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Abstract We present numerical predictions for the shape of the pairing fluctua-
tions in harmonically trapped atomic6Li with two spin projections, based on the
fluiddynamical description of cold fermions with pairing interactions. In previ-
ous works it has been shown that when the equilibrium of a symmetric mixture
is perturbed, the linearised fluiddynamic equations decouple into two sets, one
containing the sound mode of fermion superfluids and the other the pairing mode.
The latter corresponds to oscillations of the modulus of the complex gap and is
driven by the kinetic energy densities of the particles and of the pairs. Assuming
proportionality between the heat flux and the energy gradient, the particle kinetic
energy undergoes a diffusive behavior and the diffusion parameter is the key pa-
rameter for the relaxation time scale. We examine a possible range of values for
this parameter and find that the shape of the pairing oscillation is rather insensitive
to the precise value of the transport coefficient. Moreover, the pairing fluctuation
is largely confined to the center of the trap, and the energy of the pairing mode is
consistent with the magnitude of the equilibrium gap.

PACS numbers: 033.75.Ss,05.30.Fk,67.85.Lm

1 Introduction

Recently, we presented a fluiddynamical formulation for the motion of trapped
fermions with two spin species, starting from the equations of motion (EOM’s)
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of the particle field operators driven by a Hamiltonian that includes a zero range
interaction between the different spins. The above EOM’s are then applied to the
derivation of a coupled system of dynamical equations for the density fields asso-
ciated to particle number, current and kinetic energies of eachspecies, plus those
associated to pair, pair current and pair kinetic energy, within the mean field ap-
proach1. It is interesting to note that the fluiddynamical description is not a mere
reformulation of standard quantum hydrodynamics (seei.e., Ref. 2), where the
leading quantities are the particle density and the gradient ofthe phase of the con-
densate wave function . The rigorous derivation of the hierarchy ofmoments of the
particle and pair densities, together with the tools to truncate at any desired level,
has been reviewed in Ref. 3 (hereafter denoted as I). The EOM’s becomea closed
system called the Extended Superfluid Thomas–Fermi approximation (ESTF), af-
ter selecting a local equation of state (EOS) to represent the higher order moment
whose microscopic description has been resigned.

In that previous work we have examined the dynamics of fluctuations in ho-
mogeneous fermion matter, showing that the fluiddynamical framecontains the
characteristic modes put forward by Anderson4 and Bogoliubov5, discussede.g.,
by Leggett in Ref. 6. These modes are 1) the gapless sound mode offermion
superfluids and 2) the nonpropagating pairing vibration, with energy at zero mo-
mentum close to the pairing gap. Since the latter involves theinternal dynamics of
the pairs, it cannot be reached within the traditional hydrodynamical treatment of
superfluids that yields phonons as unique longwavelength excitations.

In general, the fluiddynamical description consists of six coupled equations in
partial derivatives and, consequently, is rather complex to apply to large ampli-
tude dynamics of trapped fermions. By contrast, small amplitudeoscillations can
be boarded at a moderate computational cost, since the linearised EOM’s decouple
into two sets, each with three equations, one containing the propagation of sound
and the other the pairing oscillation. In I we have studied, in addition to the equi-
librium densities and gap profiles for an unpolarized fermion system, the nature of
the sound mode and its associated new magnitude, the pair current, shown to be
clearly different from the superfluid current that derives from the gradient of the
superfluid order parameter.

In this work we discuss typical results for the pairing fluctuations described by
the second system of EOM’s.

2 Abridged formalism of fermion fluiddynamics

Let us briefly recall the derivation of fermion fluiddynamics (FD) asdescribed in
detail in I. We propose a zero–temperature grand potential operatorfor fermions
with different spin projectionsσ = ± interacting with a zero range force, in num-
bersNσ subject to harmonic potentialsVσ (r)

Ω̂ =
∫

dr ∑
σ

[

−
h̄2

2m
Ψ †

σ (r)∇2Ψσ (r)+ [Vσ (r)−µσ ] Ψ †
σ (r)Ψσ (r)

]

+ g
∫

dr Ψ †
+(r)Ψ†

−(r)Ψ−(r)Ψ+(r) (1)
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In terms of thes–wave scattering lengtha, the strength of the two body coupling
is g = 4πh̄2a/m.

The one-body density, current and kinetic energy matrices for each fermion
species are expectation values in the many–body state,

ρσ (r , r ′) = 〈 ˆρσ (r , r ′)〉 = 〈Ψ†
σ (r ′)Ψσ (r)〉 (2)

jσ (r , r ′) = 〈
h̄

2mı
(∇−∇′) ρ̂σ (r , r ′)〉 (3)

τσ (r , r ′) = 〈
h̄2

2m
∇ ·∇′ ρ̂σ (r , r ′)〉 (4)

The pair density is

κ(r , r ′) = 〈Ψ+(r)Ψ−(r ′)〉 (5)

with the pair current and pair kinetic energy operatorsjκ andτκ defined as above
with gradients operating uponκ(r , r ′). The coupled EOM’s for the above matrices
are derived starting from

ıh̄
∂Ψσ (r)

∂ t
=

[

−
h̄2

2m
∇2 +[Vσ (r)−µσ ]+gΨ†

−σ (r)Ψ−σ (r)
]

Ψσ (r) (6)

and its Hermitian conjugate. In order to reach a description in terms of space–time
fields, we select the diagonal terms of the matrices, in other words we take the
limit for r −→ r ′. Keeping in mind that the pair density diverges in this limit, one
has to select the regular partκ(r) on the diagonal of the matrix and introduce the
gap field as∆(r) = −gκ(r). The FD scheme in terms of the particle, momentum
and kinetic energy densities of the fermion species, and of theorder parameterκ
and its first two moments can be found in I, as well as the criterion totruncate
the hierarchy at the kinetic energy level and the evaluation ofthe unknown higher
moment by using a local density approximation. Here we only mention that as
in classical hydrodynamics, the EOM for the particle kinetic energy contains the
divergence of the heat flowj τ . We shall come back to this point in Section 3.

We have analysed the fluctuations in an homogeneous, unpolarized fermion
mixture and compared with the earlier predictions derived in the spirit of the
Random–Phase Approximation (RPA)4. We have shown that the linearised EOM’s
can be rearranged in terms of a closed block forδρ , δ j andδ jκ , containing the
sound mode of superfluidsω1 = csk, beingcs =

√

ρ (∂ µ/∂ρ)/m the usual sound
velocity, and a mode that involves the relative motion withina single pair, plus
an enslaved set that contains, in addition to the former, the perturbations of the
pair density and the kinetic energies. Forδρ = δτ = 0, one of the eigenmodes of
the second set is a real gapped mode with energy of order∆ . The energy of this
pairing vibration is strongly dependent on the particle kineticenergy in equilib-
rium, which in turn introduces the equilibrium gap to the leadingorder; this origin
explains the impossibility of the traditional hydrodynamicsof fermion superfluids
as describede.g., in Ref. 2 to account for these massive modes.
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3 Pairing vibrations in a trap

When the superfluid is confined by a harmonic trap, the linearised FD EOM’s
must be solved numerically. Expressing the departure from equilibrium of any
field f (r , t) asδ f (r , t) = δ f +(r)eıωt +δ f−(r)e−ıωt , the collective fluctuations
in the confined superfluid can be separated as before in density modes and pure
pairing fluctuations. In this case, the latter correspond to setting δρ = δ j = δ jκ
equal to zero as well as the equilibrium currents, and linearisingaround the equi-
librium values of the six fields. The resulting eigenvalue equations read

±ıωδτ± = −∇ ·δ j±τ +
4g
m

Im(κ δτ±κ + τκ δκ±)

−
gh̄
m

Im(κ2 ∇2δκ± +∇2κ δκ∗±) (7)

±h̄ω δκ± =

(

−
h̄2

4m
∇2 +V −µ

)

δκ± +2δτ±κ (8)

±h̄ω δτ±κ =

(

−
h̄2

4m
∇2 +V +gρ −µ

)

δτ±κ −g(τ δκ± +κ δτ±)

−
h̄2

4m

[

∇2(V +gρ)δκ±−gρ ∇2δκ±
]

(9)

Hereρ,τ , V and µ correspond to the total quantities (summation over both
species). Moreover, we choose to substitute the flux contribution−∇ · j τ entering
the dynamics of the particle kinetic energy, wherej τ is the kinetic energy current,
by a diffusion term of the formK ∇2 τ , under the assumption that the above current
is proportional to the gradient of the kinetic energy, with strength K. Note thatK
is not the thermal conductivity that relates the heat flux to thegradient of the
temperature field in standard transport theory; since the systems here considered
are at zero temperature, the origin of difussion is strictly quantal. In our local
description,κ(r) represents the number of pairs at positionr in the equilibrium
cloud at zero temperature, thusδκ(r) is the number of pairs that are locally excited
above the fermi surface. This excitation demands a local diffusive flow of kinetic
energyδ j τ , which to lowest order should be linear in the fluctuation of the latter,
with a somehow important strength, here represented byK.

A realistic calculation of this coefficient for trapped gases asa function of the
scattering length, in a frame equivalent to the well–known one of transport theory
at finite temperature, is beyond the scope of our work, so we have examined pos-
sible scenarios within a wide range of values of the diffusion parameter. In what
follows, every nonfluctuating field in the linearised EOM’s has been previously
computed in equilibrium in the trapped fluid, by setting the time derivatives in
the ESTF EOM’s given in I equal to zero. Characteristic profiles forthe equilib-
rium gap and for both kinetic energy densities are shown in Fig. 1to illustrate the
dependence with the scattering lengtha. It is clear that pairing effects are consid-
erably dampened away as the interaction weakens, while the kinetic energy shows
an important decrease at the center of the trap following the behavior of the den-
sity profile, and its tail reflects the slight enlargement of thecloud size. These
calculations have been performed for a symmetric mixture of N = 1.7 104 6Li
atoms in a trap with frequencyωosc = 817 Hz.
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Fig. 1 Equilibrium configuration for∆ , τκ and τ for a = -114 nm (solid lines) and -50 nm
(dashed lines).aho = [h̄/(mωosc)]

1/2 is the harmonic oscillator size.
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Fig. 2 (color online) Fluctuations of pair density and particle kinetic energy for the two lowest
energy levels with zero multipolarity (upper and lower panels, respectively), for diffusionK =
104 (solid lines) and 102 (dashed lines) in units of̄h/m .

All fluctuations are written asδg(r) = g(r)Ylm(r̂) with Ylm a spherical har-
monic function; the threedimensional eigenvalue equations are then formulated as
a set of onedimensional coupled equations for the radial amplitudes of a given
multipolarity l . We have chosen to compute, for each physical quantityf , the
quantitiesδ feven= δ f + + δ f−, δ fodd = δ f + − δ f−, that represent straightfor-
wardly the real and imaginary part ofδ f . In Fig. 2 we show, fora = -114 nm and
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Fig. 3 (color online) Same as Fig 2 with vanishingδτ.

for two values of the diffusionK –chosen to qualitatively reproduce the expected
behavior of the pairing frequency– the pairing and particle kinetic energy fluctua-
tions for the two lowest energy levels, corresponding tol = 0 and with energies̄hω
= 0.5 h̄ωosc, 5.5h̄ωosc for K = 102 h̄/m, and 1.1h̄ωosc, 1.4h̄ωosc for K = 104 h̄/m.

The strong oscillations of the pair density, with sizeable amplitudes near the
trap center (see insets), contrast with the smooth behavior of the particle kinetic
energy, largely sensitive to the magnitude of the diffusion parameter. However, the
shape of the amplitude of the pair fluctuations remains rather independent onK.
In other words, the kinetic energy flow affects the eigenfrequencies of modes but
it seems to be unimportant in the evolution of the pairs, at least in the small am-
plitude regime. This statement is more strongly illustrated in Fig. 3, where the the
whole kinetic energy fluctuation is removed, without any noticeable modification
in the overall aspect ofδκ . Moreover, all scenarios show that the pair fluctuations
smooth away within the scale of the trap,r ≈ aho, whereas the equilibrium profiles
occupy the full size of the cloud. On the other hand, the right panel of Fig. 2 shows
that ∇δτ becomes negligible asK increases, indicating that the system reacts to
arbitrarily large difussion by smothing away the energy flow, so as to prevent an
ultraviolet catastrophe in the spectrum.

Previous results on the pairing modes of the superfluid trapped atomic Fermi
gas with attractive interaction in the RPA approximation7 have shown that for
moderate values of the scattering lengtha and/or of the number of trapped atoms,
the value of the lowest pairing mode is of the order of the gap∆ . This result was
obtained in the intrashell regime, where Cooper pairs are formed only between
atoms with the same radial quantum number, when the coherence length is much
shorter than the system size. For our trap configuration and number of particles,
we found that fora more negative than -50 nm our system is not in the intrashell
regime; although the frequencies provided by our fluiddynamicalscheme depend
on the exact value ofK, for the less interacting systems the lowest pairing mode
is consistent with the intrashell model.

Finally, we mention here that the energies of these pairing modes fora=−114
nm for not too large values ofK are comparable to the energy scaleh̄ωosc. This
is due to the relatively high value ofa and the presence of the trapping potential,
which imposes a clear energy scale for the collective modes ofthe system. For
sizableK –above 104h̄/m– these energies become comparable to twice the gap
magnitude at the trap center.
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4 Conclusions

The present study aims at shedding light on the pairing dynamics of a trapped
fermi superfluid in the weak coupling regime, in the spirit of mean field theory,
here mapped onto a an extended hydrodynamical scheme, that contains the first
three moments of the pair density together with those of the particle density. Our
approach differs largely frome.g., the study of large amplitude pairing correlations
in an homogeneous, unitary fermi gas, where the pairing modes are included8.
Within our fluiddynamical description we can clarify the role of the particle ki-
netic energy in an equilibrated cloud, that enters the eigenvalue equation at the
same level as the energy eigenvalue (cf. Eqs. (7) to (9), and the kinetic energy
fluctuations, that apparently play a minor role in the pair dynamics, at least for
small amplitude oscillations and for the lowest–lying modes. Since the main fea-
tures of the structure and energetics of the pair fluctuations arereproduced setting
the kinetic energy oscillations equal to zero, it is possibleto interpret that we are
in the presence of an intrinsic, pure pairing mode, that expressesaspects of the
internal dynamics of the pairs which are absent in the standard formulation of
syperfluid hydrodynamics.
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