A LOOK AT BMO,(w) THROUGH CARLESON
MEASURES

ELEONOR HARBOURE, OSCAR SALINAS, AND BEATRIZ VIVIANI

ABSTRACT. As Fefferman and Stein showed, there is a tight con-
nection between Carleson measures and BMO functions. In this
work we extend this type of results to the more general scope of
the BMO,(w) spaces. As a by product a weighted version of the
Triebel-Lizorkin space Fgog is introduced, which turns to be iso-
morphic to BMO(w) as in the unweighted case.

1. INTRODUCTION

Given a growth function ¢ and a weight w, we shall consider the
BMO,(w) spaces, that is the set of functions whose oscillation, when
averaged over balls, is controlled y means of ¢ and w, measuring their
degree of smoothness. More precisely, we shall say that a locally in-
tegrable function f belongs to BMO,(w) if there exists a constant C'
such that the inequality

(L.1) e [ 1) = maflay < Coll17)

holds for every ball B in IR", where, as usual, mpg f denotes the average
of f over B respect to the Lebesgue measure. The first appearance of
this kind of weighted spaces goes back to [GC] and [MW]. In the last
paper, the authors introduced BMO(w) (¢ = 1 in our context) as
the natural space where weighted L*° functions are mapped by H, the
Hilbert transform on the line, generalizing the well known BMO space
of John and Niremberg. In the more general context p(t) =%, 0 <
B < 1, it is shown in [HSV1] that the fractional integral operator I,
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applies LP(w) with p > n/« into these spaces, under suitable conditions
on the weight. Later on this result was extended to weighted Orlicz
spaces [HSV2] giving rise to the spaces under consideration in their full
generality. Finally in [M], it is shown that they are preserved by the
Hilbert transform on the line.

In their celebrate paper [FS], Fefferman and Stein threw light into
the tight connection between BM O-functions and Carleson measures.
Let us remind that a measure p on R = IR" x (0, 00) is said to be
a Carleson measure when a constant C' exists such that for any ball
B(zg,r) C IR"

w(B(zo,7) X (0,7)) < Cr".

With this notation Feflerman-Stein result can be stated as:

flx
fEBMO@/#dm<oo and

t|V(P, x f)|*(z) dz dt is a Carleson measure

Later on, W. Smith, in [Sm], proved an extension of this result to the
spaces BMO,, (i.e. BMO,(w) with w = 1) giving a suitable definition
of p-Carleson measures.

A more recent version of this kind of characterization of functions
in BMO appears in Stein’s book [S] (see theorem 3, page 159). The
precise statement is as follows.

THEOREM 1.2. Let ¢ € S with [ = 0.

(a) If f € BMO then dp = |f ¢y 2% s a Carleson measure.
(b) Conversely, suppose v satisfies also a Tauberian condition, if f

is such that [ IH;T,ZL dr < oo and dp = |f * y|* @ is a Carleson

measure, then f is in BMO.

Here, for a Tauberian condition we mean that QZ does not vanish
identically in any ray emanating from the origin, and, as usual
Y = 1"Y(x /).

Also, it is well known that BM O coincides with the Triebel-Lizorkin
space F%2 ([FJW]). The above result, even is very close, does not allow
to conclude such characterization: one should prove part (b) of the
theorem under the more general situation of a distribution in &'/P (P
the set of polynomials) instead of the integrability condition on the
function f.
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In this work we give an extension of the theorem above to the more
general spaces BMO,(w) under appropriate assumptions on ¢ and
w, which, at the same time, allows us to obtain, as a corollary, the
identification of BMO(w) with a weighted version of F 2 -

By the way, it is worth mentioning that Bui and Taibleson defined in
[BT] weighted Fgg,q spaces. However, as we show, for « = 0 and ¢ = 2,
their definition does not give the weighted space BMO(w) as expected.
In fact we prove that, at least for weights in the Muckenhoupt class
Ay, it coincides rather with the unweighted BM O space.

In proving our main theorem we establish a kind of duality inequal-
ity envolving generalized Carleson measures and tent spaces. This is
achieved by means of an adequate atomic decomposition of the latter
spaces.

The structure of the paper is as follows: section 2 contains some
basic facts and the statement of our main theorem; sections 3 and 4,
respectively, contain some needed results, interesting by themselves,
about generalizations of Hardy and tent spaces; the proof of the main
theorem is in section 5, and, finally, section 6 is devoted to the above
remark on weighted Triebel-Lizorkin spaces.

2. PRELIMINARIES AND THE MAIN RESULT

We start by reminding some basic notions about growing functions
and weights.

For a non-negative and non-decreasing function ¢ defined in [0, oo},
we shall say that it is of upper type (3, if there exists a constant C' such
that

(2.1) p(0t) < CO%(t)

for all & > 1 and t > 0. If there exists such a number 3, we shall
denote by I(y) = inf{3 : ¢ is of upper type B}. Let us notice that
our assumptions on ¢ guarantees that () > 0. Similarly, whenever
(2.1) holds for 0 < 0 < 1, ¢ is said to be of lower type (3.

Next we remind that a weight w belongs to the Muckenhoupt class
A,, v > 1, if there exists a constant C' such that for any ball B C IR"

1 1 T
— — —1)" T <L
|B|/B“’(|B|/B” yose
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with the obvious change for the case r = 1. Finally, a weight is in the
class A,, when it belongs to some A,, r > 1.

As we said in the introduction we shall consider the spaces BM O, (w)
for ¢ a concave function as above, and w a weight in A,,. These spaces
consist of locally integrable functions on IR™ such that (1.1) holds.
Moreover if we set || f|Bro,w) as the infimum of the constants for
which (1.1) holds, BMO,(w) turns out to be a Banach space modulo
constants.

Next we introduce a generalization of the notion of Carleson mea-
sures. For ¢ and w as above, we shall say that a measure du on RTl
is a (¢, w)-Carleson measure when a constant exists such that

(2.2) /B du| < Cw(B)*(|B[")

for any ball B C IR". Here B denotes the tent corresponding to B =
B(xo,7), that is B = {(z,t) € R"™™ : |z — 20| +t < r}. As usual we
denote by [dp], ., the infimum of the constants appearing in (2.2). This
definition is a weighted extension of the notion given in [Sm|. Now we
are in position to state our main result.

THEOREM 2.3. : Let ¢ be a non-negative, non-decreasing concave func-
tion defined on [0,00) with I(p) < 1. Let ¢ = (14 I(¢))/n and w a
weight on A,. Further, let ¢ be a function in S(IR™) with null integral.
Then we have
(a) If f € BMOy(w),dp = |@Z)t*f|2(x)#1’t))dx% is a (p,w)-Carleson
measure with

Ao < Cllf a0, w)-

(b) Assume further 1 satisfies a Tauberian condition. Then any dis-

tribution f € S8'/P such that du =| ¢y * f|2(a;)w(];(7; t))dx% is a (Y,w)

-Carleson measure can be seen as a BMO,(w) function and

1F a0, (@) < Cldulp,w)-

We notice that part (a) is a generalization of (a) in theorem (1.2)
while part (b) looks slightly different. However we may obtain as a
corollary of our theorem such an extension.

COROLLARY 2.4. Let ¢ and w as above and v a function in S(IR™)
tauberian and with null integral. Then if f is such that f]R" @l gy <

T+[zn 1




A LOOK AT BMO,(w) THROUGH CARLESON MEASURES 5

00 and dp = | f*¥*(2) s dxdt is a (p,w)-Carleson measure, f is
also in BMO,(w) with HfHBM% < Cldp] p-

This corollary follows from the theorem just by noting that a function

f satisfying f]R" T Hilz,ngdx < 00 defines an element of S&'/P.

3. SOME BASIC FACTS ABOUT H/(w)

In this section we present some results concerning weighted Hardy-
Orlicz atomic spaces that will be useful to our purposes. Mostly, they
are spread in literature, perhaps not with the degree of generality we
need here. Anyway, we state them and outline their proofs for the sake
of completeness.

In the sequel we shall work with a non—negative increasing and con-
cave function 7 with 7(0) = 0 and lower type £ > ~%=. Given such 7 and
a weight w € A,, we shall say that the functlon a 1s an (1, q,w)-atom
if @ is supported in a ball B, has zero average and

Bl 1
EEIRIRT
With this notion we define the atomic space Hj(w) as the set of dis-
tributions f € S’ that can be written as f = 3°,b; (in the sense of

distributions), where {b;} is a sequence of multiples of (7, ¢, w)-atoms
such that

(3.1) lallzaw) <

w(By)
|Byln(= HbHqu)<oo,
Z \B\ (@)

where B; is a ball contalmng the support of b;. For any such decom-
position we introduce the quantity

. w BZ 1/q/
M) = nf O 3 B ) < 1)

and we denote by [f]ya(,) the infimum of A,({b;}) taken over all de-
compositions of f. It is easy to check that [.] mi(w) defines a quasi-metric
invariant under traslations and positive homogeneous when raised to
the (1/4)"-power.

Let us observe that any function g in L?(w), supported in a ball and
with zero average, belongs to H/(w) and moveover if it satisfies (3.1)
then [g]ga(w) < 1.
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The first result we need is quite standard.

PROPOSITION 3.2. : Let L be a functional in the dual of Hjl(w), then
there exists h € BMO,(w) with o(tY/™) = 1/tn~*(1/t) such that

for any g € Li(w) with compact support and zero average.
Moreover

(33)  [Blsnouw < [E]=inf{C: |L(F)] < ClflHi, b

Proof. : As usual, it is easy to see that for any ball B, L defines a
bounded linear functional on L{(B,w), the subspace of functions in
L9(w) supported in B with zero average, since for such f we have

C l/f C W(B)l/q/
LN < Clf g < Bl (L)

1/l (w)-
Extending L by the Hahn-Banach Theorem we know that there exists
a function hg € LY (w'~%) supported in B, such that

L(f) = /B hsf = /B (hs — mshs)f, € Li(B,w)

and moreover we have
1 / ! !
B4 (g | 1 = mahal”s )7 < OB

Taking now an increasing sequence of balls, by a standard argument,
a function h may be defined, modulo constants, satisfying (3.4) for
any ball. Since w € A, it is known that such inequality implies h €
BMO,(w), producing an equivalent norm, (see [M]). Therefore (3.3)
also follows. U

The next result shows that functions in S with zero moments of any
order are dense in our spaces. Related results appear in [ST], however
their spaces are not quite the same as ours.
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PROPOSITION 3.5. S, = {f € S : supp fc {x e < |z| <1 for

e’
some € > 0} is a dense subspace of Hi(w) as long as ¢ < 2+ % — %

Proof. As in [Se] given By = B(x¢,r) a ball, a function g € L9(w) with
zero integral can be split, pointwisely and in the sense of &', as

(3.6) 9= (9= mi)xs, + Y _ OkRr,

k>0 k>0

where FEy = By, Ep = B(x,72%) — B(zo,72% ') = By — Bp_1,m =
ﬁfEk 9, Be = ZiZkJrl m;| Byl = fng and Ry, = ’Ek+1|_1XEk+1 -
’Ek|_1XEk'

Clearly each term in the sums is multiple of an atom. Moreover if
g € S it is easy to check that this decomposition implies that g €
Hi(w). Thus S, is a subspace of Hf(w).

To obtain the density we observe that it is enough to approximate
functions in L%(w) with compact support and zero average. Let b be
one such function and ¢ a radial function in S such that 6(§) = 1 for
€] < 1 and (&) = 0 for [£] > 2. For any ¢,0 < t < 1, the function
o, % b — o1/ * b belongs to So, and moreover we will show that

(3.7) ¢ % b — bl ga(w) — 0
and
(3.8) o176 % bl| gy — 0

when t goes to zero.

To this end we use the above decomposition for ¢ = o, x b — b,
By = 2B*, with B* a ball containing the support of b. We denote m/,
and [, the corresponding coefficients.

For x € E}, k > 1, using the decay of o we get the estimate

N—n
|O't * b\(x) S C(N, g, BQ, W)Qk—N

for any positive integer N. Then

(g % b — b —mb) X, || Lagy < CEVN2HO=N g > 1,

Besides, for £ = 0, using that o; is an approximation to the identity
and that w € A, we get

| X5, (0¢ % b= D) 2a@y — 0 for t—0.
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Therefore, setting hl, = (o¢ * b — b — m})xg,, choosing N large enough
and using again that w € A,, we easily obtain that A,({hL}) — 0, as
desired.

Also, for any k£ > 0, due to the decay of o we get

Bkl =1 | ovxb] < CE¥Tr2Mm N,
By,

and hence

18k Bellzaqey < CEY 27" (w(By) M.

Arguing as above we also get A ({" Ry} — 0. Then (3.7) is proved.
To prove (3.8) we use (3.6) again, now for g = o1, *b, and we denote

by m} and [} the corresponding coefficients.
First for £ > 1, using the smoothness and decay of o, we have for
z € F

n+1 M

|1 % bl () < ek o 10l Lo
for M as large as we want. Choosmg M =n+1-9,with0<d <1,
we get

(o1 % D)X, [l oy < CO275 Dbl Lag
As for k = 0 we clearly have

(o176 % b) o || 2oy < OBl Lace)

Therefore, settting ht, = (o /e xb—m})xp, and using that 7 is of lower
type ¢ we obtain

Z |Bk|77 ) ||ht ||Lq(w ) < Cn( t(S ZQk(n-i—Z(n(q 2)+6—1))

k>0 |B ’ k>0

Since ¢ < 2 —i— , we may choose ¢ small enough to make the last
series convergent ThlS shows that A,({ht}) — 0.

A similar argument proves the convergence to zero of A,({3LRy}),
finishing the proof of the proposition.



A LOOK AT BMO,(w) THROUGH CARLESON MEASURES 9

4. SOME BASIC FACTS ON TENT SPACES T, (w)

In what follows for a measurable function G defined on ]erfl we set

(4.1) V(G)(z) = (/F( | |G(y,t)|2%)1/2

where I'(z) denotes the cone {(y,t) : |z — y| < t}.

For a non-negative increasing and concave function with 7n(0) = 0
and lower type £ > n/(n+1) and a weight w in L} (IR™), we introduce

loc

the tent space T, (w) as those functions G such that

[V(G)W]Ln = [G]Tn(w) < 00,

where by [g]zn we mean inf{\: [n(g/A\Y¢) < 1}.

The main goal of this section is to get an atomic decomposition of
T, (w), extending the result contained in [CMS] for n(t) =t and w = 1.
To this end we first introduce the notion of atoms.

Given a ball B = B(z,r) C IR" we denote by B the tent over B, i.e.
B={(y,t): |t —y|+t <r} Now, a function a(y,t) is said to be an
atom whenever is supported in some B and

© (B ) dyi\Y? _ B 1
a2 ([Tt ) < o

tn t

Observe that if we set W (y,t) = w(B(y,t))/t"™! the left hand side of
(4.2) is just ||a||L2wy. Also, due to the concavity of 7, it is easy to
check that atoms do belong to T}, (w) and moreover [a]z, ) < 1. With
this notation we obtain the following result.

THEOREM 4.3 (Atomic decomposition of T, (w)). Let n be a function
as above and w a weight in As_(1/0-1/ny. Given F € T,(w), there exists
a sequence of multiple of atoms, {b;}, such that

F = ij a.e.

Moreover, if we denote by B; the ball associate to b; such that
supp b; C B;j and define
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w(B;)'"?

(44) A({b}) =inf{A>0:>" |Bj|n((A1/g|Bj’ 101l L2wy) < 1},

we have A({b;}) < oo and

(4.5) infA({c;}) < ClF]r, )

where the infimum is taken over all possible decompositions of F'.
Before proving the theorem we need some technical results.
LEMMA 4.6. Let p be a non-negative increasing function of finite upper

type and w a weight in As. Then

a) There exists a constant Cy such that

1 1
— Ch—
iy |4 < Corgy | o)
for any cube @ C IR"

b) If in addition p is concave, then for any C > 0, p(Cw) belongs
to As with an uniform constant.

The proofs are straightforward using the following characterization
of Ay (see for example [CF]).

There exist 0 < «, # < 1 such that for any cube @) C R"

{2 € Q:wl) > fmgw}| = alQ).
The next proposition gives a weighted version of a clue estimate given
in [CMS]. Before stating it we introduce the definition over the tent of

a general measurable set  C IR™ as the union of the tents B for all
the balls B C €.

PROPOSITION 4.7. Let w be a weight in Ay and By a ball in IR".
Then there exists a constant C' such that for every measurable function
F defined on IR" x (0,00) and every measurable set E C By, we have

[ raopt BN o [y uar,

Bo—© t t

where Q@ = {x € By : M(Xg)(x) > 3}, with M the Hardy-Littlewood
mazximal operator.
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Proof. Set Z = {(z,y,t) € (By— E) x By —Q : |z —y| < ¢} and
Zyy = (Bo—E)NB(y,t). We claim that there exists o > 0, such that

~

for any (y,t) € By — Q.
(4.8) w(Zy) = aw(B(y,t)).

In fact, if (y,t) € By — (), there exists g ¢ Q with zg € B(y,t) C By.
So M (Xg)(z9) < 1, and, in particular

1

Therefore |(By — E) N B(y,t)| > 3|B(y,t)| and (4.8) follows from the
A, condition.
Then, we have
dydt

/ . IF(y,t)|2w(B(g’t)) dzdt < l/ |F(y7t)|2/z w(z)da o

Bo—© t t & JBo-0 (w:t)

1 9 dydt
— = [ I Pt 2

1/ / o dydt
< — w(x F(y,t dx
ALY SN LUl

_ ! /B V) @le) de

«

O

Now, we are in position to proceed with the decomposition into
atoms.

Proof of Theorem 4.3. For k € Z let Ey = {x : V(F)(z) > 2¥} and
Qp = {z : M(Xg,)(x) > 3} It is not hard to check that, except for

a zero measure set, supp (F) C Uﬁk. In fact, for any Lebesgue point
(x,t) not belonging to any ), there exists a sequence {y,} C B(z,t)
with M(Xg, )(yx) < 1. Therefore for any k, |B(z,t) N {z : V(F)(z) <

2¥}| > 1B(x,t)|, and taking the limit for & tending to - oo, we get
1
|[B(a,t) N {z: V(F)(2) = 0}] = S|B(x,1)]

From here we easily conclude that for some y € B(z,t),FF =0 a.e.
in I'(y) and hence F(z,t) = 0.

Now, for each k we make a Whitney decomposition of {2, into cubes
Qi Next we choose a family of corresponding concentric balls By
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containing Qi with radious C-times the diameter of Qi, in such a way
that for the sets

—

Al = BN (Q) x (0,00)) N (4 — Qpy)
it holds
ﬁk — Qk—&-l - UjA{C.

In fact, it is not difficult to see that it is enough to take C' greater than
Co + 1, where Cj is the constant of the Whitney covering.
Now we define b, = F'x Al It is clear that they are multiples of atoms

and that ' = Y"b/. It remains to show that A({0]}) < C[F 17, (w)-
First observe that, by proposition (4.7),

~ w(B(y,t)) dydt
Wil < [ 1RGPt B

B} —Qp 41
gC/‘ V(F)(z)Pw(z)dx
By —FErt1

< 022 y(BY).

If we set v = [F]lTﬁe(w), by lemma (4.6), we get

> st B )< e jaihe @),

|B”| 7|@7]
2k+1
< CZ/ )dz
2k+1
< CZ/ )dz.

But, by part b) of the same Lemma, there exists p > 1 such that
n(Cw) € A, with an uniform constant. Therefore the Hardy-Littlewood
maximal operator is of weak type (p, p) with respect to n(Cw) with an
uniform constant. Thus, we have

ok+1 ok+1
/ n( w(z))dz < C/ n( w(z))dz.
M= Y B
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With this estimate, the above sum over k is bounded by

OZ/ (Qkﬂ )dz<0/ Y 7](2k;rlw(z))dz

k<log2V(F)(z

2k+2

sc/n( Z /2 () D)z

k<log2V(F

L)V (F)(Z)V(F)( o ds
0/3/ n(s) %) dz
R

<c [ w06

IN

~
where we have used that the positive lower type of 7 implies
Jyn(s)% < C(t). This shows our assertion. O

5. PROOF OF THE MAIN RESULT

Proof of Theorem 2.3. Part (a). Let B = B(xg,r) be a ball in
IR™. We split f as

f=—mpflxg+ ([ —mpflxg. +mpf=fi+ fa+ fs
where B = B(z,2r). Since 1), has zero average, i x f3 = 0. For fy,

we have
t" dydt
I = ; ok 2
/BW fl‘ (y)w(B(y,t)) t

1B dyd
< [ o P A

dyd
= [k ([ o)
B = dydt
o e menrwis).

Since w € Ay from the theory of vector valued singular integrals we
have that the operator Sy f(2) = ([p, [t = f1[*(y ) L)1/2 i bounded

from L*(w™!) in L*(w™!), then
ISOAVM@| 2)dz=C /u s fPw (2)dz

< Cw(B)y (!B|1/n)”fHBMO w)*
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The last inequality is due to the equivalence of norms in BMO,(w)
(see[M]). Now, for fo, denoting by By = B(xg, 2r), we have

(5.1)
e * fol(y <Z / — mpf| [y — z)|dz

Bkl

<3 / 1@ = ma gy — e

k=2
Zﬁ (/B-‘f(Z)_mij‘dz) (/B . ’¢t<y—$)‘dx> :D1_|_D2.

Using that ¢ € S and the fact that ¢ is of upper type [, we get for
(y,t) € B

oo w
D, <C / r)—m dzx
1 ; Be—By_, |f< ) ka‘ (t + |y _ JI|)"+O‘

t
< z

[e.e]

t ¢ 1 w(Bk) k
° bl el 2NN
c () HfuBMow(me_;zm e
t\“ wz)e(lz —x
<C <;> HfHBMOy,(w)Ta/ ( )@(‘ Ol) dz

|z — xo|nte

w(2)
z — xo|rte—h

IN

< CtaHfHBMow(w)rﬁgo(r)/ dz.

Taking o = n + 3 and recalling a well known property of A, weights,
we obtain

w(B) w

|B?

B)
Bl

n — t n
Dy < Ct || fll Bao,wyr " e(r) = C\|f||BMo¢(w)(;) Heo(r)

To estimate Dy we observe that

(67

t
— < C————|Byl.
/Bk—Bk1 W}t(y .r)‘dx B C<t + 2kr>n+a‘ k’
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Therefore, using w € A, implies w € As_, and taking o = n + (3 again,

o0 a w
D2 < Clf o, Y- iy O St e(2)
k:2 J=1
< Cllfllowo.co (£) SEle) Y g Ym0
k=2 J=1
< oo, (£) o550,

So we obtain the same estimate for Dy and D,. Then, integrating over
, we get

~'(B(y,t)) dydt gt
/Wﬁ L < Ol oo BB [

t?’L
Finally, from this estimate and that obtained for I we finish the proof
of (a).
Now we turn into the proof of b). Under our assumptions on ¢ there
exists 1) € S with [+ = 0 such that for any g € S

1/67 dt
:/ @Dt*wt*g?—w

pointwisely (see, for example, [S], page 159). Furthermore for g € S,
(see proposition (3.5) for the definition), we may follow the same steps
as in [FJW], page 122, to conclude that the above convergence occurs
also in the topology of §. Therefore for f as in the hypothesis, g € S,
and denoting g(x) = g(—x), we have

(f,9) = Jim (£.3)
. 1/e 3 B dt
:ehino/e (fa¢t*¢t*g)7
/e d
= lim/ (%*ﬁ@bt*g)?t

ﬁm//%ﬁ)%@”)ﬁ

where for the last equality we use that ¢ * f and ¢, * g are C* functions
and that, as we will see bellow, the integral is absolutely convergent.
We claim that for any pair of measurable functions on IRiH, say F'
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and G, we have

63 [ P@0lGE ST < Clarl G,

+

where dF = [F(z,1)[* tnx ) dedt (1) = w(tll/n) and ¢ is the lower
type of 7, that is £ = 1/(1 — B/n). In fact if G € T, (w), in view of the

atomic decomposition (see Theorem 4.3), G can be written a.e. as

t) = ij(xvt)

in such a way that
A({b;}) < ClGlr, )

Therefore, if B; is the ball associate to b; such that supp(bj) C B;, we
get

1/2
dxdt t" dxdt
t < F t
| oo P0G Z(/' RN En) t)

1/2
</B \@@J)PWC%)

< [dFpw Y w0(B) 201 B ") 1bsll 2w

J

~

Now, is o denotes the last sum, it is easy to check that

Z|B| ( |B|> ||b||Lz<w>zl.

In fact, replacing ¢(|B;|/™) by 1/(|B;|n~*(1/|B,|)), the above inequal-
ity follows using the fact that n is of upper type less than or equal to
one. Therefore, in view of the definition of A, we get

o' < A({D;})

finishing the proof of (5.3). Now, applying this inequality in (5.2), we
have

1/2
(£ <C a2 [( / ()wt*gwy)‘fﬁt) w<.>]

l
= Cldu)2 [(Sp9)w] Zda’"‘)’

1/¢

n(IR™)
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where djp denotes the measure associate to ¢, * f. Then, it is clear
that part b) of our theorem follows from the above inequality by using
Proposition (3.2), provided we can prove that

(5.4) (SR < Cllmgo)

In order to check that (5.4) holds, we recall, as in the proof of part a),
that it is well known that Sy can be studied as a Calderén-Zygmund
operator taken values on L?(IR" x R, ffff ). Then, the theory of vector
valued singular integrals allows us to assert that it is bounded on L?(w)
for any w € A,. Now, for a function b in L?(w) with compact support
on a ball By = B(xg,r9) and zero average, Jensens’s inequality leads
us to the following estimate

w(By)Y¥
C|Bo|n <ﬁ||5¢b||m(w)

w(B )1/‘1/
< Cl|Boln (#Hb”m(w)

IN

(5.5) / n(Syb(z)w(x))dr

By

where By = B(xg,2rp). On the other hand, it also known that

ro " IbllLow)
|z — 2o w(By) /1’

Sgb(z) < C <

for = ¢ By. Then, a standard reasoning using this estimate, Jensen’s
inequality and the fact that w € A, allows us to get

50 [ aSa@)s < Clp| Y2

0

W(Bo) " [[bllzs(e)

x( Bl 2(2n—nq+1)j)
W(Bo)l/q,
< ClBln( B )
ol

because of our assumptions on ¢ and ¢. Therefore if b is an atom in
Hi(w), (5.5) and (5.6) imply (5.4) for g = b. Consequently (5.4) holds
for every g in H! (w), finishing our proof. 0
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6. A WEIGHTED TRIEBEL-LIZORKIN SPACE

As we said in section 1, Bui and Taibleson introduced in [BT] a
weighted version of the Triebel-Lizorkin spaces Fy, . Specifically, they

take ¢ € S with supp ¥ C {€: : <€) <2} and Zj:_oo [h(279€) 2 =1
for |£] # 0. Then, for w € A, the space Fgg“;,a €R,0<q<o0is
defined as the set of f in §’/P such that

1/q

(61) sup / Z (2”|@/12]*f|( Diw(r)de | < oo,

—loga (¢

where ) denotes a dyadic cube in IR" with lenght side ¢(Q). For the
case @ = 0 and ¢ = 2 we have the following result.

PROPOSITION 6.2. The space BMO 1s contained in Ffo“; for any w
in As. Moreover, if in addition, we assume w € Ay, then both spaces
coincide.

In view of the above proposition and Theorem (2.3), we consider
that F‘“’ should be rather defined as the set of f in &’/P such that

sup (i [l o dﬁdt)

When o = 0 and ¢ = 2, note that for w € A1/, and ¢ in § satisfying
a tauberian condition, Theorem 2.3 allows us to obtain two facts: first,
a weighted version of the well known result BMO ~ F 0 2, and, second,
as a consequence, that the definition of the space does not depend on

the choice of ¥

< Q.

PROOF OF PROPOSITION 6.2 Let f be in BMO. Given a cube @), we
split f as follows

f={f—mquf)Xy+ (f —mquf)Xxg + mouf = fi+ fat+ fs

where mg ., f = ﬁ /. 0 fw and Q denotes the concentric cube with Q

and length side 2/(Q). In order to prove that f satisfies (6.1) for a = 0
and ¢ = 2, we first estimate

= > T fP @)l < Lo Y s s P @eos

j_flOggf j=—o00

- / (G (@) 2w(x)de.
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But, J. Garcia—Cuerva and J. M. Martell prove (see [GM]) that G
can be viewed as a vector valued Calderén-Zygmund operator, which,
since w € Ay, it is bounded from L*(w) into L% (w). So, we have

1<c /]Rn (@) Pwlz)dz = C /Q 1 = mou flPu(z)dz
< Ol oo (@),

where the last inequality follows from the fact that (see[MW])

1
supal S5 /Q 1 = mau  P) = || fllsmo

On the other hand, denoting by @ the concentric cube with @
and length side 2%/(Q), a similar reasoning to that applied for getting
estimate (5.1) allows us to get

277 \" [ 1 1
[ors * fol(y) <C (m) (Z%m 1@ - mau it

k=2

+ Z Z ! |f(z) — mg, wflw(z)dx

= o w(@i) Jo,

- /Qka1 v (y - x)dx> ’

for every 7 € Z, for @« > 0 fixed. Then, since w € Ay, Holder’s
inequality and the fact that the norms are equivalent, yield

[Va-i * fol(y) < C <€2(_Q)) | fll Bro-

Now, from this inequality, we get

j=—logz¥

) ek i < 2@ o
/Q Z(@’% Ffrte)de = (g(Q))“”f“BMojzgg;e(@

< Cw(Q)flzamo-

So, the above estimate, the obtained for I and the fact that
g — j % f3 =0 prove f € Ffo“; that is BMO C Fggz.
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Now, assuming w € A; and using the well known unweighted result
BMO ~ F,, (see [FJ], for instance), we can write

o < suprs / s % f2(x)da

J—flong(Q
Csup / Z |¢23*f|() (z)dx
j_fl0g2£
Clearly, this implies F 2 C BMO. U
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