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ABSTRACT 

A series of cyanide-bridged bimetallic compounds of the general formula [Ru(L)(bpy)(µ-

NC)(M)]2-/-/2+ (L = tpy, 2,2’-6’,2’’-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 

2,2’-bipyridine, M = RuII(CN)5, OsIII(CN)5, OsII(CN)5, RuII(py)4(CN), py = pyridine) have 

been synthesized and fully characterized. Most of them present a MLCT emission (λ = 690-

730 nm, Φ = 10-3-10-4) and their photophysical properties resemble the ones of the 

respective mononuclear Ru(L)(bpy) species. The exception is when M is OsIII(CN)5, where 

an intramolecular electron transfer quenching mechanism is proposed. The conditions that 

should be meet for avoiding the reductive or oxidative quenching of the excited state are 

also discussed.  
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Molecular Antenna – Excited States - Cyanide-bridged Complexes – Metal-Metal 

Interaction – Mixed Valence Complexes –Intervalence Charge Transfer Band –

Supramolecular Chemistry – Ruthenium bipyridine 

 
Introduction. 

Molecular antennae are fundamental components of any molecular device designed to 

interact with light, like photovoltaic cells1,2 and photocatalysts.3–5 The proper design of 

these systems requires a detailed understanding of the processes following light absorption, 

such as the dynamics of the energy transfer between different components of an artificial 

multichromophoric array.6 Control over these processes is required in order to prepare 

systems that could funnel the energy to where it is required to perform a specific function.  

Cyanide bridged multimetallic arrays are an attractive option to build molecular antennae. 

The cyanide bridge promotes efficient mixing between the metal-centered states and opens 

the way for efficient electron and energy transfer.7–9 Additionally, unlike other widely used 

bridges, the cyanide group does not introduce low energy states that may act as electron or 

energy traps. In a previous report9 we presented the photophysical properties of four 

mononuclear compounds [Ru(L)(bpy)(X)] (L = tpy (a) or tpm (b) and  X = CN(1) ־ and 

NCS(2) ־, hereafter 1a-b and 2a-b), which are weak MLCT emitters, and the related 

cyanide bridged bimetallic species [Ru(L)(bpy)(µ-NC)M(CN)5]
n־ where M = Fe(III) (3a-b), 

Fe(II) (3a-br), Cr(III) (4a-b). In these cases, either low energy iron or chromium-centered 

d-d states or low energy MM’CT states served as pathways for efficient quenching of the 

Ru(polypy)-centered MLCT emission. Our goal is to develop an inorganic polymer 

containing several absorbing units (antennae) that may be able to transfer the energy or the 

charge to the desired fragment of a larger molecular system. Thus, connectors with low 

energy states that serve as energy traps should be avoided. In this work, we extend our 
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studies of this family of compounds to new cyanide-bridged bimetallic complexes 

[Ru(L)(bpy)(µ-NC)M]2-/-/2+  (M = RuII(CN)5 (5ar-br), OsIII(CN)5 (6a-b), OsII(CN)5 (6ar-br), 

RuII(py)4(CN) (7ar-br), py = pyridine, their structures are shown in Scheme 1 while 

chemical formulae and labels are listed in Table 1) which include second and third row 

transition metals, and therefore have their metal centered (MC) states at higher energies so 

they may not be able to quench the excited state. 

 

Scheme 1. Sketches of the complexes of the family [Ru(L)(bpy)(µ-NC)M]n־ (M = RuII(CN)5 (5ar-br), 

OsIII(CN)5 (6a-b), OsII(CN)5 (6ar-br), RuII(py)4(CN) (7ar-br)). The alphanumeric labels identify the different 

H atoms in 1H NMR. 
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L M Complex 

tpy 

RuII(CN)5 5ar
 

OsIII(CN)5 6a 

OsII(CN)5 6ar
 

RuII(py)4(CN) 7ar
 

tpm 

RuII(CN)5 5br 

OsIII(CN)5 6b 

OsII(CN)5 6br 

RuII(py)4(CN) 7br 
 

Table 1. Complexes of the family [Ru(L)(bpy)(µ-NC)M]2-/-/2+ reported in this work. The numbering scheme 

(see ESI Table S1) is consistent with the complexes reported earlier.9 

 

Experimental Section. 

Materials. 

The complexes K4[Ru(CN)6],
10 K4[Os(CN)6],

11 (TPP)3[Os(CN)6],
12 [RuII(py)4(CN)2],

13 

[Ru(tpm)(bpy)Cl]Cl,14 [Ru(tpm)(bpy)(OH2)](PF6)2,
14 [Ru(tpy)(bpy)Cl]Cl15 and 

[Ru(tpy)(bpy)(OH2)](PF6)2,
15 were prepared according to previous reports (TPP+ = 

tetraphenylphosphonium). All other reagents were obtained commercially and used without 

further purification. Solvents used for UV-visible and electrochemistry measurements were 

dried according to literature procedures.16 The N-tetrabutylammonium hexafluorophosphate 

(TBAPF6) used in the cyclic voltammetry experiments was recrystallized from ethanol. All 

compounds synthesized were dried in a vacuum desiccator for at least 12 hours prior to 

characterization. 

Synthesis. 

K2[Ru(L)(bpy)(µ-NC)RuII(CN)5] (L = tpy (5ar) or tpm (5br)). These syntheses are a 

variation of those described in our previous work9 for complexes 3ar-br. A sample with 
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0.18 mmol of [Ru(L)(bpy)Cl]Cl (L = tpy, 101 mg; L = tpm, 104 mg) and 5 eq. of 

K4[Ru(CN)6] (370 mg) were dissolved in 100 mL of water, and the mixture heated at reflux 

for 2 hours and 30 minutes. The solvent was evaporated until 20 mL remained and the 

insoluble products filtered off. 40 mL of methanol were added and a light-red colored solid 

was found to precipitate. After cooling for 30 minutes in the refrigerator, the solid was 

collected by filtration, and the resulting red solution containing the desired product was 

preserved. To recover the product, the light-red solid was dissolved in a minimum amount 

of water and precipitated with methanol and cooled down. A white solid was formed and 

separated by filtration from a red colored solution. Both red solutions were mixed and 

evaporated to 10 mL. 50mL of diethyl ether were added and the resulting red solid was 

filtered off, washed with diethyl ether and dried in the dissecator. L = tpy: Yield: 93 mg 

(53%). Anal. Calcd. for 5ar.8H2O: C, 38.4; H, 3.6; N, 15.9. Found: C, 38.8; H, 3.2; N, 15.9. 

1H NMR (500 MHz, D2O) δ 10.46 (d, J = 5.5 Hz, 1H, Ha) 8.57 (d, J = 8.0 Hz, 1H, Hd), 

8.32 (d, J = 8.0 Hz, 2H, H5), 8.26 (m, 4H, Hc+He+H4), 8.11 (ddd, J = 7.0, 5.5, 1.0 Hz, 1H, 

Hb), 7.85 (t, J = 8.0 Hz, 1H, H6), 7.81 (dd, J = 5.5, 1 Hz, 2H, H1), 7.76 (ddd, J = 8.0, 8.0, 

1.0 Hz, 2H, H3), 7.59 (ddd, J = 8.0, 8.0, 1.0 Hz, 1H, Hf), 7.23 (ddd, J = 8.0, 5.5, 1.0 Hz, 

2H, H2), 7.00 (d, J = 6.0 Hz, 1H, Hh), 6.83 (ddd, J = 8.0, 6.0, 1.0 Hz, 1H, Hg). IR νCN = 

2121, 2082(sh), 2052 cm-1. L = tpm: Yield: 65 mg (39%). Anal. Calcd. for 5br.6H2O: C, 

34.1; H, 3.3; N, 21.4. Found: C, 34.1; H, 3.0; N, 21.1. 1H NMR (D2O, 500MHz) δ (ppm): 

9.39 (s, 1H, H7), 8.66 (d, J = 6.0 Hz, 2H, Ha), 8.54 (d, J = 8.0 Hz, 2H, Hd), 8.42 (d, J = 3.0 

Hz, 2H, H1), 8.41 (d, J = 3.0 Hz, 1H, H4), 8.20 (s, 2H, H3), 8.08 (ddd, J = 8.0, 7.0, 1.0 Hz, 

2H, Hc), 7.48 (dd, J = 7.0, 7.0 Hz, 2H, Hb), 6.54 (s, 1H, H6), 6.51 (s, 2H, H2),6.14 (d, J = 

3.0 Hz, 1H, H5). IR νCN = 2122, 2086, 2050 cm-1. In both cases, the amount of hydration 

molecules was confirmed by TGA (ESI Figures S1 and S2). 
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(TPP)[(L)(bpy)Ru(µ-NC)OsIII(CN)5] (L = tpy (6a) or tpm (6b). The procedure is 

analogous to that of complexes 3a-b and 4a-b reported in reference 9, yielding dark violet 

crystalline solids. L = tpy: Yield: 65 mg (29 %). Anal. calcd. for 6a.4H2O: C, 52.9; H, 3.8; 

N, 12.3. Found: C, 52.9; H, 3.6; N, 12.2. IR νCN = 2122, 2105, 2086, 2036, 2026 cm-1. L = 

tpm: Yield: 55 mg (24 %). Anal. calcd. for 6b.8H2O: C, 46.2; H, 4.2; N, 15.1. Found: C, 

46.6; H, 3.9; N, 15.1. IR νCN = 2122, 2106(sh), 2090, 2070, 2043, 2026 cm-1. In both cases, 

the presence of water hydration molecules was also detected in the X-ray structures, 

although in a different amount. 

K2[Ru(L)(bpy)(µ-NC)OsII(CN)5] (L = tpy (6ar) or tpm (6br). The procedure is analogous 

to that of complexes 5ar-br, replacing potassium hexacyanoruthenate with K4[Os(CN)6], 

yielding red-orange solids. L = tpy: Yield: 81 mg (42%). Anal. Calcd. for 6ar.9H2O: C, 

34.6; H, 3.4; N, 14.3. Found: C, 34.7; H, 2.9; N, 14.0.1H NMR (500 MHz, D2O) δ 10.41 

(dd, J = 5.5, 0.5 Hz, 1H, Ha), 8.56 (d, J = 8.0 Hz, 1H, Hd), 8.30 (d, J = 8.0 Hz, 2H, H5), 

8.25 (m, 4H, Hc + He + H4), 8.11 (ddd, J = 7.5, 5.5, 1.5 Hz, 1H, Hb), 7.83 (t, J = 8.0 Hz, 

1H, H6), 7.80 (d, J = 5.5 Hz, 2H, H1), 7.75 (ddd, J = 8.0, 8.0, 1.5 Hz, 2H, H3), 7.59 (ddd, J 

= 7.5, 7.5, 1.5 Hz, 1H, Hf), 7.24 (ddd, J = 8.0, 5.5, 1.5 Hz, 2H, H2), 7.02 (d, J = 5.5 Hz, 

1H, Hh), 6.83 (ddd, J = 7.5, 5.5, 1.5 Hz, 1H, Hg). IR νCN = 2122, 2077, 2040 cm-1. L = tpm: 

Yield: 63 mg (31 %). Anal. Calcd. for 6br.12H2O: C, 28.1; H, 3.8; N, 17.6. Found: C, 29.0; 

H, 4.1; N, 17.7. 1H NMR (500 MHz, D2O) δ 8.60 (d, J = 6.0 Hz, 2H, Ha), 8.51 (d, J = 8.0 

Hz, 2H, Hd), 8.40 (d, J = 3.0 Hz, 2H, H1), 8.38 (d, J = 3.0 Hz, 1H, H4), 8.13 (d, J = 1.0 Hz, 

2H, H3), 8.04 (ddd, J = 8.0, 7.0, 1.0 Hz,  2H, Hc), 7.43 (dd, J = 7.0, 6.0 Hz, 2H, Hb), 6.46 

(dd, J = 2.0, 2.0 Hz, 2H, H2), 6.44 (d, J = 3.0 Hz, 1H, H6), 6.03 (dd, J = 3.0, 3.0 Hz, 1H, 

H5). IR νCN = 2121, 2083, 2040 cm-1. 
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 [(L)(bpy)Ru(µ-NC)RuII(py)4(CN)](PF6)2 (L = tpy (7ar) or tpm (7br)). 0.14 mmol of 

[Ru(L)(bpy)OH2](ClO4)2 (L = tpy, 100 mg, L = tpm, 96,4 mg) and 5 eq. of [Ru(py)4(CN)2] 

(332 mg) were suspended in 100 mL of water and heated at reflux for 2 hours. After the 

mixture cooled down, the solvent was completely removed with a rotary evaporator. The 

remaining solid was dissolved in a minimum volume of methanol and loaded on a 

Sephadex LH-20 column (l = 60 cm, φ = 4 cm) packed and eluted with methanol. The third 

of the four fractions obtained presented a dark brown (L = tpy) or deep orange (L = tpm) 

color and was evaporated until dryness. The solid was dissolved in a minimum volume of 

methanol and 5 mL of an aqueous saturated solution of NH4PF6 were added. A brown (L = 

tpy) or orange (L = tpm) solid was collected by filtration, and dried in desiccator. L = tpy: 

Yield: 72 mg (36 %). Anal. Calcd. for 7ar.10H2O: C, 39.5; H, 4.2; N, 10.8. Found: C, 39.4; 

H, 3.9; N, 11.1. 1H NMR (500 MHz, CD3CN) δ (ppm) 9.64 (ddd, J = 5.5, 1.5, 1.0 Hz, 1H, 

Ha), 8.62 (d, J = 8.0 Hz, 1H, Hd), 8.48 (d, J = 8.0 Hz, 2H, H5), 8.36 (ddd, J = 8.0, 1.5, 1 

Hz, 2H, H4), 8.36 (m, 1H, He), 8.29 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H, Hc), 8.18 (t, J = 8.0 Hz, 

1H, H6), 8.05 (dd, J = 6.5, 1.5 Hz, 8H, Hα), 7.95 (ddd, J = 8.0, 8.0, 1.5 Hz, 2H, H3), 7.82 

(ddd, J = 8.0, 5.5, 1.5 Hz, 1H, Hb), 7.79 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H, Hf), 7.72 (ddd, J = 

5.5, 1.5, 1.0 Hz, 2H, H1), 7.69 (tt, J = 8.0, 1.5 Hz, 4H, Hγ), 7.39 (ddd, J = 6.0, 1.5, 1.0 Hz, 

1H, Hh), 7.32 (ddd, J = 8.0, 5.5, 1.5 Hz, 2H, H2), 7.06 (ddd, H = 8.0, 6.0, 1.5 Hz, 1H, Hg), 

6.99 (dd, J = 8.0, 6.5 Hz, 8H, Hβ). IR νCN = 2106(sh), 2070 cm-1. L = tpm: Yield: 55 mg 

(29 %). The presence of water hydration molecules was also detected in the X-ray structure, 

although in a different amount. Anal. Calcd. for 7br.6H2O: C, 37.7; H, 3.8; N, 14.6. Found: 

C, 37.9.0; H, 4.3; N, 14.6. 1H NMR (CD3CN, 500MHz) δ (ppm): 8.90 (s, 1H, H7), 8.62 

(ddd, J = 5.0, 2.0, 0.5 Hz, 2H, Ha), 8.40 (dd, J = 3.0, 1.0 Hz, 2H, H1), 8.38 (ddd, J = 8.0, 
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1.0, 0.5 Hz, 2H, Hd), 8.30 (dd, J = 2.0, 1.0, 2H, H3), 8.10 (dd, J = 6.0, 1.5 Hz, 8H, Hα), 

8.08 (dd, J = 8.0, 2.0 Hz, 2H, Hc), 8.07 (d, J = 1.5 Hz, 1H, H4), 7.67 (tt, J = 8.0, 1.5 Hz, 

4H, Hγ), 7.51 (ddd, J = 8.0, 5.0, 1.0 Hz, 2H, Hb), 6.98 (dd, J = 8.0, 6.0 Hz, 8H, Hβ), 6.70 

(dd, J =  3.0, 0.5 Hz, 1H, H6), 6.67 (dd, J = 3.0, 2.0 Hz, 2H, H2), 6.29 (dd, J = 3.0, 1.5 Hz, 

1H, H5). IR νCN = 2107(sh), 2069 cm-1. 

Characterization  

IR spectra were collected with a Nicolet FTIR 510P instrument, as KBr pellets. UV-visible 

spectra were recorded with a Hewlett-Packard 8453 diode array spectrometer in the range 

between 190 and 1100. NMR spectra were measured in a Bruker ARX500 spectrometer, 

using deuterated solvents from Aldrich. Elemental analyses were performed with a Carlo 

Erba 1108 analyzer. Cyclic voltammetry measurements were performed under argon with 

milimolar solutions of the compounds, using a TEQ V3 potentiostat and a standard three 

electrode arrangement consisting of a glassy carbon disc (area = 9.4 mm2) as the working 

electrode, a platinum wire as the counter electrode and a reference electrode. Depending on 

the solvent, the reference electrode was a Ag/AgCl 3M KCl standard electrode (for aqueous 

solutions) or a silver wire (for non- aqueous solutions) plus an internal ferrocene (Fc) or 

decamethylferrocene (Me10Fc) standard for organic solvents. KNO3 1M and tetra-N-

butylammonium hexaflourophosphate (TBAPF6) 0.1 M were used as supporting 

electrolytes in water and non-aqueous media, respectively. All the potentials reported in 

this work are referenced to the standard Ag/AgCl saturated KCl electrode (0.197 V vs. 

NHE), the conversions being performed by using the accepted values for the Fc+/Fc couple 

in different media.17  

Excitation and emission spectra were recorded in a PTI-Quantamaster spectrofluorometer. 

Quantum yields were measured in Argon-saturated solutions using [Ru(bpy)3]
2+ (Φ = 0,095 
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in ACN at 25ºC18) as reference, correcting by refractive indices when needed. Time-

resolved luminescence measurements were made using a PicoQuant FluoTime 100 

Compact Fluorescence Lifetime Spectrometer, with a LDH-P-C-375 diode laser centered at 

375 nm (300 ps FWHM) as the excitation source and a PMT detector. Since the Φ for 

emission are very small, the solutions were highly concentrated with O.D. near 1 at the 

excitation wavelength. Emission spectra measured under these conditions showed no 

change from those measured for dilute solutions.  

X-ray Structure Determination 

Crystal structures of compounds 6a-b, 7ar were determined with an Oxford Xcalibur, Eos, 

Gemini CCD area-detector diffractometer using graphite-monochromated Mo-Kα radiation 

(λ = 0.71069 Å) at 298 K. Data was corrected for absorption with CrysAlisPro, Oxford 

Diffraction Ltd.,Version 1.171.33.66 analytically by face-indexing in the case of compound 

7ar and applying an empirical absorption correction using spherical harmonics, 

implemented in SCALE3 ABSPACK scaling algorithm in the case of compounds 6a-b. 

The structures were solved by direct methods with SHELXS-97 and refined by full-matrix 

least-squares on F2 with SHELXL-97. Hydrogen atoms were added geometrically and 

refined as riding atoms with a uniform value of Uiso. Hydrogen atoms of solvent water 

molecules were not located in the Fourier difference map and therefore not included in the 

modelling. In structures 6a-b three and two of the water solvent molecules, respectively, 

were found disordered and refined as two split positions with 0.5:0.5 occupation ratio. In 

the case of structure 6a the oxygen atoms of water solvent molecules could not be 

anisotropically modelled due to refinement unstability. Hence, they were kept isotropically 

refined. Final crystallographic data and values of R1 and wR are listed in Table S2 (ESI) 

while the main angles and distances are listed in Table 2. CCDC 918817 - 918819 contains 
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the supplementary crystallographic data for this paper. These data can be obtained free of 

charge from the Cambridge Crystallographic Data Center via 

www.ccdc.cam.ac.uk/data_request/cif.  

Results. 

Synthesis. 

As previously observed,9 the reaction of the precursors [Ru(L)(bpy)Cl]+ with the anions 

[M(CN)6]
4-/3- proceeds smoothly in methanol and in water. The poor solubility of the 

hexacyanometallate(II) in methanol simplifies the purification of the bimetallic complexes 

5ar-br and 6ar-br, which were obtained as water-soluble potassium salts. The higher 

potentials of ruthenium and osmium complexes allowed us to prepare compounds 5ar-br 

and 6ar-br under air. In the preparation of 7ar-br, [Ru(L)(bpy)(OH2)]
2+ was chosen as the 

starting material instead, because of its higher lability when the substituting species was the 

neutral complex [Ru(py)4(CN)2].  

X-ray quality single crystals of the TPP+ salts of 6a-b were obtained by slow evaporation 

of concentrated methanol-water solutions, while crystals of the PF6
- salt of 7ar were 

obtained by slow evaporation of acetonitrile-water solutions. Unfortunately the same 

procedure on 7br yielded crystals of low quality. We were not able to grow crystals of the 

potassium salts of 5ar-br and 6ar-br. 

Crystal Structure Determinations. 

The crystal structures of bimetallic complexes 6a-b and 7ar were determined by X-ray 

crystallography. Table 2 summarizes selected bond distances and angles while their 

structures are shown in Figure 1. 

The coordination spheres around the ruthenium atoms present the usual characteristics of 

the previously reported [Ru(tpy)(bpy)X]n 19–24 and [Ru(tpm)(bpy)X]n 25–27 compounds. The 
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NL-Ru-NL angle shows considerable distortion from the octahedron in the case of 6a-7ar 

and slighter deviations in the case of 6b, caused by the planar rigid structure of tpy (a) and 

the more flexible facially coordinating tpm (b). The Ru-N distances are within the range 

expected for a Ru(II)-N(polypyridine bond).19–27 The tetrapyridinic fragment of 7ar 

presents the usual propeller-like configuration13,28,29 with an average tilting angle of 40° 

(Figure 1).  

Complex 7ar shows the shorter C-N distance for the bridge in the structurally characterized 

members of the [Ru(L)(bpy)(µ-NC)M]n family (1.109(13) Å compared to 1.148(6) Å in 

6a), but these bond distances are within the range of reported values for complexes 

containing the corresponding cyano-fragment.12-13,29–31 Usually this bond distance is not 

affected by the nature of the bridged moieties, although elongation of this bond has been 

observed in the presence of very electron-rich metals.32  

The presence of the tpm ligand in the complex 6b leads to an important deviation from 

linearity of the Ru-NCbridge-M moiety. The Ru-N-Cbridge angle is ~163o while the N-Cbridge-

Os angle is 172o. These angles are more bent compared to those of compound 6a (169o and 

175o respectively), while 7ar shows almost a perfect linear arrangement of these atoms. 

Additionally, while 6a presents an almost eclipsed configuration of its equatorial ligands, 

the structures of 6b and 7ar show significant torsion angles of 35° and 16°, respectively, 

around the cyanide bridge. 

Similar diversity of configurations have been observed previously9 and indicates that the 

variations observed are not governed by electronic factors, but are the result of different 

intermolecular interactions in the crystal structures. For example, whereas 6b shows π-π 

stacking between the bpy-bpy ligands (d = 3.33 Å) and the tpm-tpm ligands (d =3.34 Å), 

only the π-π stacking between the tpy-tpy ligands (d = 3.49 Å) is present in 6a and the 
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between tpy-py ligands (d = 3.55 Å) in 7ar (ESI Figures S3-S6). Similar distances have 

been observed for π-π stacking between aromatic rings in compounds containing the 

Ru(tpy)(bpy)20,24 and Ru(tpm)(bpy)27 moieties. 

 

 

Complex Salt 6a 6b 7ar 
Distances / Å 

Ru1-N1bridge 2.024(4) 2.003 (6) 2.023(9) 
N1-C1bridge 1.148(6) 1.128 (8) 1.109(13) 
Os1-C1bridge 
C1-Ru2 bridge 
Ru1-Os1 
Ru1-Ru2 
Ru1-N7bpy 
Ru1-N8bpy 

2.045(4) 
- 

5,180 
- 

2.077(4) 
2.044(4) 

2.087 (9) 
- 

5.123 
- 

2.040(6) 
2.031(6) 

- 
2.050(12) 

- 
5.181 

2.048(8) 
2.059(9) 

Ru1-N9tpy/tpm 
Ru1-N10tpy/tpm 
Ru1-N11 tpy/tpm 

2.065(4) 
1.961(4) 
2.074(4) 

2.076(6) 
2.074(6) 
2.050(6) 

2.068(11) 
1.936(8) 
2.119(9) 

Angles / deg. 

Ru1-N1-C1bridge 168.7(4) 163.2(7) 176.1(8) 
N1-C1-Osbridge  
N1-C1-Ru2bridge 

175.3(4) 
- 

171.9(7) 
- 

- 
178.3(9) 

N7-Ru1-N8bpy 
N9-Ru1-10tpy/tpm  
N10-Ru1-N11tpy/tpm 
N9-Ru1-N11tpm 

78.41(15) 
79.42(16) 
79.13(18) 

- 

78.5(3) 
85.8(2)  
83.3(2) 
86.0(3) 

79.1(3) 
78.5(4) 
80.5(4) 

- 
N7-Ru1-Os1-C5 
N7-Ru1-Ru2-N5 

1.62 
- 

34.98 
- 

- 
16.39 

Table 2. Selected bond distances and angles for the compounds 6a-b and 7ar. 
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Figure 1. Crystal structures of the complexes 6a (top), 6b (center) and 7ar (bottom). Ellipsoids represent a 

30% displacement probability. Hydrogen atoms, counter ions, and solvent molecules were omitted for clarity. 

Electrochemistry 

The bimetallic complexes reported here present several active redox center in their 

structure. Characterization of their redox states not only confirms their structure, but also 

provides important information to understand the properties of their excited states. Cyclic 
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voltammograms are shown in Figure 2, while the relevant electrochemical data is presented 

in Table 3. 

 

Figure 2. Cyclic voltammograms of complexes, from top to bottom, left panel: 5a
r
 (water), 6a (water), 6a 

(ACN), 7a
r
 (ACN); right panel: 5b

r
 (water), 6b (water), 6b (ACN), 7b

r
 (ACN). The wave labeled with a (*) 

is preliminarly assigned to a OsIV/OsIII process. 

Complex / Salt Solvent 
E1/2(Ru)/V 
(∆Ep/mV) 

E1/2(M)/V 
(∆Ep/mV) 

E1/2 (pp)/V 
(∆Ep/mV) 

5a
r
 H2O 0.94 (120) 0.61 (150) nd 

5b
r
 H2O 0.97 (100) 0.60 (55) nd 

6a 
H2O  
ACN 

0.96 (130) 
1.13 (100) 

0.32 (90) 
-0.36 (90) 

nd 
-1.41 (70) 

6b 
H2O  
ACN 

1.03 (130) 
1.16 (70) 

0.31 (100) 
-0.34 (210) 

nd 
-1.63 (100) 
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7a
r
 ACN 1.42 (90) 1.05 (90) -1.22 (90) 

7b
r
 ACN 1.41 (80) 1.00 (70) -1.37 (190) 

[Ru(tpy)(bpy)(NCS)]+ ACN 1.04 (90) - -1.25 (100) 

[Ru(tpm)(bpy)(NCS)]+ ACN 0.96 (100) - -1.42 (110) 

[Ru(CN)6]
4- 

H2O 
ACN 

- 
0.97 a 

na 
- 

[Os(CN)6]
4- 

H2O 
ACN 

- 
0.44 (90) b 
-0.59(90) b 

- 

[Ru(py)4(CN)2] ACN - 0.77 (90) c - 

Table 3. Redox potential for the Ru(III)/Ru(II), M(III)/M(II) and pp/pp- couples for the bimetallic complexes 
5-7 and the related monomers in different solvents. a) from reference 10. b) from reference12. c) from reference 
13. 

 
Cyclic voltammograms of 5ar-br and 6ar-br were collected in water. These closely related 

complexes show two reversible or quasi-reversible processes. One of them appears near the 

potential observed for the Ru(III/II) couple for the corresponding [Ru(L)(bpy)NCS]+ 

monomer allowing its assignment,9 while the other, at lower potentials, corresponds to the 

haxacyanometallate (Table 3). The potential of the latter couple is 300 mV higher in 5ar-br 

compared to 6a-b as expected for the replacement of Ru by Os (Table 3). 

The electrochemistry of 6a-b was also explored in acetonitrile (Figure 2). In this solvent the 

couple for the hexacyanoosmate shifts to lower potentials, as previously observed for 

[Os(CN)6]
 .and other cyanometallate complexes,33,34 confirming its assignment (Table 3) 12־3

Moreover, both show an irreversible anodic wave in acetonitrile, whose potential has a 

similar solvent dependence (ESI Figure S7) and thus we assign them to another couple 

associated with the osmium ion (i.e. Os(IV/III) process). To our knowledge, this the first 

report of such a couple in an osmium hexacyanometallate. We propose that the presence of 
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a coordinated Ru(II) donor stabilizes this redox state, although it is not clear why the 

process looks irreversible. Further studies are required to establish the nature of this couple. 

The presence of the additional redox process explains the anodic shift observed for the 

Ru(III/II) process in 6a-b in acetonitrile. 

Finally, the 7ar-br complexes show two closely spaced one electron anodic waves (Figure 

2), consistent with the two expected Ru(III/II) couples. The assignment of these couples is 

not straightforward since the potential for the corresponding Ru(III/II) couples in the 

monomers [Ru(L)(bpy)(NCS)]+ 9 are very similar to that of the Ru(py)4(CN)2 monomer13 

(Table 3). Our preliminary assignment considers that the less anodic process (1.05 and 1.00 

V for the dimetallic complexes 7ar-br, respectively) involves the removal of one electron 

from the Ru(py)4(CN)2 fragment, whose potential is shifted to higher values due to the 

coordination of a 2+ fragment to one of the cyanide groups. Similar shifts have been 

reported in the Ru(py)4(CN)2 potential upon the coordination of a 2+13 or a 3+35 fragment. 

UV-visible and IR spectroelectrochemical studies to confirm these assignments are being 

carried out in our laboratories. 

The bimetallic complexes 6a and 7ar also show two quasi-reversible cathodic waves in 

acetonitrile related to the reduction of the tpy and the bpy ligands. The former appears at 

higher potential as expected from the presence of an additional aromatic ring. Complexes 

6b and 7b instead present only one cathodic wave for the reduction of the bpy ligand. 

Photophysics 

To gain a deeper understanding of the coupling among the different moieties in the 

bimetallic complexes, we measured their photophysical properties in acetonitrile and water.  

Figure 5 shows the absorption spectra of the dimetallic complexes complexes 5br, 6br and 

7br. The [Ru(tpm)(bpy)(NCS)]+ monomer has the same coordination environment around 
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the ruthenium polypyridinic center9 and thus it is also presented here for comparison. 

Similar spectra were recorded for the compounds with the tpy ligand as shown in the 

supplementary information (ESI Figure S8). Absorption maxima and extinction coefficients 

for all compounds measured (with initial assignments) are listed in Table 4. All these 

compounds present similar transitions such as the narrow ligand centered (LC) band around 

300 nm and the broad MLCT bands in the 440-480 nm region, the latter with π* acceptor 

orbitals located on the chelating ligands. An additional MLCT transition is clearly resolved 

for these complexes around 330 nm, appearing only as a shoulder for the tpy analogues due 

to the lower energy of the LC signals on those compounds (ESI Figure S8). Bimetallic 

complexes 7ar-br (Fig 5 and Figure S8) present an intense absorption feature at ~355 nm 

corresponding to the Ru(II) � π* (pyridines) MLCT transition. All the charge-transfer 

processes described up to this point involve dπ orbitals of the ruthenium atom directly 

attached to the ligand that contains the π* acceptor orbitals. The presence of two M(II) 

centers in the bimetallic complexes 5ar-br, 6ar-br and 7ar-br opens the possibility of charge 

transfer from a metal to a remote ligand (i.e. attached to the second metal) as it has been 

shown for other bimetallic complexes.8 The spectra reported here for the Ru(II)M(II) 

bimetallic complexes follow very closely the pattern observed for the NCS- monomers 2a-

b.9 We conclude that the remote MLCT (RMLCT) band must have much lower intensity 

and do not have a large impact in the absorption profiles. (Fig 5 and Figure S8). 
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Figure 5. UV-vis absorption of the complexes 5br (green), and 6br (black) in water and 7br in acetonitrile 

(red). For comparison purposes the spectrum of [Ru(tpm)(bpy)(NCS)]+ in acetonitrile (blue) is also included. 

Complex 
Salt 

Solvent 

L = tpy (a) L = tpm (b) 

π ���� π* MLCT π ���� π* MLCT 

λλλλ 
nm 

ε 
M-1cm-1 

λλλλ 
nm 

ε 
M-1cm-1 

λλλλ 
nm 

ε 
M-1cm-1 

λλλλ 
nm 

ε 
M-1cm-1 

2 
ACN 

272 33400 
357 6820(sh) 

293 22400 

322 7910(sh) 
279 34300 

291 37900 
487 9080 458 4410(sh) 

313 30400 

5r 
H2O 

273 34600 
358 7870(sh) 

292 21000 

332 7390 (sh) 
281 36300 

291 40800 
486 10420 454 3070 

313 38200 

6 
ACN 

275 32800 
--- ---- 

290 31400 

331 5470 
---- ------ 
291 32400 

481 8280 443 3115 
313 30800 

6r 
H2O 

273 39200 
358 8750(sh) 

293 23000 
342 8600 

281 41200 
291 45500 

485 10830 456 3080 
313 40800 

7r 
ACN 

274 31300 
353 21220 

289 29800 
357 23680 

282 34100 
291 35600 

479 7440 478 2960 
314 37200 

 

Table 4. UV-vis absorption data for the complexes reported. For comparison purposes the data for 2 

[Ru(L)(bpy)(NCS)]+ is also included.9 
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Compounds 6a-b exhibit an additional very broad and weak band at lower energies, which 

is absent for 6ar-br and whose position depends strongly on the solvent (Table 5, Figures 6 

and S9). In acetonitrile, their maxima are located at 685 nm and 718 nm, for 6a-b 

respectively. The energy of this transition correlates well with the difference between the 

redox potential of ruthenium and osmium (ESI Figure S10), and therefore we assign it to a 

Ru(II) � Os(III) MM’CT transition. When compared to their Ru-Fe analogues (for 

example, compounds 3a-b in reference 9), the electronic mixing between the metallic 

centers is expected to be greater for the Ru-Os complexes due to the larger extension of 

their dπ orbitals. The values of the coupling term H12, arisen from the Mulliken-Hush 

expression36–38 and shown in Table 5, are in agreement with this expectation as they are 

among the larger ones reported for a cyanide bridged system.8,35,39–42 These results indicate 

a substantial mixing between the dπ orbitals of the metallic ions (α2 = 3.68x10-2 for 6a and 

α2 = 7.17x10-2 for 6b in water). The mixed valence species 5a-b and 7a-b will be further 

studied by spectroelectrochemistry and reported in a forthcoming article. 
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Figure 6. Vis-NIR absorption of the complexes 6a in water (black dotted line), methanol (red dash-dotted 

line), ethanol (green dashed line) and acetonitrile (blue solid line). 

 

Solvent 
MM’CT ν/103cm-1 (ε/103 M-1cm-1) H12

a / cm-1 

6a 6b 6a 6b 3ab 3bb 

ACN 14.6 (2000) (sh) 13.9 (1800) nd 1083 nd nd 

EtOH 12.7 (2100) 11.9 (2200) 1306 1154 nd 757 

MeOH 11.2 (2300) 10.3 (2600) 1302 1282 973 814 

H2O 8.8 (4100) 8.5 (7400) 1689 2263 1303 1213 

 

Table 5. MM´CT transition energies for the mixed-valence species 6a and 6b. a)	��� � ����	 , �
� �

�.������ � ������

		�������
�  and r12 is the crystallographic distance between the metallic ions. b) Data for compounds 3a 

([Ru(tpy)(bpy)µ-NC)FeIII(CN)5]
-) and 3b ([Ru(tpm)(bpy)(µ-NC)FeIII(CN)5]

-) were taken from reference 9. 

 

Remarkably, most of the bimetallic molecules reported here show emission at room 

temperature, with no evidence of photodegradation. Their wavelength of maximum 

emission, quantum yields and lifetimes are listed in Table 6, while their emission and 
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excitation spectra are presented in Figure 7. Lifetimes (between 10 and 50 ns) and emission 

quantum yields (ca. 1x10-3) are similar to those reported for the closely related 

monomers19–24,43,44 and points to the triplet MLCT of the ruthenium polypiridine as the 

emissive state. The preservation of these photophysical properties indicates that addition of 

a second metal-ion from the 2nd or 3rd transition series (with a d6 configuration) does not 

introduce competitive non-radiative pathways. In all the reported systems the excitation 

spectra matches very well the absorption spectra, which reveals an efficient population of 

the MLCT state, mainly triplet in character, upon light absorption.  

Within each series (L = tpy or L = tpm), the wavelength of maximum emission correlates 

roughly with the charge of the group occupying the sixth position. When the group is 

neutral (7ar-br), emission occurs at the high-energy end of the spectrum becoming red 

shifted when the ligand has a single negative charge (2a-b)9 and emitting at even lower 

energies when the group has multiple negative charges (5ar-br and 6ar-br). This 

observation is in agreement with the MLCT character of the emissive state, as an increase 

in the negative charge of the sixth ligand results in more repulsion with the dπ orbital, and 

hence a smaller ∆E between the dπ orbital and the ligand-centered π* orbital. The change in 

energy between 5ar-br and 6ar-br has a different origin as both groups have the same 

charge. In the latter case the expected stronger interaction between the Ru-Os ions in the 

excited state probably results in stabilization of the emissive excited state and hence a lower 

energy for the photoluminescence. 

The only compounds that show no detectable emission at room temperature are the 

complexes 6a-b in acetonitrile. As seen in their electronic absorption profiles (Figures 6 

and S9), these complexes present a low energy MM`CT state which may be responsible for 
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the oxidative quenching of the excited state emission. To confirm this hypothesis, the 

ultrafast dynamics of their transient absorption is being explored in our labs. 

 

Complex 

Salt 
Solvent 

L = tpy (a) L = tpm (b) 

λem
 / nm ϕem x 103 τ / ns λem /nm ϕem x 103 τ / ns 

2 ACN 709 0.13 10.4 715 0.23 20.1 

5r H2O  707 1.42 16.6 720 1.61 15.1 

6 ACN - <0.01 - - <0.01 - 

6r H2O 725 0.63 9.3 732 0.43 11.8 

7r ACN 697 0.42 15.6 691 0.61 44.8 

Table 6. Emission properties for the complexes reported at 25°C. Monomers 2a and 2b from reference 9 are 

included for comparison. 

 

 

Figure 7. Excitation (green solid line), absorption (blue dashed line) and emission (red solid line) at 25ºC. 

From top to bottom, left panel: 7a
r
 (ACN), 2a (ACN), 5a

r
 (water), 6ar (water); right panel: 7br (ACN), 2b 

(ACN), 5b
r
 (water), 6br (water). Monomers 2a and 2b from reference 9 are included for comparison. 

 

The results obtained from photophysical measurements of the bimetallic complexes 5ar-br, 

6ar-br and 7ar-br are in line with early reports where multimetal systems containing RuII(µ-

CN)RuII show no evidence of non radiative deactivation due to the presence of the 
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additional metallic center,7,8 but contrast with other reports informing no emission for 

related systems.39,45,46 

The origin of the diverse photophysical behavior between closely related cyanide-bridged 

bimetallic complexes is intriguing. The differences may be traced to the redox potential of 

the non-emitting metal-center. The lack of emission of the Os(III) containing bimetallic 

complexes 6a-b can be easily explained in terms of oxidative quenching, but why two 

closely related complexes like [(tpy)(bpy)RuII(µ-NC)RuII(py)4(CN)]2+ and 

[(tpy)(bpy)Ru(µ-CN)RuII(NH3)5]
3+ 46 show contrasting photophysical behavior? In these 

systems, the non-emissive distant Ru(II) could act as an electron donor and reduce the 

polypyridinic Ru(III) unit present in the MLCT state (reductive quenching). The resulting 

state has an electron in one polypyridine ligand and a hole in the distant Ru center, hence it 

creates a remote MLCT state (RMLCT). The energy of this state can be estimated as: 

E (RMLCT) = E(pp/pp-) – E(RMIII/RMII) 

where E(pp/pp-) is the energy required for the reduction of the polypiridine ligand and 

E(RMIII/RMII) is the energy required for the reduction of the distant metal center. The latter 

values can be replaced by their corresponding redox potentials. This provides only a rough 

approximation, as the redox potentials are thermodynamic information that also includes 

solvent effects, but they provide a useful comparison. Hence: 

E (RMLCT) = - [E° (pp/pp−) - E° (RMIII/RMII)] 

When the energy of the RMLCT lays below the 3MLCT, it can be easily populated leading 

to deactivation of the otherwise emissive 3MLCT. This is the case for the complexes 

containing a RuII(NH3)5,
39,45,46 which is a good donor, creating a low-energy RMLCT that 

can act as a quencher state (ESI Figure S11). For the complexes 5ar-br and 7ar-br, the non-

emissive ruthenium moieties are not so easily oxidized, hence the RMLCT state is 
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energetically above the 3MLCT and thus it does not become populated. As a result, these 

complexes show unperturbed emission from the 3MLCT. For the 6ar-br complexes, we 

estimate that the RMLCT is close in energy to the 3MLCT, suggesting a partial population 

transfer to the RMLCT and leading to deactivation of the emissive state. It is interesting to 

note that the emission quantum yield for the complexes 6ar-br is smaller than the one 

observed for the closely related bimetallic complexes 5ar-br. 

Conclusions. 

The retention of the photophysical properties observed upon addition of a second metal 

center indicates an extension of the nuclearity of the complexes without the introduction of 

competitive non-radiative relaxation pathways. When 1st-row transition metals are used, 

such as the previously reported Fe and Cr,9 the presence of low-energy MC (dd) states 

introduces efficient deexcitation channels. Instead, we show now that by employing 2nd- 

and 3rd-row transition metals, such as Ru (5ar-br, 7ar-br) and Os (6ar-br) we avoid the 

creation of those deactivation paths. The cyanide and pyridine moieties, classified as high-

field ligands in terms of the ligand field theory, may have helped in raising the energy of 

the MC states. In addition, to prevent deactivation is important to select a metal center that 

could not open a reductive or oxidative quenching of the 3MLCT. 

These findings become critical when the ultimate goal is to prepare polymeric antenna 

compounds, where there is a requirement of light-absorption followed by transfer of either 

electronic energy or charge to the reactive center. In those situations, low energy states that 

may act as energy or charge traps are very undesirable. It is important to note that all the 

new molecules presented here have exposed cyanide groups, which can be used to further 

extend their nuclearity. Either additional chromophoric units or actuators can be attached to 

these complexes, enhancing the absorptivity or introducing a light-dependent function. It is 
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in this sense that we propose the reported compounds as building blocks for extended 

polymeric antennae. 
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