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We develop a new approach to gravitational waves in which the Einstein equations are governed by
the cosmological constant which is related to the existence of a manifold which is closed. We study
an example in which the matter Lagrangian is described by the scalar (inflaton) field. There are
only three dynamical solutions. In one of them the universe is initially static but begins to increase
until an inflationary stage. We calculate the dynamics of GW in this primordial pre-inflationary
stage of the universe. We found that there should be an infinite number of polarization modes in
order to the fields can be quantized. Finally, we calculate the energy density due to the gravitational
waves.

I. INTRODUCTION

When one tries to describe the early universe, GR is applied beyond its domain of validity. The quantum effects
which dominate in this epoch are expected to resolve the singularity. In particular, the existence of the cosmological
singularity in the framework of Loop Quantum Gravity (LQG)[1, 2] has been subject of study in the last years.
However, at the present time, it is not possible to realize a consistent quantum gravity theory which leads to the
unification of gravitation with the other forces. In particular, the theory of gravitational waves (GW) is a rich
subject that brings together different domains such as general relativity, field theory, astrophysics and cosmology. At
present various gravitational-wave detectors, after decades of developments, have reached a sensitivity where there are
significant chances of detection, and future improvements are expected to lead, in a few years, to advanced detectors
with even better sensitivities [3]. There are good reasons to expect that the Universe is permeated also by a stochastic
background of GW generated in the early universe. In particular, the fossil GW becoming from the big-bang should be
a great success if it were detected. Recently has been reported GW produced during the inflationary epoch[4] which
are compatible with a energy scale of 1016GeV . However, more data are required to confirm the above situation.
During the inflationary expansion, the universe suffered an exponential accelerated expansion driven by a scalar
(inflaton) field with an equation of state close to a vacuum dominated one[5–7]. The most conservative assumption
is that the energy density ρ = P/ω is due to a cosmological parameter which is constant and the equation of state
is given by a constant ω = −1, describing a vacuum dominated universe with pressure P and energy density ρ.
Inflationary cosmology can be recovered from a 5D vacuum[8–10], and is very consistent with current observations of
the temperature anisotropy of the Cosmic Microwave Background (CMB)[11]. The most popular model of supercooled
inflation is chaotic inflation[12], but there are many models which are good candidates. In this model the expansion
of the universe is driven by a single scalar field called inflaton. At some initial epoch, presumably the Planck scale,
the scalar field is roughly homogeneous and dominates the energy density, which remains almost constant during all
the inflationary epoch. It is well known that the inflationary cosmology also generates a background of gravitational
waves [13]. Dark energy cosmological scenarios have been intensively studied in the last years[14]. The scenarios there
described can explain the generation of gravitational waves on cosmological, but not on astrophysical scales.
During inflation the energy scales are of the order of (1016 − 1018) GeV , but it is expected that can exist an earlier

epoch of the universe in which it begins to increase until becoming in a de Sitter expansion. In this epoch the energy
scales in the universe should be bigger, of the order of 1019 GeV , which is the Planckian order of energy. Such epoch
is called Pre-inflation and is necesary to explain the accelerated expansion of the universe known as inflation, which
is very important because solves many cosmological problems such as, for example, can explain the flatness, isotropy
and homogeneity of the present day universe such as can explain the nonexistence of magnetic monopoles. Of course
all these predictions are only valid on cosmological scales which actually are in the range (108− 1010) l.y.. Inflation is
also very important because is capable to explain the genesis of primordial structure formation in the universe, which
is later makes possible the galactic formation. When the inhomogeneities of the scale factor which driven inflation are
unstable their modes cross the causal horizon which is related to the cosmological constant Λ. After inflation, when
matter acquire mass these modes re-enter the horizon and become causally connected again. During inflation the size
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of the horizon was of the order of 105
√
G1, but at present is really very small: λH ∼ 10−61

√
G.

In this work we shall develop a nonperturbative formalism to study gravitational waves in a curved space-time.
After it we shall work an application to the early big-bang universe to study the pre-inflationary dynamics of the
universe. Finally, we shall explore the emission of GW from the early pre-inflationary universe, in order to obtain its
spectral density.

II. FORMALISM OF GRAVITATIONAL WAVES

In this section we shall revisite the formalism of GW to obtain the wave equations in a consistent manner.

A. Variation of the matter action

We consider the general action I which describes gravitation and matter

I =

∫

V

d4x
√−g

[

R

2κ
+ Lm

]

, (1)

where g is the determinant of the covariant background tensor metric gµν , R = gµνRµν is the scalar curvature,
Rα

µνα = Rµν is the covariant Ricci tensor and Lm is an arbitrary Lagrangian density which describes matter2. If we
consider an orthogonal base, the curvature tensor will be given written in terms of the Levi-Civita connections

Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γǫ

βδΓ
α
ǫγ − Γǫ

βγΓ
α
ǫδ. (2)

The variation of the action matter will be

δ
[√−gLm (gµν , gµνλ)

]

=
√−g

{[

δLm

δgµν
− 1

2
gµνLm

]

δgµν

+

[

δLm

δgµν,λ

]

δgµν,λ

}

. (3)

By using the fact that δgµν,λ = δgγµgνβgγλ,β, we obtain that

δ
[√

−gLm

(

gµν , gµν,λ

)]

=
√
−g δgµν

×
{

1

2
Tµν +

[

δLm

δgµν,λ

]

δβλ,β

}

,

(4)

where δβλ,β = 0, so that

δ
[√−gLm

(

gµν , gµν,λ

)]

=
1

2

√−g δgµνTµν . (5)

Here, we have used the generic definition for the Energy-Momentum (EM) tensor: Tµν = 2 δLm

δgµν − gµνLm.

B. Variation of the gravitational action on a curved spacetime

Now we consider the gravitational action. Its variation is

δ
[√

−g R
]

=
√
−g

[

δgαβ Gαβ + gαβ δRαβ

]

, (6)

1 The value of the gravitational constant is G ≃ 10−38 (GeV )−2.
2 In this paper we shall consider some Lagrangian density related to a metric tensor which is symmetric and free of nonmetricity.
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where Gαβ = Rαβ − 1
2gαβ R is the Einstein tensor and

gαβ δRαβ ≡ ∇µW
µ. (7)

Here, the tetra-vector W , has components Wµ

Wµ =
1

2

[

δgλνgαµ (δgαν,λ + gλν,α − gαλ,ν)

+ gαµgλν (δgαν,λ + δgλν,α − δgαλ,ν)

− δgµνgαλ (gαν,λ + gλν,α − gαλ,ν)

− gαλgµν (δgαν,λ + δgλν,α − δgαλ,ν)
]

, (8)

where we have made use of the fact that δgµν = −gµρgνσδgρσ. Therefore, the first variation of the action will be

δI =

∫

d4x
√−g

[

δgαβ (Gαβ + κTαβ) + gαβδRαβ

]

, (9)

with (7)3.
When we deal with a manifold M wich has a boundary ∂M, the action should be supplemented by a boundary

term in order to the variational principle to be well-defined. One solution of this problem was introduced by adding
a term in the Hilbert-Einstein action. This additional term is known as the York-Gibbons-Hawking action[16, 17]. In
this work we shall propose another solution for this problem. We shal consider In this case

∇αW
α = Φ(xα), (10)

is nonzero. Here, Φ(xα) is an arbitrary scalar field which becomes zero when the manifold has no boundary Φ = 0. In
order to δI = 0, in (1), we shall consider the condition: Gαβ + κTαβ = Λ gαβ, where Λ is the cosmological constant.
In this case the dynamics of the system will be given by

Gαβ + κTαβ = Λ gαβ , (11)

∇αW
α = Φ, (12)

with the constriction δgαβΛ = Φ gαβ.

C. Variation of the Einstein equations and Gauge-invariance

In order to study the dynamics of the metric fluctuations we must variate the Einstein equations (11):

δGαβ − Λδgαβ = −κ δTαβ, (13)

with the constrictions (12). Using the fact that R = gαβRαβ and T = gαβTαβ, we obtain that δR = κ δT , and we
obtain that the equation (13) can be re-written as

δRαβ − Λδgαβ = −κ δSαβ, (14)

where we have introduced the tensor Sαβ = Tαβ − 1
2T gαβ, which takes into account matter as a source of the Ricci

tensor Rαβ . Another manner to write the equation (14) is in terms of the tetra-vector Wµ, is

∇βWα − Λδgαβ = −κ δ

(

Tαβ − 1

2
T gαβ

)

, (15)

which explicitly holds

δgνα,βν − gνγ,βνδgαγ − gνγ,αδgβγ,ν − gνγ,νδgαγ,β +
Λ

2
δgαβ

=
κ

2

[

δTαβ − 1

2
δ (T gαβ)

]

, (16)

3 The reader can see, for example, the page 75 in [15].
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where we have used (12). The tetra-vector components Wα can be written as

Wα =
1

2

{

δgγθ (gαθ,γ + gγθ,α − gαγ,θ)

+ gγθ (δgαθ,γ + δgγθ,α − δgαγ,θ)

− gγθ
[

δgβα (gγβ,θ + gθβ,γ − gγθ,β)

− (δgγα,θ + δgθα,γ − δgγθ,α)]} . (17)

Now, we can propose the existence of a tensor field Ψαβ , such that δRαβ ≡ ∇βWα−Φ gαβ ≡ �Ψαβ−Φ gαβ = −κ δSαβ,
and hence

Wα = ∇βΨαβ . (18)

This means that the gravitational waves can be described in two manners, as the resulting of the wave equation of
motion for the tensor field Ψαβ :

�Ψαβ − Φ gαβ = −κ δSαβ, (19)

or as the solution of a vectorial differential equation

∇βWα − Φ gαβ = −κ δSαβ. (20)

Notice that the field Wα and is gauge-invariant under transformations W̄α = Wα −∇αΦ, when the scalar function Φ
complies �Φ = 0. The same is valid for Ψ̄αβ = Ψαβ − Φ gαβ.
Finally, one can make the transformation:

Ḡαβ = Gαβ − Λ gαβ, (21)

and the transformed Einstein equations with the equation of motion for the transformed gravitational waves hold

Ḡαβ = −κTαβ, (22)

�Ψ̄αβ = −κ δSαβ, (23)

with �Φ = 0 and Φgαβ = δgαβΛ.

D. The local vacuum and dynamics of gravitational waves

We shall introduce the following conditions

R+ 2κLm = 2Λ, (24)

δ (R+ 2κLm) = 0, (25)

where Λ is the cosmological constant. Physically, the eq. (24) means that for each point of the space-time the action
density is a constant related with the cosmological constant. The second eq. (25) means that its variation is also null
and each alteration of the space-time is locally produced by a local variation of the physical fields of the system which
we are considering. If we use the equations (20), we obtain

∇βWα − Λ δgαβ = −2κ δ

(

δLm

δgαβ

)

. (26)

We define ∇βW̄α = ∇βWα − Λ δgαβ, and we make W̄α = ∇βΨ̄αβ . Hence, we obtain the following wave equation for
Ψ̄αβ :

�Ψ̄αβ = −2κ δ

(

δLm

δgαβ

)

. (27)

This result is valid for an arbitrary physical system with an arbitrary Lagrangian density Lm. In the following section
we shall study the dynamics of gravitational waves in the very early universe.
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III. AN EXAMPLE: GW FROM THE PRIMORDIAL BIG-BANG OF THE UNIVERSE

As an example we can study the example which describes the gravitational waves in the primordial universe. If the
expansion is driven by a scalar field ϕ(xα) which is minimally coupled to gravity

I =

∫

V

d4x
√
−g

[

R

2κ
+

1

2
gµνϕ,µϕ,ν − V (ϕ)

]

, (28)

where κ = 8πG, G is the gravitational constant,
√−g = a3(t) is the volume of the manifold M and gµν =

diag[1,−a2,−a2,−a2] are the components of the diagonal tensor metric. The dynamics of the scalar field being
given by the equation

ϕ̈+ 3Hϕ̇− 1

a2
∇2ϕ+ V ′(ϕ) = 0. (29)

Given the quantum nature of the fields ϕ and Π0 = δLm

δϕ̇ it seems convenient to use the quantization procedure. To

do it, we impose the commutation relations

[

ϕ(t, ~R),Π0
(ϕ)(t,

~R′)
]

= i δ(3) (~x− ~x′) . (30)

A. The scalar field dynamics

We shall consider a semiclassical approach to the scalar field: ϕ(xα) = φ(t) + δφ(xα), such that φ(t) = 〈E|ϕ|E〉 is
the background solution that describe the dynamics on the background metric. Here, |E〉 is some quantum state such
that 〈E|ϕ|E〉 denotes the expectation value of the ϕ on the 3D Euclidean hypersurface and φ(t) is the background
solution of the equation

φ̈+ 3Hφ̇+ V ′(φ) = 0. (31)

Furthermore δφ(xα) are the fluctuations with respect to the background, such that 〈E|δφ|E〉 = 0. The dynamics of
the fluctuations δφ can be approximated to

δ̈φ+ 3H ˙δφ− 1

a2
∇2δφ+ V ′′(φ) δφ = 0. (32)

Here, V ′′ ≡ δ2 V
δϕ2

∣

∣

∣

φ
≡ m2 gives the square mass of the inflaton field related to the density potential V (ϕ). From the

Einstein equations, we obtain that R + 4Λ − κT = 0, so that after making use of the fact that T = 4V (φ) − φ̇2 and
the condition (24), we obtain

V (φ) =
3Λ

κ
, (33)

φ̇2 +
6

κ

(

2H2 + Ḣ
)

=
8Λ

κ
. (34)

From the Eq. (34) it is obvious that V (φ) is a constant, and the Eqs. (34) with (31) provide us with the dynamics of
φ(t) and H(t). Since V ′ = 0, hence the dynamics of the background scalar field φ decouples with gravity. From the
Eq. (31) we obtain general solution for the scalar field

φ̇(t) =
C

a3(t)
. (35)

If we replace this solution in (34), we obtain that there are only three possible solutions.

1. The static universe

The more trivial case with C 6= 0 and a(t) = const., for Λ > 0. This solution give us a null Hubble parameter
and hence does not describe an expanding universe.
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2. The bang of the primordial universe (or pre-inflation)

The more interesting case is with C = 0 (i.e., with φ̇ = 0), for Λ > 0. The dynamics of the Hubble parameter

is given by the equation 12H2 + 6Ḣ = 8Λ, and the solution is

H(t) =

√

2Λ

3
tanh

[

2

√

2Λ

3
t

]

, (36)

which is related to a scale factor

a(t) =
a0

[

1− tanh2
(

2
√

2Λ
3 t

)]1/4
, (37)

with a0 =
√

3
2Λ . This interesting case presents a new paradigm in cosmology because describes an universe with

a Hubble parameter that increases from a null value to an asymptotically constant value H(t)|t≫G1/2 →
√

2
3Λ,

describing the creation of the universe and its transition from a static state 1, to an accelerated de Sitter
inflationary expansion. The Hubble parameter was plotted in the figure (1). A special case of this case with

Ḣ = 0 describes a de Sitter inflationary expansion governed by the cosmological constant Λ > 0 with a scale

factor a(t)/a0 = e
√

2Λ
3 t and C = 0. This is the asymptotic solution of (37), for very large times.

3. The oscillating universe

To finalize there is a case with C = 0 and Λ < 0 in which the solution of a(t) is oscillating [see figure (2)]

a(t) =
a0

[

sec2
(

2
√

−2Λ
3 t

)]1/4
. (38)

The Hubble parameter for this case is

H(t) = −
√

−2Λ

3
tan

[

2

√

−2Λ

3
t

]

. (39)

This interesting case describes an universe that fails to progress. It could be assimilated to a bouncing
universe[18, 19].

B. GW from the primordial bang of the universe

We shall study GW for the case 2, which are the more interesting. Due to the fact that δLm

δgαβ = ϕ,αϕ,β , the linearized

variation δ
(

δLm

δgαβ

)

= ϕ,α ϕ,β − φ,α φ,β , will be

δ

(

δLm

δgαβ

)

= φ,α δφ,β , (40)

so that

�Ψ̄αβ = −2κφ,α δφ,β . (41)

Using (35) we obtain that φ,α = 0, ∀α, so that finally we obtain the equation of motion for Ψαβ

�Ψ̄αβ = 0, (42)

which means that gαβ = Λδgαβ.
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C. Transverse-Traceless (TT) Gauge

The expansion of the tensor field Ψ̄ab(t, ~x) can be made as

Ψ̄ab(t, ~x) =
1

(2π)3/2

∑

A=+,×

∫

d3k eAab(ẑ)

×
[

Bk e
i~k.ẑ ξc(t) +B†

k e
−i~k.ẑ ξ∗c (t)

]

, (43)

where a, b = 1, 2, denote the transverse polarizations +,×, on the plane with normal co-linear with ~k and eAab are the

components of the polarization tensor, such that eAab ē
ab
A′ = δAA′ . In the frame where ~k is along the ẑ direction these

polarizations are

e+ab =

(

1 0
0 −1

)

ab

, e×ab =

(

0 1
1 0

)

ab

, (44)

with a, b spanning the (x, y) plane.
In order to solve the equations for the gravitational waves we shall use the TT gauge, which is represented by the

following conditions

Ψ̄0µ = 0, Ψ̄i
i = 0, ∇jΨ̄ij = 0. (45)

The equation of motion for the modes ξk(t) is

ξ̈c(t) + 3
ȧ

a
ξ̇c(t) +

k2

a(t)2
ξc(t) = 0. (46)

The annihilation and creation operators Bk and B†
k satisfy the usual commutation algebra

[

Bk, B
†
k′

]

= δ(3)(~k − ~k′), [Bk, Bk′ ] =
[

B†
k, B

†
k′

]

= 0. (47)

Using the commutation relation (30) and the Fourier expansions (43), we obtain the normalization condition for

the modes. For convenience we shall re-define the dimensionless time: τ = b t, where b =
√

2Λ
3 = 1

a0
, so that the

normalization condition for ξc(τ) is

ξc(t)
dξ∗c (τ)

dτ
− ξ∗c (t)

ξc(τ)

dτ
= i

(

a0
a(τ)

)3

, (48)

where the asterisk denotes the complex conjugated. For the case 2, in which the Hubble parameter and the scale
factor are given respectively by (36) and (37), the general solution for the amplitudes ξc(τ) is

ξc(τ) = C1
sinh (τ)

√

2 cosh2 (τ) − 1

× Hn

[

−1,
c2 − 1

4
; 0,

1

2
,
3

2
,
1

2
;− tanh2 (τ)

]

+ C2
cosh (τ)

√

2 cosh2 (τ) − 1

× Hn

[

−1,
c2 + 1

4
;−1

2
, 0,

1

2
,
1

2
;− tanh2 (τ)

]

,

(49)

where Hn[a, q;α, β, γ, δ; z] =
∑∞

j=0 cj z
j is the Heun function. Since the Heun functions are written as infinity series,

we can make a series expansion in the both sides of (48), in order to obtain the restrictions for the coefficients C1 and
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C2, and the wavenumber values k. From the zeroth order expansion (in τ), we obtain that C2 = i C1/2. Hence, we
shall choose C1 = 1 results that C2 = i/24.
Of course the series is infinite so that there are infinite values of quasi-normal modes which has zero norm on the

plane orthogonal to the direction of propagation:ẑ: ~k = c
(N)
n ê1 + (±ic

(N)
n )ê2 + kê3, with complex values c

(N)
n which

provide us the quantization of tensor fields Ψ̄ab. Notice that ‖~k‖2 = k2, so that the norm of the polarization vectors

on the plane (ê1, ê2), is zero. When the polarization modes which are purely imaginary or purely reals correspond to

values with polarization +. On the other hand, modes with complex-c
(N)
n correspond to those with polarization ×.

We can calculate the two-point expectation value for the fluctuations of the spacetime due to gravitational waves
at the spatial points ~x. If the spatial position in the interior of the exploiting source is denoted by ~x′, we have

〈

E|Ψ̄2|E
〉

(τ, ~x, ~x′)

= 2 i
∑

A=+,×

∞
∑

N=1

2N
∑

n=1

sin
[

~c(N)
n . (~x− ~x′)

]

ξ
c
(N)
n

(τ)ξ∗
c
(N)
n

(τ).

(51)

Hence, integrating on all the points of the spherical source of ratio b−1, we obtain

〈

E|Ψ̄2|E
〉

(τ, ~x, θ) = 8π i
∑

A=+,×

∞
∑

N=1

2N
∑

n=1

× ξ
c
(N)
n

(τ)ξ∗
c
(N)
n

(τ) I(N,n)(|~x|, θ),
(52)

where 0 < θ < π/2 is the angle between ~x and ~x′, and the function I(N,n)(|~x|, θ) for the N -th order in the expansion
is given by

I
(N,n)(|~x|, θ) =

[

(

c
(N)
n

)3

cos3 (θ)

]

−1

×

{

cos

[

c
(N)
n

(

|~x| −
cos(θ)

b

)](

cos(θ)

b

)2
(

c
(N)
n

)2

+ 2 cos
(

c
(N)
n |~x|

)

+ 2 sin

[

c
(N)
n

(

|~x| −
cos(θ)

b

)](

cos(θ)

b

)

c
(N)
n

− 2 cos

[

c
(N)
n

(

|~x| −
cos(θ)

b

)]}

,

(53)

for |~x| > 1/b =
√

3
2Λ . Finally, we can calculate the energy density due to gravitational waves, ρgw =

〈

E| ˙̄Ψ2|E
〉

(t, ~x, θ)

ρgw(τ, ~x, θ) =

8π i
∑

A=+,×

∞
∑

N=1

2N
∑

n=1

ξ̇
c
(N)
n

(τ)ξ̇∗
c
(N)
n

(τ) I(N,n)(|~x|, θ),

(54)

4 The polynomial expansion of ξc(t)
dξ∗c (τ)

dτ
− ξ∗c (t)

ξc(τ)
dτ

= i
(

a0
a(τ)

)3
, is given by

ξc(t)
dξ∗c (τ)

dτ
− ξ∗c (t)

ξc(τ)

dτ
− i

(

a0

a(τ)

)3

=
∞
∑

N=1

fN (c) τN = 0, (50)

where fN (c
(N)
n ) = 0, for each N . There are 2N modes for each N-th order of the expansion.
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which up to fifth order in the series expansion with respect to τ , is

ρgw(τ, ~x, θ) =

8π i
∑

A=+,×

∞
∑

N=1

2N
∑

n=1

[

1 +

2N
∑

n=1

F (N)
n (c(N)

n ) τN I(N,n)(|~x|, θ)
]

,

(55)

where the coefficients F
(N)
n (c

(N)
n ), are

F (1)
n (c(1)n ) =

1

3

[

1−
(

c(1)n

)2
]

, (56)

F (2)
n (c(2)n ) =

1

9

[

53

20

(

c(2)n

)4

+
23

5

(

c(2)n

)2

− 50

]

, (57)

F (3)
n (c(3)n ) = −

[

109

1260

(

c(3)n

)6

− 37

140

(

c(3)n

)4

−1693

630

(

c(3)n

)2

+
128

63

]

, (58)

F (4)
n (c(4)n ) =

[

319

28350

(

c(4)n

)8

− 6281

56700

(

c(4)n

)6

−49877

56700

(

c(4)n

)4

− 4807

5670

(

c(4)n

)2

+
527

28

]

, (59)

F (5)
n (c(5)n ) = −

[

1493

1871100

(

c(5)n

)10

− 6943

467775

(

c(5)n

)8

− 351

1925

(

c(5)n

)6

+
1839031

1871100

(

c(5)n

)4

+
463679

53460

(

c(5)n

)2

− 63541

8316

]

. (60)

In the table we have included the square wavenumbers for the first five orders of the expansion.

Square wavenumbers c
(N)
n

(

c
(N)
n

)2

values
(

c(1)
)2

-0.5
(

c(2)
)2

6.57 -0.57
(

c(3)
)2

-53.78 0.01 + 1.25 i 0.01 - 1.25 i
(

c(4)
)2

9.60 -1.29 9.85 + 9.40 i 9.85 - 9.40 i
(

c(5)
)2

5.93 12.72 -1.34 13.84 + 18.30 i 13.84 - 18.30 i

IV. FINAL COMMENTS

We have studied a new approach to gravitational waves in which the Einstein equations are governed by the
cosmological constant. This constant appears related to the existence of a manifold which is closed. Under these
circumstances the Einstein-Hilbert action remains invariant when the gravitational are transformed as: Ψ̄αβ = Ψαβ −
Φgαβ , with δΛ = Φgαβ . A simple example where the matter Lagrangian is described by a scalar field is studied
an the resulting dynamics is surprising. There are only three dynamical solutions. i) The first one describe that a
primordial universe remains static. ii) The second one describe a primordial universe which is initially static but
begins to increase until an inflationary stage. iii) The third solution (governed by a negative cosmological solution)
describes an eternally oscillating (bouncing) universe from the initial state.
We have explored the study of gravitational waves for the case ii), because describes a pre-inflationary universe

that evolves towards an asymptotic inflationary phase. Finally, we have calculated the dynamics of the GW in this
stage. The normalization conditions for the modes impose that the wavenumbers for Ψ̄αβ are an infinity number of
values for the polarization modes, which can be real and imaginary for the +-modes and complex for the ×-modes.
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FIG. 1: Evolution of H(t) during during the primordial bang, for Λ = 10−8 G−1/2. The universe approaches to a asymptotic
de Sitter expansion from a initial static universe.
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FIG. 2: Evolution of the scale factor a(t) for the universe with negative cosmological constant Λ = −10−8 G−1/2. Notice that
this universe collapses and bounce cyclically, but fails to progress.
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