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Abstract We present numerical predictions for the shape of the pairinguict
tions in harmonically trapped atomft.i with two spin projections, based on the
fluiddynamical description of cold fermions with pairing intetians. In previ-
ous works it has been shown that when the equilibrium of a synemaixture
is perturbed, the linearised fluiddynamic equations decougpetivo sets, one
containing the sound mode of fermion superfluids and the otleguadiring mode.
The latter corresponds to oscillations of the modulus of thepiex gap and is
driven by the kinetic energy densities of the particles andhefairs. Assuming
proportionality between the heat flux and the energy gradikatparticle kinetic
energy undergoes a diffusive behavior and the diffusion paemnsethe key pa-
rameter for the relaxation time scale. We examine a possiblesrafigalues for
this parameter and find that the shape of the pairing osciti&icather insensitive
to the precise value of the transport coefficient. Moreover, gieng fluctuation
is largely confined to the center of the trap, and the energlgeoptiring mode is
consistent with the magnitude of the equilibrium gap.

PACS numbers: 033.75.Ss,05.30.Fk,67.85.Lm

1 Introduction

Recently, we presented a fluiddynamical formulation for the omotf trapped
fermions with two spin species, starting from the equations ofiondEOM’s)
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of the particle field operators driven by a Hamiltonian that idelsia zero range
interaction between the different spins. The above EOM’s ane dpplied to the
derivation of a coupled system of dynamical equations for tresiy fields asso-
ciated to particle number, current and kinetic energies of spehies, plus those
associated to pair, pair current and pair kinetic energy,iwitie mean field ap-
proach. It is interesting to note that the fluiddynamical descript&nét a mere
reformulation of standard quantum hydrodynamics (segeRef. 2), where the
leading quantities are the particle density and the gradiethiegbhase of the con-
densate wave function . The rigorous derivation of the hierarchyorhents of the
particle and pair densities, together with the tools to trtmehany desired level,
has been reviewed in Ref. 3 (hereafter denoted as |). The EOM’s bexclosed
system called the Extended Superfluid Thomas—Fermi appraeim@STF), af-
ter selecting a local equation of state (EOS) to represent tfiehbrder moment
whose microscopic description has been resigned.

In that previous work we have examined the dynamics of fluctoatio ho-
mogeneous fermion matter, showing that the fluiddynamical freomtains the
characteristic modes put forward by Anderé@md Bogoliubov, discussee.g,
by Leggett in Ref. 6. These modes are 1) the gapless sound mdeenabn
superfluids and 2) the nonpropagating pairing vibration, wittrgy at zero mo-
mentum close to the pairing gap. Since the latter involvestieenal dynamics of
the pairs, it cannot be reached within the traditional hydrodyinal treatment of
superfluids that yields phonons as unique longwavelengtite¢ions.

In general, the fluiddynamical description consists of six tedipquations in
partial derivatives and, consequently, is rather complex plyato large ampli-
tude dynamics of trapped fermions. By contrast, small ampliasddlations can
be boarded at a moderate computational cost, since the lied&{BM'’s decouple
into two sets, each with three equations, one containingribagation of sound
and the other the pairing oscillation. In | we have studieddditéon to the equi-
librium densities and gap profiles for an unpolarized fermion systiee nature of
the sound mode and its associated new magnitude, the paintwshewn to be
clearly different from the superfluid current that derives from the gradiéthe
superfluid order parameter.

In this work we discuss typical results for the pairing fluctuadidescribed by
the second system of EOM’s.

2 Abridged formalism of fermion fluiddynamics

Let us briefly recall the derivation of fermion fluiddynamics (FD)described in
detail in I. We propose a zero—temperature grand potential opdoatfarmions
with different spin projections = + interacting with a zero range force, in num-
bersNy subject to harmonic potentials; (r)
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In terms of thes-wave scattering length, the strength of the two body coupling
is g = 4nh?a/m.

The one-body density, current and kinetic energy matrices fdn &amion
species are expectation values in the many-body state,

Pa(r.r') = (Pa(r,r')) = (Wi(r) Ws(r)) )

jor.0') = (5 (0~ 0) Bo(r, ") @
2
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The pair density is
K(r,r') = (W () ¥-(r)) (5)

with the pair current and pair kinetic energy operajgrandt, defined as above
with gradients operating upad(r,r’). The coupled EOM’s for the above matrices
are derived starting from
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and its Hermitian conjugate. In order to reach a description ing@fmpace—time
fields, we select the diagonal terms of the matrices, in othedsvave take the
limit for r — r’. Keeping in mind that the pair density diverges in this limite
has to select the regular partr) on the diagonal of the matrix and introduce the
gap field asA(r) = —gk(r). The FD scheme in terms of the particle, momentum
and kinetic energy densities of the fermion species, and abitier parametex
and its first two moments can be found in |, as well as the critericinutocate
the hierarchy at the kinetic energy level and the evaluaticghefinknown higher
moment by using a local density approximation. Here we onlytroerthat as

in classical hydrodynamics, the EOM for the particle kinetiergy contains the
divergence of the heat flojy. We shall come back to this point in Section 3.

We have analysed the fluctuations in an homogeneous, urgeaaieérmion
mixture and compared with the earlier predictions derived in thigt of the
Random—Phase Approximation (RPAWe have shown that the linearised EOM’s
can be rearranged in terms of a closed blockdpr dj and dj«, containing the
sound mode of superfluids; = csk, beinges = /p (d/dp)/mthe usual sound
velocity, and a mode that involves the relative motion witaisingle pair, plus
an enslaved set that contains, in addition to the former, theibations of the
pair density and the kinetic energies. gy = 01 = 0, one of the eigenmodes of
the second set is a real gapped mode with energy of dkd&he energy of this
pairing vibration is strongly dependent on the particle kinetiergy in equilib-
rium, which in turn introduces the equilibrium gap to the leadingder; this origin
explains the impossibility of the traditional hydrodynamaé$ermion superfluids
as described.g, in Ref. 2 to account for these massive modes.



3 Pairing vibrations in a trap

When the superfluid is confined by a harmonic trap, the lineari€2dE©M'’s
must be solved numerically. Expressing the departure from equitibof any
field f(r,t) asdf(r,t) =5+ (r)e @+ 5t (r)e~ ¥ the collective fluctuations
in the confined superfluid can be separated as before in densityshaod pure
pairing fluctuations. In this case, the latter correspond tangefip = dj = Jj«
equal to zero as well as the equilibrium currents, and linearsiognd the equi-
librium values of the six fields. The resulting eigenvalue ¢igua read

+100TF = —D-5j$+4—rglm(K5r,f+TK 5k*)
- %ﬁlm(K2 026k* + 0%k k™) 7
2
+hwdk™ = (-fm D2+V—u> SkE +28T¢ (8)
2
+hwdts = <_4I17|m D2+V+gp—u) OTE —g(T0Kk™ + Kk OT)
ﬁZ
= am [O2(V +gp) 6k* —gp O?6k™] 9)

Herep, 1, V and u correspond to the total quantities (summation over both
species). Moreover, we choose to substitute the flux contoibuti] - j; entering
the dynamics of the particle kinetic energy, whirés the kinetic energy current,
by a diffusion term of the forn 02 T, under the assumption that the above current
is proportional to the gradient of the kinetic energy, with sgteriK. Note thatk
is not the thermal conductivity that relates the heat flux toghedient of the
temperature field in standard transport theory; since the systeraschnsidered
are at zero temperature, the origin of difussion is strictly quatabur local
description,k (r) represents the number of pairs at positioim the equilibrium
cloud at zero temperature, théig (r) is the number of pairs that are locally excited
above the fermi surface. This excitation demands a local dviéusow of kinetic
energydj ¢, which to lowest order should be linear in the fluctuation & idter,
with a somehow important strength, here representad.by

A realistic calculation of this coefficient for trapped gasea &snction of the
scattering length, in a frame equivalent to the well-known drteansport theory
at finite temperature, is beyond the scope of our work, so we hamiaed pos-
sible scenarios within a wide range of values of the diffusiorapeeter. In what
follows, every nonfluctuating field in the linearised EOM’s hasib previously
computed in equilibrium in the trapped fluid, by setting thediderivatives in
the ESTF EOM’s given in | equal to zero. Characteristic profilegtierequilib-
rium gap and for both kinetic energy densities are shown in Fig.illustrate the
dependence with the scattering lengtht is clear that pairing effects are consid-
erably dampened away as the interaction weakens, while teékenergy shows
an important decrease at the center of the trap following thevimahaf the den-
sity profile, and its tail reflects the slight enlargement of ¢hkmud size. These
calculations have been performed for a symmetric mixture of N = 0%7°1Li
atoms in a trap with frequen@psc = 817 Hz.
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Fig. 1 Equilibrium configuration forA, 17, and t for a = -114 nm (solid lines) and -50 nm
(dashed lines)n, = [/ (Maxse)] Y2 is the harmonic oscillator size.
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Fig. 2 (color online) Fluctuations of pair density and particleddic energy for the two lowest
energy levels with zero multipolarity (upper and lower daneespectively), for diffusior =
10* (solid lines) and 19(dashed lines) in units ¢f/m.

All fluctuations are written a®g(r) = g(r) Yim(f) with Y, a spherical har-
monic function; the threedimensional eigenvalue equationgheen formulated as
a set of onedimensional coupled equations for the radial amel of a given
multipolarity I. We have chosen to compute, for each physical quarftitthe
guantitiesd feyen= 0f+* +8f~, dfgqq= Of T — df~, that represent straightfor-
wardly the real and imaginary part 6ff. In Fig. 2 we show, foa=-114 nm and
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Fig. 3 (color online) Same as Fig 2 with vanishing.

for two values of the diffusiofik —chosen to qualitatively reproduce the expected
behavior of the pairing frequency- the pairing and particle kirextergy fluctua-
tions for the two lowest energy levels, correspondingtd® and with energielw

= 0.5Rpsc 5.5Rnscfor K = 107h/m, and 1.1Nwyse 1.4Rwpsc for K = 10°A/m.

The strong oscillations of the pair density, with sizeablebtudes near the
trap center (see insets), contrast with the smooth behavioreqgfdhticle kinetic
energy, largely sensitive to the magnitude of the diffusiarameter. However, the
shape of the amplitude of the pair fluctuations remains ratidegendent ok.

In other words, the kinetic energy flow affects the eigenfrequesnaf modes but

it seems to be unimportant in the evolution of the pairs, at leethe small am-
plitude regime. This statement is more strongly illustratedign & where the the
whole kinetic energy fluctuation is removed, without any cegible modification

in the overall aspect adk. Moreover, all scenarios show that the pair fluctuations
smooth away within the scale of the traps ano, Wwhereas the equilibrium profiles
occupy the full size of the cloud. On the other hand, the rightpef Fig. 2 shows
that[0O1 becomes negligible as increases, indicating that the system reacts to
arbitrarily large difussion by smothing away the energy flow, sécaprevent an
ultraviolet catastrophe in the spectrum.

Previous results on the pairing modes of the superfluid trappeci@teermi
gas with attractive interaction in the RPA approximafidrave shown that for
moderate values of the scattering lengtiind/or of the number of trapped atoms,
the value of the lowest pairing mode is of the order of the f§aphis result was
obtained in the intrashell regime, where Cooper pairs are formedhmtiveen
atoms with the same radial quantum number, when the coherengthlis much
shorter than the system size. For our trap configuration and euaoflparticles,
we found that fora more negative than -50 nm our system is not in the intrashell
regime; although the frequencies provided by our fluiddynansichéme depend
on the exact value d, for the less interacting systems the lowest pairing mode
is consistent with the intrashell model.

Finally, we mention here that the energies of these pairingastma= —114
nm for not too large values df are comparable to the energy schta,sc This
is due to the relatively high value afand the presence of the trapping potential,
which imposes a clear energy scale for the collective modekeobystem. For
sizableK —above 16h/m- these energies become comparable to twice the gap
magnitude at the trap center.



4 Conclusions

The present study aims at shedding light on the pairing dyrawfi@ trapped
fermi superfluid in the weak coupling regime, in the spirit of meaitdfiheory,
here mapped onto a an extended hydrodynamical scheme, thainsothe first
three moments of the pair density together with those of thiégadensity. Our
approach differs largely from.g, the study of large amplitude pairing correlations
in an homogeneous, unitary fermi gas, where the pairing modes clteléuf.
Within our fluiddynamical description we can clarify the role bétparticle ki-
netic energy in an equilibrated cloud, that enters the eideeveguation at the
same level as the energy eigenvalue (cf. Egs. (7) to (9), and tletikienergy
fluctuations, that apparently play a minor role in the pair dyita, at least for
small amplitude oscillations and for the lowest-lying modg&iace the main fea-
tures of the structure and energetics of the pair fluctuationsegreduced setting
the kinetic energy oscillations equal to zero, it is possibleterpret that we are
in the presence of an intrinsic, pure pairing mode, that expresssects of the
internal dynamics of the pairs which are absent in the standardufation of
syperfluid hydrodynamics.
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