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In this work we study the properties of a purification-based entropic metric for measuring the distance between
both quantum states and quantum processes. This metric is defined as the square root of the entropy of the
average of two purifications of mixed quantum states which maximize the overlap between the purified states.
We analyze this metric and show that it satisfies many appealing properties, which suggest this metric is an
interesting proposal for theoretical and experimental applications of quantum information.
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I. INTRODUCTION

Quantum information processing is intended to develop
new forms and procedures of computation and cryptography
beyond the possibilities of classical devices. Thus, a signi-
ficative quantity of new algorithms, communication protocols,
and suggestions for physical implementations of theoretical
concepts has been proposed [1–12]. As a consequence,
quantum information continues to be a topic of major interest
for current research.

Most important noiseless quantum communication pro-
tocols such as teleportation, superdense coding, including
their coherent versions, and entanglement distribution rely
on the assumption that noiseless resources are available. For
example, the entanglement distribution protocol assumes that
a noiseless qubit channel is available to generate a noiseless
entangled bit (ebit). This idealization allows one to develop
the main principles of the protocols without the need to take
into account more complicated issues. However, in practice,
quantum protocols do not work as expected in the presence of
noise.

In order to protect quantum information from noise
some strategies have been proposed, such as quantum error-
correcting codes and fault-tolerant quantum computation
[12–15]. In this regard, a large number of error-correcting
codes have been developed. For example, a promising ap-
proach is to use topological error-correcting codes to store
quantum information safely by associating it with some
topological property of the system [16–18]. This strategy
works in such a way to make quantum information resilient
against the effects of noise. A recent proposal in this area
can be found in Refs. [19,20]. Another particularly fruitful
strategy seems to be the group-theoretical structure known as
“stabilizer codes” [15].

Despite the existence of these strategies to protect quantum
information from noise, in many practical cases it is desirable
to have the means to quantify how much a quantum system is
effectively affected by a disturbance, no matter how small. In
other words, it is important to have a procedure to determine
how close to expected a real quantum system is working.
The simplest way to do so is to compare the output state
of the quantum system, thought as ideal, with the output
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state of the real system using a distance measure between
them. For example, suppose that a quantum information
processing protocol should ideally produce some quantum
state represented by a density operator ρ, but the actual output
of the protocol is a mixed quantum state represented by a
density operator σ , then, a distance measure D(ρ,σ ) should
be provided to indicate how close the ideal output of a quantum
process is to the actual output.

One of the most important features of quantum mechanics
is that, in general, two arbitrary quantum states cannot be
determined with certainty. For example, if two pure states
are nonorthogonal they cannot be perfectly distinguished.
Only orthogonal states can be discriminated unambiguously.
Therefore, in order to provide a way to determine how well
a quantum protocol is working, distance measures need to be
devised to allow us to determine how close two quantum states
or two quantum processes are to each other.

A variety of distance measures have been developed for
this purpose, such as trace distance, fidelity, Bures distance,
Hilbert-Schmidt distance, Hellinger distance, and quantum
Jensen-Shannon divergence, just to name a few [12,21–27].

Quantum processes can be represented by means of positive
and trace-preserving maps E defined on the set of density
operators belonging to B(H)+1 , that is, the set of positive trace
one operators ρ on a Hilbert space H.

We say that the map E is monotonous under quantum
operations with respect to a given distance D(ρ,σ ), or
contractive for short, if

D(E(ρ),E(σ )) � D(ρ,σ ). (1)

In particular, when E = Et is a completely positive quantum
dynamical semigroup such that ρ(t) = Et ρ(0), then contrac-
tivity means that

D(E(ρ(t)),E(σ (t))) � D(ρ(t ′),σ (t ′)) for t > t ′. (2)

The physical meaning of the previous equation is that the
distance between two quantum processes cannot increase in
time and the distinguishability of any pair of states cannot
increase beyond an initial value.

A case of particular interest is a quantum open system
[28,29]. A real quantum system Q, like a system intended to
perform a quantum information processing task, is always in
interaction with its environment E. This interaction inevitably
has an influence on the state of the quantum system, causing
losses on the information encoded in the system. The quantum
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system Q cannot be treated as a closed system anymore when
interactions with the outside world are occurring. This kind of
system is known as an open quantum system. Time evolution
of the open system Q cannot in general be described by a
unitary operator acting on the Hilbert space HQ of Q. As the
total system is assumed to be closed, it will evolve with a
unitary operator U (t) acting on the total Hilbert space HQE =
HQ ⊗ HE . In many cases, as we are interested in extracting
information on the state of the system Q at some later time
t > 0, we perform a partial trace over the environment E to
obtain the reduced state of the system Q alone,

ρQ(t) = TrE[U (t)ρQEU †(t)]. (3)

Given two initial states ρQE and σQE of the composite
system, the distance between the corresponding reduced states
ρQ and σQ at a given time t > 0 can be contractive with
respect to some distance measures but not necessarily to all of
them. For instance, when an open quantum system Q and its
environment E are initially prepared in an uncorrelated state,
the reduced dynamics is completely positive and contractive,
therefore, the distance D(ρQ,σQ) between two states can
approximate to zero when the open system is reaching a unique
steady state. (This is the case, for example, when dynamics
is of the relaxing type.) However, contractivity of quantum
evolution can show a breakdown when the system and its
environment are initially correlated. Effects induced by such
correlations have been studied in different contexts [30–39]. As
a result, contractivity turns out to be not a universal feature but
rather depends on the correlations between the system and its
environment and also, in general, on the particular choice of the
distance measure. Experiments on initial system-environment
correlations can be found in Refs. [40] and [41]. Examples
of an exact reduced dynamics which fails contractivity with
respect to the trace distance are presented in Refs. [42] and
[43]. An increase of the distance between the states of the
reduced system Q can be interpreted in terms of an exchange
of information between the system Q and its environment E.
For example, an increment of the distance above its initial
value can be interpreted as information locally inaccessible
for the system Q at the beginning which was transferred to
it later. As a result, this flow of information increases the
distinguishability between reduced system states. Possibly,
this process could be used to devise experimental schemes
for detection of initial correlations between an open quantum
system and its environment.

Dajka, Łuczca, and Hänggi [44] performed a comparative
study of different distance measures between quantum states in
the presence of initial qubit-environment correlations. In that
work they show that the correlation-induced distinguishability
growth is not generic with respect to distance measures, but
distinctly depends on the particular choice of the distance
measure. Their results indicate that an increase of a distance
measure above its initial value constitutes no universal prop-
erty. Dynamics behavior upon evolving time strongly depends
on the employed distance measure.

At present, there is no unique or ideal measure of dis-
tinguishability between quantum states or quantum processes.
Moreover, different distance measures can be useful depending
on the particular application, whether a theoretical one, like a
bound of what can be physically feasible for a given process,

or the measurement of a quantum protocol experimentally
implemented.

In a previous work [45], a metric DE based on the physical
concepts of entropy and purification of a mixed state was
introduced [46]. Some useful properties of DE were studied
and, in addition, it was demonstrated that DE is a true metric
between quantum states.

In this work we extend the study of the properties of DE

and we also derive an alternative fidelity measure FE for the
degree of similarity between quantum states. We investigate
the properties of FE and show that it shares the main properties
of the Uhlmann-Jozsa fidelity F [22,23]. In addition, as a main
result, we derive from DE a distance measure �E between
quantum processes, which turns out to have many interesting
properties for applications in quantum information.

This paper is organized as follows. In Sec. II, we briefly
introduce the criteria that should be satisfied for a suitable
metric between quantum processes. In Sec. III we outline
two approaches to describe quantum processes: operator-
sum representation and Jamiołkowski isomorphism. These
descriptions will later allow us to derive from DE a distance
measure �E between quantum processes and to study its
properties. In Sec. IV we describe the distance DE and we
study its properties. In Sec. V we introduce the alternative
fidelity measure FE . Next, in Sec. VI, we show how a measure
of distance between quantum processes can be derived from
DE and we study its properties. Finally, we summarize our
main results in Sec. VII. In the Appendix, with the purpose of
making this work self-contained, we survey some important
properties of the Uhlmann-Jozsa fidelity F that will be used
in order to prove some properties of DE .

II. DISTANCE MEASURES IN QUANTUM
INFORMATION PROCESSING

As stated before, there is no unified criterion to choose
a measure of distance between quantum states and quantum
processes. However, some guidelines can be provided based
on physical grounds. In this work we have chosen to follow the
work of Gilchrist, Langford and Nielsen [47] as a guideline
of what criteria a good measure of distance between quantum
processes should satisfy.

Suppose � is a good measure of the distance between two
quantum processes. Such processes are described by maps
between input and output quantum states, e.g., ρout = E(ρin),
where the map E is a completely positive trace-preserving
map (CPTP map) also known as a quantum operation [48].
Physically, �(E,F) may be thought of as a measure of error in
quantum information processing when it is desired to perform
an ideal process E and the actual process F is obtained
instead. In addition, �(E,F) can be interpreted as a measure
of distinguishability between the processes E and F .

Bearing in mind the work of Gilchrist, Langford, and
Nielsen [47], we will look for a measure � between quantum
processes which should satisfy the following criteria, moti-
vated by both physical and mathematical matters [49]:

(1) Metric. � should be a metric, i.e., for any quantum
processes E , F , and G the following properties should be
satisfied:
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(i) Non-negativity, �(E,F) � 0 with �(E,F) = 0 if and
only if E = F .

(ii) Symmetry, �(E,F) = �(F ,E).
(iii) Triangle inequality, �(E,F) � �(E,G) + �(G,F).

(2) Physical interpretation. � should have a well-motivated
physical interpretation.

(3) Stability [50]. �(I ⊗ E,I ⊗ F) = �(E,F), where I
represents the identity operation on an extra Hilbert of arbitrary
dimension. This ancillary Hilbert space could be associated to
a quantum system or to a convenient mathematical construct.
The physical meaning behind this property is that unrelated
ancillary quantum systems do not change the value of �.

(4) Chaining. �(E2 ◦ E1,F2 ◦F1) � �(E1,F1) + �(E2,F2).
This property just means that for a process composed of several
steps, the total error is bounded by the sum of the errors
originated in the individual steps.

From a mathematical viewpoint, it is evident that a character
of true metric is a basic requirement for a suitable distance
measure. Besides, the metric character of a distance could be
considered as essential to check on the convergence of iterative
algorithms in quantum processing [51]. In addition, chaining
and stability criteria are key properties to estimate the error in
complex tasks of quantum information processing which can
be split into sequences of simpler component operations. In
this case, a bound on the total error can be found by analyzing
each single step of a process.

III. DESCRIBING QUANTUM PROCESSES

A. Operator-sum representation

Quantum operations describe the most general physical
processes that may occur in a quantum system [12,21,52],
including unitary evolution, measurement, noise, and deco-
herence. Any quantum operation can be expressed by means
of an operator-sum representation relating an input state ρ with
the output state E(ρ) in the form [12,21,52–54]

E(ρ) =
∑

j

KjρK
†
j , (4)

where the operators Kj are known as Kraus operators or
operation elements, and satisfy the condition

∑
j K

†
jKj � I .

Particularly, when Kraus operators satisfy the equation∑
j

K
†
jKj = I, (5)

the process E(ρ) is a CPTP map and maps density matrices
into density matrices. Physically, this corresponds to the
requirement that E represents a physical process without
postselection [55]. An important remark is that the operation
elements {Kj } completely describe the effect of the quantum
process on the input state ρ.

Relation (5) is a completeness relation because Kj and
K

†
j do not necessarily commute. If additionally, the operation

elements Kj satisfy ∑
j

KjK
†
j = I, (6)

then, the CPTP-map is said to be a unital map; this means,
a map for which E(I ) = I . One example of such a map is
the qubit-depolarizing channel, whereas a negative example

is provided by the amplitude-damping channel [12,21,52].
If the operator decomposition of a CP map satisfies both
these conditions, the map is doubly stochastic. The operator
decomposition of a quantum operation is not unique. In
particular, any two sets of operators Kj related to each other
by unitary transformations equally well represent the same
operation E(ρ).

B. The Jamiołkowski isomorphism

Jamiołkowski isomorphism relates a quantum operation E
to a quantum state ρE by the following equation [21,56,57]:

ρE = [I ⊗ E] ρ�, (7)

where ρ� = |�〉〈�| and

|�〉 = 1√
d

∑
j

|j 〉 ⊗ |j 〉 (8)

is a maximally entangled state of the (d-dimensional) system
with another copy of itself, and {|j 〉} is some orthonormal basis
set. Jamiołkowski isomorphism works bidirectionally, i.e., the
map E → ρE is invertible. Therefore, the knowledge of ρE is
equivalent to the knowledge of E [58]. As a consequence, this
isomorphism allows one to treat quantum operations using the
same tools usually used to treat quantum states.

IV. PURIFICATION-BASED ENTROPIC METRIC DE

Given two pure quantum states |ψ〉 and |ϕ〉, the distance
DE(|ψ〉,|ϕ〉) introduced in Ref. [45] is defined as [46]

DE(|ψ〉,|ϕ〉) ≡
√

HN

( |ψ〉〈ψ | + |ϕ〉〈ϕ|
2

)
, (9)

where HN (ρ) represents the von Neumann entropy given by

HN (ρ) = − Tr[ρ log2(ρ)] = −
∑

i

λi log2(λi) (10)

with {λi} being the set of eigenvalues of the density
operator ρ.

The distance DE emerges from the quantum Jensen-
Shannon divergence DJS defined as [27]

DJS(ρ,σ ) = HN

(
ρ + σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ ). (11)

Indeed, due to von Neumann entropy vanishes when
evaluated in pure states ρ = |ψ〉〈ψ | and σ = |ϕ〉〈ϕ|, the DJS

reduces to

DJS(|ψ〉〈ψ |,|ϕ〉〈ϕ|) = HN

( |ψ〉〈ψ | + |ϕ〉〈ϕ|
2

)
. (12)

As a consequence, the distance DE verifies the identity

D2
E(|ψ〉〈ψ |,|ϕ〉〈ϕ|) = DJS(|ψ〉〈ψ |,|ϕ〉〈ϕ|). (13)

After some algebra, it is possible to write DE in the
form [45]

DE(ρ,σ ) =
√

	 (|〈ψ |ϕ〉|), (14)

where

	(x) ≡ −
(

1 − x

2

)
log2

(
1 − x

2

)
−

(
1 + x

2

)
log2

(
1 + x

2

)
(15)
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TRISTÁN M. OSÁN AND PEDRO W. LAMBERTI PHYSICAL REVIEW A 87, 062319 (2013)

FIG. 1. Distance DE as a function of Bures distance DB .

with 	(x) being the Shannon entropy of a probability vector
of size 2 and x = |〈ψ |ϕ〉|. From Eq. (15) it is easy to see that
	(x) is a bounded and monotonic decreasing function of x

with 0 � 	(x) � 1.
The definition of the metric DE can be extended to the case

of mixed states. Given two arbitrary mixed quantum states
represented by density matrices ρ and σ belonging to B(H)+1 ,
the metric DE(ρ,σ ) is defined as follows [45]:

DE(ρ,σ ) ≡ min
|ϕ〉

√
HN

( |ψ〉〈ψ | + |ϕ〉〈ϕ|
2

)
. (16)

In this expression, |ψ〉 represents any fixed purification of ρ,
and the minimization is taken over all purifications |ϕ〉 of σ .

In order to derive some appealing properties of DE it is
useful to write it down in terms of the Uhlmann-Jozsa fidelity
F (see the Appendix):

F (ρ,σ ) = max
|ϕ〉

|〈ψ |ϕ〉|2 , (17)

where |ψ〉 is any fixed purification of ρ and maximization is
performed over all purifications |ϕ〉 of σ . Thus, taking into
account Eqs. (16), (14), and (17), it is straightforward to see
that DE can be expressed as

DE(ρ,σ ) =
√

	(
√

F (ρ,σ )). (18)

A. Properties of the distance DE

To easily see that DE is a metric we can write DE as a
function of the Bures distance DB taking into account that
both distances can be expressed in terms of the fidelity F [cf.
Eq. (A10) (see the Appendix) and (18)]. Thus, we have

DE(DB) =
√

	

(
1 − D2

B

2

)
, (19)

where 	(·) is given by Eq. (15).
Figure 1 shows a plot of DE as a function of DB . As this

function is concave, DE satisfies the properties of a metric.
From its definition [cf. Eqs. (9), (16), and (18)], it can be

formally proved that DE satisfies the following properties:
(1) Normalization:

0 � DE(ρ,σ ) � 1. (20)

(2) Identity of indiscernibles:

DE(ρ,σ ) = 0 if and only if ρ = σ. (21)

For pure states DE vanishes if and only if |ψ〉 = eia|ϕ〉 (i.e.,
the two states belong to the same ray in the Hilbert space).

(3) Symmetry:

DE(ρ,σ ) = DE(σ,ρ). (22)

(4) Triangle inequality. For any arbitrary density matrices
ρ, σ , and ξ ,

DE(ρ,σ ) � DE(ρ,ξ ) + DE(ξ,σ ). (23)

For proofs of properties (IV A1)–(IV A4) refer to Refs. [27,
45,60,61].

(5) Joint convexity. For pi � 0,
∑

i pi = 1, ρi and σi

arbitrary density matrices

D2
E

(∑
i

piρi,
∑

i

piσi

)
(24)

�
∑

i

piD
2
E(ρi,σi). (25)

Proof. It follows from Eq. (13) and the joint convexity
property of DJS [cf. Eq. (11)] [27].

Remark. Note that joint convexity implies separate convex-
ity, but not the converse. For example, the separate convexity
of D2

E can be obtained from joint convexity by setting σi = σ

and using the fact that
∑

i pi = 1.
(6) Restricted additivity. For any arbitrary density matrices

ρ1, σ1, and τ ,

DE(ρ1 ⊗ τ,σ1 ⊗ τ ) = DE(ρ1,σ1). (26)

Proof. To prove this property we observe Eq. (18), which
relates DE with the Uhlmann-Jozsa fidelity F . Then, we use
properties (6) and (2) of F (cf. the Appendix). By setting
ρ2 = σ2 = τ in property (6) of F it follows that

F (ρ1 ⊗ τ,σ1 ⊗ τ ) = F (ρ1,σ1). (27)

This fact completes the proof of the restricted additivity
property of DE .

Comment. An immediate consequence of this property is
that for two physical systems, described by density matrices
ρ1 and σ1, a measure of their degree of similarity determined
by means of DE remains unchanged even after appending to
each system an uncorrelated ancillary state τ .

(7) Unitary invariance. For any unitary operation U ,

DE(Uρ U†,Uσ U†) = DE(ρ,σ ). (28)

Proof. It follows from Eq. (18) and the unitary invariance
property of F (cf. the Appendix).

Comment. This is a quite natural property to be satisfied
by a distance, because a unitary transformation represents a
rotation in the Hilbert space and the distance between two
states should be invariant under a rotation of the states.

(8) Monotonicity under quantum operations. If E is a CPTP
map, then for any arbitrary density matrices ρ and σ ,

DE(E(ρ),E(σ )) � DE(ρ,σ ). (29)

Proof. It follows from Eq. (18) and the monotonicity
under quantum operations property of F (cf. the Appendix)
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taking into account that the function 	(·) is a monotonically
decreasing function of

√
F [cf. Eq. (15)].

Comment. This is a very important property because it
qualifies DE as a monotonically decreasing measure under
CPTP maps and can be considered the quantum analog of
the classical information-processing inequality, which states
that the amount of information should not increase via any
information processing. For example, the dynamics of an open
quantum system can be described by means of a CPTP map
using an operator-sum representation of the form of Eq. (4).
Therefore the meaning of Eq. (29) is that nonunitary evolution
decreases distinguishability between states. Of course, a
unitary evolution is a particular case of a CPTP map. In this
case, equality is satisfied in Eq. (29) in complete agreement
with property (IV A7). Another example of a CPTP map is
given by

E(ρ) =
∑

i

PiρPi (30)

with Pi being a complete set of orthogonal projectors (i.e.,
P

†
i = Pi , P 2

i = Pi , and
∑

i Pi = I ). In this case, property
(IV A8) directly implies

D2
E

(∑
i

PiρPi,
∑

i

PiσPi

)
(31)

=
∑

i

D2
E(PiρPi,PiσPi) (32)

� D2
E(ρ,σ ). (33)

Therefore, due to the monotonic character of the square root
we have

DE

(∑
i

PiρPi,
∑

i

PiσPi

)
� DE(ρ,σ ). (34)

B. Physical interpretation of DE

Quantum Jensen-Shannon divergence DJS [cf. Eq. (11)]
can be generalized as a “measure of distance” between the
elements of an ensemble {qi,ρi} (

∑
i qi = 1) [27]:

DJS({qi,ρi}) = HN

(∑
i

qiρi

)
−

∑
i

qiHN (ρi). (35)

In the context of quantum transmission processes this
quantity represents the Holevo quantity, which bounds the
mutual information between the sender of a classical message
encoded in quantum states and a receiver.

In a recent paper [62], Życzkowski and co-workers showed
that the square of the distance DE provides a finest bound for
the Holevo quantity for a particular ensemble {q1 = 1/2, q2 =
1/2,ρ1,ρ2}. In this way, the distance DE turns out to be
endowed with an important physical meaning.

Another point to be noted about DE is related to the fact
that this distance could be implemented operationally. Indeed,
Ricci et al. [63] reported an experimental implementation of
a theoretical protocol for the purification of single qubits sent
through a depolarizing channel previously proposed by Cirac
and co-workers [64].

V. ALTERNATIVE FIDELITY DEFINITION

A very interesting and neat feature of the metric DE is
that a fidelity FE for both pure and mixed quantum states
can be defined which fulfills the most important properties
satisfied by the usual (Uhlmann-Jozsa) fidelity F . Bearing in
mind Ref. [27], we define an alternative fidelity measure FE

as follows:

FE(ρ,σ ) ≡ [
1 − D2

E(ρ,σ )
]
. (36)

The most important properties of FE are the following:
(1) Normalization:

0 � FE(ρ,σ ) � 1. (37)

FE(ρ,σ ) = 0 if ρ and σ have supports on orthogonal sub-
spaces.

Proof. It follows straightforwardly from the definition of
FE [cf. Eq. (36)] and the normalization property of DE (cf.
Sec. IV A).

(2) Identity of indiscernibles:

FE(ρ,σ ) = 1 if and only if ρ = σ. (38)

Proof. It follows straightforwardly from the definition of
FE [cf. Eq. (36)] and the identity of indiscernibles property of
DE (cf. Sec. IV A).

(3) Symmetry:

FE(ρ,σ ) = FE(σ,ρ). (39)

Proof. It follows straightforwardly from the definition of FE

[cf. Eq. (36)] and the symmetry property of DE (cf. Sec. IV A).
(4) Joint concavity. For pi � 0,

∑
i pi = 1, ρi and σi

arbitrary density matrices

FE

(∑
i

piρi,
∑

i

piσi

)
(40)

�
∑

i

piFE(ρi,σi). (41)

Proof. It follows immediately from the definition of FE

[cf. Eq. (36)] and the property of joint convexity of D2
E (cf.

Sec. IV A).
Remark. While Uhlmann-Jozsa fidelity F has the property

of being separate concave in each of its arguments, FE turns
out to have the enhanced joint concavity property. Therefore,
separate concavity on each of its arguments is also satisfied.

(5) Restricted additivity:

FE(ρ ⊗ τ,σ ⊗ τ ) = FE(ρ,σ ). (42)

Proof. It follows straightforwardly from the definition of
FE [cf. Eq. (36)] and the restricted additivity property of DE

(cf. Sec. IV A).
Comment. As a consequence of this property, a measure

of the degree of similarity between two physical systems
described by density matrices ρ and σ by means of FE

remains unchanged even after appending to each system an
uncorrelated ancillary state τ .

(6) Unitary invariance. For any unitary operation U ,

FE(Uρ U†,Uσ U†) = FE(ρ,σ ). (43)
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Proof. It follows straightforwardly from the definition of
FE [cf. Eq. (36)] and the unitary invariance property of DE

(cf. Sec. IV A).
(7) Monotonicity under quantum operations:

FE(E(ρ),E(σ )) � FE(ρ,σ ), (44)

where E is a CPTP map.
Proof. It follows from the definition of FE [cf. Eq. (36)]

as a direct consequence of the property of monotonicity under
quantum operations of DE (cf. Sec. IV A).

Comment. Physically, this property means that, as FE serves
as a kind of measure for the degree of similarity between
two quantum states ρ and σ , one might expect that a general
quantum operation E will make them less distinguishable and,
therefore, more similar according to FE . Thus, this property
qualifies FE as a monotonically increasing measure under
CPTP maps.

VI. METRIC TO MEASURE DISTANCES BETWEEN
QUANTUM PROCESSES BASED ON THE METRIC DE

From the distance DE it is possible to introduce a distance
�E between quantum processes. Following Gilchrist, Lang-
ford, and Nielsen [47], we define the distance �E between the
quantum processes E and F as

�E(E,F) ≡ DE(ρE ,ρF ), (45)

where ρE and ρF are the Jamiołkowski isomorphisms corre-
sponding to the quantum processes E and F [cf. Eq. (7)].

The fundamental properties of �E are presented below. It is
easy to see that the properties of normalization and symmetry
of �E are inherited from the corresponding properties of DE .

(1) Normalization:

0 � �E(E,F) � 1. (46)

(2) Identity of indiscernibles:

�E(E,F) = 0 if and only if E = F . (47)

Proof. It can be proved recalling the Jamiołkowski iso-
morphism (cf. Sec. III B) and the definition of �E(E,F)
[cf. Eq. (45)]. Thus, there exists an univocal relationship
between a quantum process E and the Jamiołkowski state ρE .
Therefore, if E 
= F , it follows that ρE 
= ρF and �E satisfies
property (VI 2).

(3) Symmetry:

�E(E,F) = �E(F ,E). (48)

(4) Triangle inequality. For any three quantum processes E ,
F , and G,

�E(E,G) � �E(E,F) + �E(F ,G). (49)

Proof. We start from the metric character of DE (cf.
Sec. IV A). Thus, for given processes E , F , and G with
their corresponding Jamiołkowski states ρE , ρF , and ρG (cf.
Sec. III B), we have

�E(E,F) + �E(F ,G) − �E(E,G) (50)

= DE(ρE ,ρF ) + DE(ρF ,ρG) − DE(ρE ,ρG) � 0. (51)

(5) Stability:

�E(I ⊗ E,I ⊗ F) = �E(E,F), (52)

where I represents the identity operation on an extra Hilbert
space of arbitrary dimension.

Proof. We start from the definition of �E(E,F) [cf. Eq. (45)]
and use the property of restricted additivity of DE (cf. Sec.
IV A). Thus, we have

�E(I ⊗ E,I ⊗ F) = DE(ρI⊗E ,ρI⊗F ) (53)

= DE(ρI ⊗ ρE ,ρI ⊗ ρF ) (54)

= DE(ρE ,ρF ) = �E(E,F). (55)

In the last equation we used the useful property ρE⊗F =
ρE ⊗ ρF [47].

(6) Chaining: For any quantum processes E1, E2, F1, and
F2,

�E(E2 ◦ E1,F2 ◦ F1) � �E(E1,F1) + �(E2,F2). (56)

Proof. We use the contractivity property of DE and,
additionally, we assume that F1 is doubly stochastic, i.e., F1 is
trace preserving and satisfies F1(I ) = I (cf. Sec. III A). This
is not a significant assumption, since in quantum information
science we are typically interested in the case when F1 and
F2 are ideal unital processes, and we want to use �E to
compare the composition of these two ideal processes to the
experimentally realized process E2 ◦ E1.

The proof of the chaining property starts by applying
property (VI 4), i.e., triangle inequality, so we have

�E(E2 ◦ E1,F2 ◦ F1)

= DE(ρE2◦E1 ,ρF2◦F1 ) � DE(ρE2◦E1 ,ρE2◦F1 )

+DE(ρE2◦F1 ,ρF2◦F1 ). (57)

Then, we note the easily verified identity ρE◦F = [FT ⊗ E]ρ�

[47], where ρ� = |�〉〈�| with |�〉 being the the maximally
entangled state [cf. Eq. (8)]. Next, we define FT (ρ) =∑

j F T
j ρF ∗

j , where Fj are the operation elements for F [cf.
Eq. (4)]. Applying this identity to both density matrices in the
second term on the right-hand side of Eq. (57) we obtain

�E(E2 ◦ E1,F2 ◦ F1)

� DE(ρE2◦E1 ,ρE2◦F1 ) + DE

([
FT

1 ⊗ E2
]
ρ�,

[
FT

1 ⊗ F2
]
ρ�

)
.

(58)

The double stochasticity of F1 implies that FT
1 is a trace-

preserving quantum operation. Then, to complete the proof,
we can apply the contractivity property of DE to both the first
and the second terms on the right-hand side of Eq. (58).

�E(E2 ◦ E1,F2 ◦ F1) � DE(ρE1 ,ρF1 ) + DE(ρE2 ,ρF2 ) (59)

= �E(E1,F1) + �(E2,F2). (60)

In addition, since unitary processes are also doubly stochastic,
it follows that chaining holds for �E in most cases of usual
interest.

Remark. Some interesting properties can be derived from
the preceding ones. For example, from the metric and chaining
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properties it is possible to show that [47]

�E(R ◦ E,R ◦ F) � �E(E,F), (61)

where R is any quantum operation. Physically, this means that
postprocessing E by R cannot increase the distinguishability
of two processes E and F . Another interesting consequence
of the metric and chaining criteria is the property of unitary
invariance, i.e.,

�E(U ◦ E ◦ V,U ◦ F ◦ V) = �E(E,F), (62)

where U and V are arbitrary unitary operations [47].

VII. CONCLUDING REMARKS

The main results of this paper are concerned with the
properties of the entropic metric DE between quantum states
proposed in Ref. [45]. Our results indicate that DE and the
derived metric �E show interesting and useful properties
to measure distances between quantum states and quantum
processes, respectively. These properties, in general, do not
depend on the particular quantum system or process to be
considered (as was emphasized in Sec. VI). In addition, we
derived an alternative measure of fidelity FE between quantum
states which present the most important properties of the
Uhlmann-Jozsa fidelity F such as normalization, symmetry,
and monotonicity under quantum operations. Moreover, the
derived fidelity FE shows the enhanced property of joint con-
cavity with respect to the fidelity F which presents the property
of separate concavity. Regarding practical calculations of the
metric DE , in Ref. [45] it is shown how to apply this metric to
calculate the distance between a mixed qubit and the resulting
state when this qubit is sent through a depolarizing channel.
In addition, from an experimental viewpoint, it is important
to mention that an experimental realization of a theoretical
purification protocol [64] has been already achieved in the
case of photons sent through a depolarizing channel [63].
These results are very promising because they open a window
to the possibility of using DE directly from purifications of
quantum states experimentally obtained. Furthermore, it is
important to mention that Roga, Fannes, and Życzkowski
already found a finest bound for the Holevo quantity which
turns out to be the square of the DE metric [62]. These facts
encourage us to continue investigating how to apply this metric
to different cases of interest beyond the depolarizing channel.
This task is currently in progress. Certainly, the possibility of
evaluating DE in as many contexts as possible is of central
importance. Particular applications to quantum noisy channels
represented by sums of operators belonging to the Pauli group
will also be an interesting matter of study [12,19]. Applications
to topological insulators will also be matter of consideration
[65–67]. Some advances in the context of quantum operations
written in the operator-sum representation [12] have been made
and the results will be presented elsewhere.
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APPENDIX: UHLMANN-JOZSA FIDELITY

In the literature, the Uhlmann-Jozsa fidelity F is a cele-
brated and widely used measure of the degree of similarity
between two general density matrices. Fidelity F is given
by [22,23]

F (ρ,σ ) = [ Tr(
√√

ρσ
√

ρ)]2, (A1)

where ρ and σ are arbitrary density matrices.
An equivalent definition of F can be provided in terms of

purifications of the states ρ and σ [23]:

F (ρ,σ ) = max
|ϕ〉

|〈ψ |ϕ〉|2 , (A2)

where |ψ〉 is any fixed purification of ρ and maximization is
performed over all purifications |ϕ〉 of σ .

For easy access, we summarize below the most appealing
properties of the Uhlmann-Jozsa fidelity F and adequate
property names and definitions according to the context of
the present work. These properties are used in Secs. IV A and
VI to analyze the properties of the distance DE and the distance
between quantum processes �E that we will introduce in this
work. For proofs of the properties listed here, see, for example,
Refs. [12,23].

(1) Normalization:

0 � F (ρ,σ ) � 1. (A3)

(2) Identity of indiscernibles:

F (ρ,σ ) = 1 if and only if ρ = σ. (A4)

(3) Symmetry:

F (ρ,σ ) = F (σ,ρ). (A5)

(4) If ρ = |ξ 〉〈ξ | represents a pure state, then F (ρ,σ ) =
〈ξ |σ |ξ 〉 = Tr(ρ σ ).

(5) Separate concavity. For p1,p2 � 0, p1 + p2 = 1, and
arbitrary density matrices ρ1, ρ2, and σ ,

F (p1ρ1 + p2ρ2,σ ) � p1F (ρ1,σ ) + p2F (ρ2,σ ). (A6)

By symmetry property (3), concavity in the second argument
is also fulfilled.

(6) Multiplicativity under tensor product. For arbitrary
density matrices ρ1, ρ2, σ1, and σ2,

F (ρ1 ⊗ ρ2,σ1 ⊗ σ2) = F (ρ1,σ1)F (ρ2,σ2). (A7)

(7) Unitary invariance. For any arbitrary unitary process U ,
F (ρ,σ ) is preserved, i.e.,

F (Uρ U†),UσU†) = F (ρ,σ ). (A8)

(8) Monotonicity under quantum operations. For a general
quantum operation E described by a CPTP map (cf. Sec. III A),

F (E(ρ),E(σ )) � F (ρ,σ ). (A9)

Remark 1. The fidelity F serves as a generalized measure
of the overlap between two quantum states but is not a metric.
However, the fidelity can easily be turned into a metric. For
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example, the Bures distance is a metric which can be defined
in terms of the fidelity F as [21]

DB(ρ,σ ) =
√

2 − 2
√

F (ρ,σ ). (A10)

Remark 2. While F satisfies separate concavity it can be
shown that

√
F is jointly concave [68,69], i.e.,√

F (p1ρ1 + p2ρ2,p1σ1 + p2σ2)

� p1

√
F (ρ1,σ1) + p2

√
F (ρ2,σ2), (A11)

where p1,p2 � 0, p1 + p2 = 1, and ρ1, ρ2, σ1, and σ2 are
arbitrary density matrices.

Remark 3. Clearly, by extension,
√

F satisfies all properties
of the fidelity F but property (4).

Remark 4. It is important to realize that any measure M

which is unitarily invariant, jointly concave (convex), and
invariant under the addition of an ancillary system is also
monotonically increasing (decreasing) under CPTP maps [69],
therefore, it turns out to be a suitable measure of the degree of
similarity between quantum states.
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