T for different values of eB (in GeV2).

close to TΦ
c (eB = 0). The main conclusions are: (a) the

qualitative behavior shown in Fig. 2 of Ref. [21] and
in Fig. 6 of Ref. [22] are reproduced, that is, the non-
monotonic behavior of the condensates as a function of
the magnetic field; (b) the T = 0 curve has the highest

∆Σ, contrary to the results of Fig. 3 (b) for PNJL with
fixed T0; (c) for 200 < T < 220 MeV the strong interplay
between the partial restoration of chiral symmetry, that
for stronger magnetic fields occurs at smaller tempera-
tures (see Table I), gives rise to curves that for small eB
values increase (magnetic catalysis) and as soon as the
partial restoration of chiral symmetry becomes dominant
the curve starts to decrease; (d) for temperatures higher
than 190 MeV, the curves are negative because ∆Σ(B, T )
includes the subtraction of the condensate Σ(0, T ), when
partial restoration of chiral symmetry has not occurred
yet; (e) the behavior of the Polyakov loop shown in Fig. 8
(b) follows the same tendency predicted by the lattice cal-
culations [22] and increases with eB for a given T . Simi-
lar results are obtained if the zero magnetic field Polyakov
loop scale T0 includes quark back-reaction, however in a
smaller range of the magnetic field intensity if we restrict
results to a crossover.

To understand the inverse magnetic catalysis phe-
nomenon several studies have been made. The magnetic
inhibition can be a feasible explanation for the decreas-
ing behavior of the chiral restoration temperature with
increasing eB [40]. Also recently, a mechanism to explain
the inverse magnetic catalysis around the critical temper-
ature as induced by sphalerons was proposed [41].

VI. CONCLUSIONS

In the present work the behavior of the quark con-
densates at zero chemical potential and finite tempera-
ture under the influence of an external magnetic field are
studied within three flavor PNJL and EPNJL. The re-
sults are compared with the lattice QCD data discussed
in [11, 21].

Most of the properties of the quark condensates ob-
tained with the 3 flavor version of PNJL and EPNJL

had been obtained with the two flavor versions [13, 25].
In particular, in the present work we have shown that
the chiral and deconfinement transition temperatures in-
crease in the presence of an external magnetic field, al-
though the deconfinement transition temperature suffers
a much weaker effect. Moreover, it was shown within
the SU(3) PNJL and EPNJL models that at T = 0 the
quantitative behavior of light quark condensates with the
magnetic field is closer to the lattice results.

Another aspect that should be referred is the effect
of the magnetic field on the EPNJL deconfinement and
chiral transition temperatures: the existing coincidence
at eB = 0 is destroyed by the magnetic field. Also, the
chiral and the deconfinement transition temperatures be-
have differently with the magnetic field in both models:
the deconfinement temperature suffers just a small in-
crease compared to the huge increase of the chiral transi-
tion temperature within PNJL, while the increase of the
deconfinement phase transition is almost three times as
large in the EPNJL due to the entanglement interaction.

The light quark condensates are in good agreement
with the LQCD results, in particular, for lower values
of eB, although, a significative difference between PNJL
and lattice calculations occurs for larger values of eB.
The lattice predicts a larger difference between both con-
densates at temperatures well below the transition tem-
perature. Close to the transition temperature the lat-
tice predicts a softer restoration of the chiral symmetry.
These two features seem to indicate, that compared with
PNJL and EPNJL in the lattice calculations, the effect
due to the electric charge quark difference is stronger and
the restoration of the u quark chiral symmetry starts
at lower temperatures. The light quarks susceptibility
width does not suffer a large effect with eB just like
in LQCD, while the height of the u quark susceptibil-
ity slightly increases (PNJL) or even decreases (EPNJL)
while in LQCD it suffers a large increase if eB increases
from 0 to 1 GeV2.

The magnetic field back-reaction on the Polyakov loop
may be taken into account using a magnetic field de-
pendent scale parameter T0 which reproduces the lattice
transition temperatures. When this is done the behavior
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of the Polyakov loop with eB follows the lattice trend.
However, within EPNJL a first order phase transition,
instead of a crossover, is obtained above ∼ 0.3 GeV2

(∼ 0.61 GeV2) taking (not taking) into account the quark
back-reaction on the Polyakov loop. Understanding the
origin of these effects needs further investigation.
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