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Selection of critical events in nuclear fragmentation
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The calculation of the critical exponemntis crucial in the determination of critical phenomena in heavy ion
reactions. This, however, is obscured by the unavoidable mixing of critical and noncritical events that results
in nonclean signals. Here we report on a method to extract critical events from a set of mixed ones. In
comparing to the traditional one, based on the so-called Campi plot, a distinct advantage is found.

DOI: 10.1103/PhysRevC.64.027602 PACS nun)er25.70.Pq, 24.10.Lx, 25.70.Mn, 65.20m

Since the pioneering work of the Purdue group, in whicha “U-shaped” distribution of large biggest cluster and small
the mass spectra resulting from multifragmentation of ex-multiplicity), and an “elbow” region usually taken as con-
cited nuclei was first fitted to a power law, a lot of work has nected to critical events with power-law mass distributions
been devoted to the characterization of this phenomenon ag A2)].
phase transition. This task has been undertaken both theoreti- In previous works, rathead libitum criteria have been
cally and experimentallyfor a recent review see Refd,2)) used to select events, presumably critical, from the elbow
via the calculation of critical exponen{8], caloric curves region and to extract from them[12]. Unfortunately, this
[4,5], thermal response functiofi§—9], etc. results in a wide mix of noncritical and critical events. We

In particular, the critical exponentcan be extracted from now use percolation to critically examine the effects of this
the mass spectrum of events produced exactly at the criticakiterion on the resulting value of the critical exponent.
point, which should have a power-law decay suchnas Bond percolation is a simple procedure that displays criti-
~A"7, wheren, is the number of fragments of siZeper cal behavior[11,13—-17. A three-dimensional gridof say,
unit mass. At nearby points, the yield is modified ng L XL XL nodes can be fragmented into connected segments
~A"f(z) by a scaling factof (z) which obscures the pure by breaking each of the internode links with some probabil-
power law. In the scaling factaz=A"¢, ¢ is the relative ity p,. Repeating this process for many grids and combining
distance to the critical poiné=(p—p.)/p., ando is an-  the results, produces a smooth distribution of “masses,” i.e.,
other critical exponent. As the experimental data contains anumber of connected nodes. At some critical bond breaking
assortment of events at different impact parameters, excitgrobability p.(L), the resulting mass distribution follows a
tion energies, etc., the resulting spectra will unavoidable coneharacteristic power-law decay, but mixing results from dif-
tain a mix of critical and noncritical events. ferentp.'s produces a scaled power-law decay different from

Originally, the critical exponent was estimated from the critical one. Critical and noncritical events tend to popu-
mixed data by means of a fitting paramet&pparent expo- late different, but overlapping, segments of the Campi plot.
nent”) resulting from a power-law fit to critical and noncriti- We now examine the wide mixing of critical and noncriti-
cal data. Since the scaling function attains the value of 1 atal events produced by ttaal libitumcriteria used in the past
the critical pointf (0)=1, the minimum of this apparent ex- to select events from the elbow region. This will be done
ponent was identified with the true critical exponent, where aising anL =6 grid which will be broken 20 000 times with
pure power law would applysee Ref.[1]). Nowadays, each of the probabilitiep=0.01,0.02. ..,0.99 for a total of
whenever possible, critical events must extracted from thalmost 2 million events. Using the resulting mass spectra a
data and used to calculatedirectly from them. Unfortu- Campi plot will be populated, and a subset of events will be
nately, the most commonly used technique that presumablyelected from the elbow region, and used to obtain a critical
selects critical and near-critical events, based on the saxponent.
called Campi plof7,8,10, does not live up to its promises. The critical bond activation probabilityp.(L), and the

A Campi plot is a representation of data from multiple corresponding exponentcan be calculated as explained by
events in which the log of the size of the maximum fragmentElliot et al. [3]. The critical exponent must be obtained from
in eventi In(A,,) is plotted against the logarithm of the a one-parameter fitr) as the overall normalizationy is
second moment of the mass distribution in the same eventetermined via the Riemarnhfunction go=1/= A7, with
In(M)). (The kth moment is defined abl,=3>A*n,, with  the mass distributiom, normalized to the system size and
the biggest fragment excluded from the sum in the “liquid M, to 1.
side” [11].) The resulting graph displays a typical “boomer-  The critical mass spectra is selected as that best fitted by
ang” shape with a down-pointing branch believed to be asthis single-parameter power law according to a minimgfm
sociated to overcritical even(se., an exponential mass yield This fitting procedures are performed in the mass range be-
with large multiplicity and small biggest fragmenan hori-  tween 0.02,, and 0.13\; to avoid finite size effects. The
zontal branch presumably related to undercritical evérds  bond probability value for which the best fit occurs is
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1000 TABLE |. The values ofr vary substantially for all 12 regions
of Fig. 1.
Region A B C D E F
- T 2.8 2.6 2.2 21 2.9 25
100 Region G H I J K L
T 23 2.2 2.6 2.75 2.3 23

Max. Fragment

>;n(p;) the total number of events in the rectangle. The right
panel of Fig. 2 shows that this distribution is very broad
indeed, and that the mix contains events coming from very
different bond activation probabilities.

To see if thep, variation is related to the relative position
of the event in the Campi plot, we further divide the rect-
0 0 10 angle in 12 regions, as shown in the insert of Fig. 1, and

M, calculate the bond probability distribution for each of these
' regions. Table | shows the values®othus obtained, and Fig.

FIG. 1. Campi plot of percolation data produced with almost 23 some typical probability distributions. As we can see the
million breakups of a & 66 grid at several breakup probabilities. mixing is always high and the values ofvary substantially
The central rectangular region shows the cut used to select neandependent of the relative position in the Campi plot. The
critica} events. The inset shows the subdivision of the central regiog|ection rule used appears not to reduce the mixing of non-
used in the text. critical events.

But the effect of the cut is even more troublesome. If a
p.(6)=0.32+0.01 and the corresponding critical exponentCampi plot is produced usingnly p. (i.e., with the probabil-
is r=2.19+0.02, both quite consistent with previous ity that produces the critical power-law mass distribujon
calculations. the cut introduces large deviations in the expected critical

We now proceed to study the effects of the event selectomass distribution. The value of obtained in such a case of
The Campi plot resulting from the percolation data is showrcritical but cut-selectedevents is again too bigr=2.3. Ap-
in Fig. 1 along with a rectangular region used as an evenparently, the cut produces a biased exclusion of certain com-
selector in the references mentioned before. The left panel gfonents of the mass distributions which are needed to yield
Fig. 2 shows the mass distribution of the events contained ithe correct power-law distribution.
the central rectangle. The corresponding critical exponent is In summary, the usage of a cut not only does not help to
7=2.3+0.02, quite a distance away from the true value cal+educe the existingand unavoidablemixing of critical and
culated before. The origin of this discrepancy can be foundoncritical events, but it also disturbs the mass distribution in
by inspecting the bond probability distribution of the eventsan uncontrollable way. Many other cuts were also explored,
selected by the cut. and although some cases led to bett&s, specially those

The bond probability distribution can defined &4 increasing the upper limit of the rectangle, none yielggd
=n(p;)/Z;n(p;) with n(p;) representing the number of
events with p,=p; present in the sample selected, and . . . .
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FIG. 2. Mass distributiottleft pane) and distribution of breakup
probabilities (right panel of percolation events contained in the FIG. 3. Typical bond probability distribution in some of the
central rectangle of previous figure. regions of the central rectangle.
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FIG. 4. Left panel: mass distribution and the power-law fit from 10 . s
the bin with the best fit. The critical exponent is=2.19+0.02. 1 10
Right panel: distribution of bond-activation probabilitiEs. M,

FIG. 5. Campi plot with all the critical events from the perco-
distributions withp, higher than 20%(For other deficien- lation data(dark circle$, and the events in the critical multiplicity
cies of the Campi plot see R4fl8].) bin (white circles. Critical events are distributed over the whole

In view of this, an event selection method other than thgegion, including outside the elbow region. Events in the multiplic-
used cuts must be implemented. The ultimate goal is to b#y bin sampled by the bin-and-fit rule also have a wide spread.
able to extract critical breakups from a mixiure of events. p., the bin that produced the closest critical multiplicity,
and since these critical events produce a power-law mass "¢’ ST i

Lo " o contains a narrower distribution &f; with a much reduced
distribution at a preferredritical multiplicity, an approach L " .
R : ; mixing of noncritical events than other bins.
based on multiplicity selection, as proposed in Ref], . : ) .

- D : To underline this last result, Fig. 5 shows a Campi plot
seems to be more promising. The underlying idea is to re- . o . .

. . g with all the critical events produced in the percolation exer-
duce the volume of dafanixed eventswith a minimum loss cise (dark circle3 at py— alona with those events
of critical information by classifying the events in multiplic- sampled in by the bin?abnd?fcit, roce%u(white circles for
ity bins, and then finding the multiplicity bin which produces :p Just gs in the wide distF;ibution of the critical events
the best one-parameter fit, i.e., the critical multiplicity. The Pb=Pe-

procedure can be expected to work as Elliot and co-worker xplains the failure of the cut selection, the wide coverage of
have managed to show that the total multiplicity is mono- e sampled events explains the goodness of the bin-and-fit

tonically connected to the bond-activation probabilities in the”‘"e' . . .
In conclusion, the selection of events using cuts on the

case of percolatiofil9]. (We have also verified this for our Campi scatter plot does not reduce the relative number of

calculations and have observed a small multiplicity . ST
- noncritical events and perturbs the mass distribution in an
deviation) . . DD O
undesirable way. Sorting events by multiplicity bins and se-

The results of this multiplicity binning and fitting proce- . . )
dure is shown in Fig. 4 for the percolation calculations pre-IeCtIng the one that gives the best one-parameter fit, not only

sened belore. The it panl of Fig. & shoi e mass GEESTS 0 Ge TUch e st ., everts Wil 2 e

tribution from the bin that produced the best power law fit,d g'f d methodol k

and the power-law curve that resulted from the fit. The value efined methodology.

obtained for the critical exponents 1s=2.19+0.02 in exact This work was supported by the Universidad de Buenos

agreement with the true value. Aires (Grant No. TW98 and the National Science Founda-
To understand why this procedure yields better results fotion (Grant No. PHY-96-00038 J.A.L. acknowledges the

7, the right panel of Fig. 4 shows the distribution of bond- hospitality of the Universidad de Buenos Aires, and C.O.D.

activation probabilitied?; . As evidenced by the sharp peak that of the University of Texas at El Paso.
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