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Abstract

We consider the singular behaviour of one-loop QCD matrix elements when several external partons become simul
parallel. We present a new factorization formula that describes the singular collinear behaviour directly in colour sp
collinear singularities are embodied in process-independent splitting matrices that depend on the momenta, flavo
and colours of the collinear partons. We give the general structure of the infrared and ultraviolet divergences of the
splitting matrices. We also present explicit one-loop results for the triple collinear splitting,q → qQ̄Q, of a quark and a quark
antiquark pair of different flavours. The one-loop triple collinear splitting is one of the ingredients that can be used to c
the evolution of parton distributions at the next-to-next-to-leading order in QCD perturbation theory.
 2004 Published by Elsevier B.V.

The high precision of experiments at past (LEP), present (HERA, Tevatron) and future (LHC,e+e− linear
colliders) particle colliders demands a corresponding precision in theoretical predictions. As for perturbativ
predictions, this means calculations beyond the next-to-leading order (NLO) in the strong couplingαS. Recent
years have witnessed much progress in this field (see Ref. [1] and references therein). In particular, a g
of work has been devoted to study the properties of QCD scattering amplitudes in the infrared (soft and c
region [2–12].

The understanding of the infrared singular behaviour of multiparton QCD amplitudes is a prerequisite
evaluation of infrared-finite cross sections (and, more generally, infrared- and collinear-safe QCD observ
the next-to-next-to-leading order (NNLO) in perturbation theory [1]. The information on the infrared prop
of the amplitudes have also been exploited to compute large (logarithmically enhanced) perturbative term
resum them to all perturbative orders [13]. The investigation of these properties is also valuable for improv
physics content of Monte Carlo event generators (see, e.g., Ref. [14]). In addition, the results of these stud
to be useful beyond the strict QCD context, since they can provide hints on the structure of highly symmetri
theories at infinite orders in the perturbative expansion (see, e.g., Ref. [15]).

✩ Work supported in part by EC 5th Framework Programme under contract number HPMF-CT-2000-00989.
E-mail addresses: stefano.catani@fi.infn.it (S. Catani), deflo@df.uba.ar (D. de Florian), german.rodrigo@cern.ch (G. Rodrigo).
0370-2693/$ – see front matter 2004 Published by Elsevier B.V.
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In this Letter we consider the collinear limit of multiparton QCD amplitudes at one-loop order. We pre
general factorization formula, which is valid directly in colour space, and discuss some properties of its in
divergent contributions. These results apply to the multiple collinear limit of an arbitrary number of QCD pa
As an example of application beyond the double collinear limit, we present the result of the explicit evalua
a triple collinear configuration of three quarks. Besides its interest within the general framework outlined
our study of the one-loop triple collinear limit has specific relevance to the NNLO calculation of the Alta
Parisi kernels that control the scale evolution of parton densities and fragmentation functions [16]. This form
NNLO computation is being completed [17] by using traditional methods. Kosower and Uwer [18] have pro
to exploit collinear factorization at the amplitude level as an alternative method to perform the NNLO calc
of the Altarelli–Parisi kernels. To this purpose, the one-loop triple collinear splitting is one of the nec
ingredients. Two other ingredients are the tree-level quadruple collinear splitting [11] and the two-loop
collinear splitting. A detailed discussion of the multiple collinear limit and of the results presented in this
will appear in a forthcoming paper [19].

We consider a generic scattering process involving final-state QCD partons (massless quarks and
with momentap1,p2, . . . . Non-QCD partons(γ ∗,Z0,W±, . . .) are always understood. The corresponding ma
element is denoted by

(1)Mc1,c2,...;s1,s2,...
a1,a2,... (p1,p2, . . .),

where{c1, c2, . . .}, {s1, s2, . . .} and {a1, a2, . . .}, are, respectively colour, spin and flavour indices. To take
account the colour and spin structures, we use the notation of Refs. [3,20]. We introduce an orthonorm
{|c1, c2, . . .〉 ⊗ |s1, s2, . . .〉} in colour+ spin space, in such a way that the matrix element in Eq. (1) can be w
as

(2)Mc1,c2,...;s1,s2,...
a1,a2,... (p1,p2, . . .) ≡ (〈c1, c2, . . .| ⊗ 〈s1, s2, . . .|)∣∣Ma1,a2,...(p1,p2, . . .)

〉
.

Thus|Ma1,a2,...(p1,p2, . . .)〉 is a vector in colour+ spin space. It is important to specify that the matrix eleme
M(p1,p2, . . .) that we are considering are physical ones. Their external legs are on shell(p2

i = 0) and have
physical spin polarizations.

The matrix elementM(p1,p2, . . .) can be evaluated in QCD perturbation theory as a power series expa
(i.e., loop expansion) in the strong couplingαS (αS = g2

S/(4π)). Throughout the Letter we are mainly interested
the expansion up to one-loop order. We write

(3)M = (gS)q

[
M(0) + αS

2π
M(1) +O

(
α2

S

)]
,

where the overall powerq is integer (q = 0,1,2,3, . . .). In the evaluation of the one-loop amplitudeM(1),
one encounters ultraviolet and infrared singularities that have to be properly regularized. We use dim
regularization ind = 4− 2ε space–time dimensions. The dimensional-regularization scale is denoted byµ.

The multiple collinear limit of the matrix element in Eq. (1) is approached when the momentap1, . . . , pm of m

partons become parallel. This implies that all the particle subenergiessij = (pi + pj )2, with i, j = 1, . . . ,m, are
of the same order and vanish simultaneously. We thus introduce a pair of back-to-back light-like (P̃ 2 = 0, n2 = 0)
momentaP̃ ν andnν , and we write

(4)(p1 + · · · + pm)ν = P̃ ν + s1...mnν

2n · P̃
, s1...m = (p1 + · · · + pm)2,

wheres1...m is the total invariant mass of the system of collinear partons. In the collinear limit, the vectP̃ ν

denotes the collinear direction, and we havepν
i → ziP̃

ν , where the longitudinal-momentum fractionszi are

(5)zi = n · pi

˜
n · P



S. Catani et al. / Physics Letters B 586 (2004) 323–331 325

itly

el-
ur is

g vi-
red
ization
orization

litudes

at
ts to
matrix
nd
e
ng

he tree-
are
ur) of the

have

ed in the
ormula
and, in
ritten

splitting

the
r

vel
and fulfil the constraint
∑m

i=1 zi = 1. To be definite, in the rest of the Letter we limit ourselves to explic
considering the collinear limit in the time-like region (sij > 0,1 > zi > 0).

In the limit when the m parton momentap1, . . . , pm become simultaneously parallel, the matrix
ement M(p1, . . . , pm,pm+1, . . .) becomes singular. At the tree level, the dominant singular behavio
M(0)(p1, . . . , pm,pm+1, . . .) ∼ (1/

√
s )m−1, wheres generically denotes a two-particle subenergysij , or a three-

particle subenergysijk , and so forth. At one-loop order, this singular behaviour is simply modified by scalin
olation,M(1)(p1, . . . , pm,pm+1, . . .) ∼ (1/

√
s )m−1(s/µ2)−ε . The dominant singular behaviour can be captu

by universal (process-independent) factorization formulae [5–12]. At the matrix element level, the factor
formulae are usually presented upon decomposition in colour subamplitudes. Nonetheless, collinear fact
is valid directly in colour space [19], and we present the factorization formulae in this more general form.

The colour-space factorization formulae for the multiple collinear limit of the tree-level and one-loop amp
M(0) andM(1) are:

(6)
∣∣M(0)

a1,...,am,am+1,...(p1, . . . , pm,pm+1, . . .)
〉� Sp(0)

a1...am
(p1, . . . , pm)

∣∣M(0)
a,am+1,...(P̃ ,pm+1, . . .)

〉
,

∣∣M(1)
a1,...,am,am+1,...(p1, . . . , pm,pm+1, . . .)

〉� Sp(1)
a1...am

(p1, . . . , pm)
∣∣M(0)

a,am+1,...(P̃ ,pm+1, . . .)
〉

(7)+ Sp(0)
a1...am

(p1, . . . , pm)
∣∣M(1)

a,am+1,...(P̃ ,pm+1, . . .)
〉
.

These factorization formulae are valid in any numberd = 4 − 2ε of space–time dimensions or, equivalently,
any order in theε expansion aroundd = 4. The only approximation involved on the right-hand side amoun
neglecting terms that are less singular in the multiple collinear limit. Eqs. (6) and (7) relate the original
element (on the left-hand side) withm + k partons (wherek is arbitrary) to a matrix element (on the right-ha
side) with 1+ k partons. The latter is obtained from the former by replacing them collinear partons with a singl
parent parton, whose momentum isP̃ and whose flavoura is determined by flavour conservation in the splitti
processa → a1 + · · · + am.

The process dependence of the factorization formulae is entirely embodied in the matrix elements. T
level and one-loop factorsSp(0) andSp(1), which encode the singular behaviour in the multiple collinear limit,
universal (process-independent). They depend on the momenta and quantum numbers (flavour, spin, colo
m partons that arise from the collinear splitting. According to the notation in Eq. (2),Sp is a matrix in colour+spin
space, and we name it thesplitting matrix. Making the dependence on the colour and spin indices explicit, we

(8)Sp(c1,...,cm;s1,...,sm)(ca,sa)
a1...am

= (〈c1, . . . , cm| ⊗ 〈s1, . . . , sm|)Spa1...am

(|ca〉 ⊗ |sa〉),
so that in Eqs. (6) and (7)Sp(p1, . . . , pm) acts onto the colour and spin indices ({c1, . . . , cm; s1, . . . , sm}) of them

collinear partons on the left and onto the colour and spin indices ({ca; sa}) of the parent parton on the right.
The essential difference between Eqs. (6) and (7) and the known collinear-factorization formulae discuss

literature [5,9] regards the role of the colour quantum number. The derivation of the tree-level factorization f
(6) in colour space is quite straightforward [7]. Its one-loop extension, Eq. (7), is less straightforward
particular, it exploits colour coherence of QCD radiation [19]. The factorization formulae of Refs. [5,9] are w
in terms of colour subamplitudes and process-independent splitting amplitudes denoted by Split(p1, . . . , pm).
Generically speaking, the splitting amplitudes Split can be regarded as colour-stripped components of the
matricesSp. For example, in the case of the tree-level collinear splittingg → q1 + q̄2, the splitting matrix is

(9)Sp(0)(β1,β2)(c)
q1q̄2

(p1,p2) = µεtc
β1β2

1

s12
ū(p1)/ε∗(P̃ )v(p2),

where tc (c = 1, . . . ,N2
c − 1) are theSU(Nc) colour matrices in the fundamental representation (we use

normalization Tr(tatb) = TRδab, TR = 1/2),u,v are customary Dirac spinors,ε is the physical polarization vecto
of the parent gluon, and the corresponding spin indices are understood. The splitting amplitude Split(0)

q1q̄2
is obtained

from Eq. (9) by simply removing the colour factortc
β β . Analogous proportionality relations apply to any tree-le
1 2
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and one-loop splitting processa → a1 + a2. When the splitting involvesm � 3 collinear partons, splitting matrice
and splitting amplitudes are not simply proportional. Nonetheless, the two formulations of collinear factor
are related by gauge invariance and colour algebra, and each formulation has its own practical advantage

Several general properties of the one-loop splitting amplitudes Split(1)(p1,p2) and, consequently, o
Sp(1)(p1,p2) were discussed in Refs. [5,8,10]. Here, we present an additional general property ofSp(1)(p1, . . . , pm).

When computed ind = 4 − 2ε space–time dimensions, the one-loop amplitudeM(1) and, hence,Sp(1) have
ultraviolet and infrared divergences that show up asε-poles in the expansion around the pointε = 0. To make the
divergent behaviour explicit, we write the one-loop contribution to the splitting matrix as

(10)Sp(1)(p1, . . . , pm) = Sp(1)div.(p1, . . . , pm) + Sp(1)fin.(p1, . . . , pm),

whereSp(1)div. behaves as 1/ε2 and Sp(1)fin. is finite whenε → 0. We also recall that different regularizatio
schemes (RS) can actually be implemented within the dimensional-regularization prescription. Two cu
RS are the conventional dimensional-regularization (CDR) scheme [21] and the dimensional-reductio
scheme [22]. The RS dependence of the tree-level and one-loop splitting matricesSp(0) andSp(1) starts atO(ε0)

and atO(1/ε), respectively. In Eq. (10), we defineSp(1)fin. in such a way that it is RS-independent atO(ε0), though
it is still RS-dependent at higher orders in theε-expansion. Therefore,Sp(1)div. contains the full RS-dependence
Sp(1) atO(1/ε2), O(1/ε) andO(ε0).

The divergent part of the one-loop splitting matrix can be evaluated along the lines of Refs. [3,20,24],
result can be expressed in terms of a process-independent factorization formula. We obtain [19]

Sp(1)div.(p1, . . . , pm)

= Γ (1+ ε)Γ 2(1− ε)

(4π)−εΓ (1− 2ε)

1

2

{
1

ε2

m∑
i,j=1(i �=j)

T i · T j

(−sij − i0

µ2

)−ε

+
(−s1...m − i0

µ2

)−ε
[

1

ε2

m∑
i,j=1

T i · T j

(
2− (zi)

−ε − (zj )−ε
)

− 1

ε

(
m∑

i=1

(
γi − εγ̃ RS

i

)− (
γa − εγ̃ RS

a

)− m − 1

2

(
β0 − εβ̃RS

0

))]}

(11)× Sp(0)(p1, . . . , pm),

where we have used the same notation as in Ref. [3]. The colour charge (matrix) of the collinear part
momentumpi is denoted byT i , and colour conservation implies

∑
i T iSp(0) = Sp(0)T a (T a is the colour

charge of the parent parton in the collinear splitting). The flavour coefficientsγi andβ0 areγq = γq̄ = 3CF /2
andγg = β0/2 = (11CA − 2Nf )/6. The flavour coefficients̃γ RS

i and β̃RS
0 are RS-dependent [23]. In particula

γ̃ CDR
i = β̃CDR

0 = 0, while γ̃ DR
q = γ̃ DR

q̄ = CF /2 andγ̃ DR
g = β̃DR

0 /2 = CA/6.

Note that, so far, we have not specified whether the one-loop amplitudesM(1) and splitting matricesSp(1)

are renormalized or unrenormalized quantities. Since the renormalization procedure commutes with the
limit, the factorization formula (7) equally applies to both renormalized and unrenormalized quantities. Ho
the divergent partSp(1)div. explicitly given in Eq. (11) refers to the (charge) unrenormalized splitting matrix (t
αS is the bare QCD coupling). In the curly bracket of Eq. (11), the contribution proportional toβ0 − εβ̃RS

0 is of
ultraviolet origin, and it would disappear by working at the level of renormalized matrix elements and sp
matrices.

It is straightforward to check that Eq. (11) agrees with the divergent behaviour of the known [5,8,10] on
splitting amplitudes for the double collinear limita → a1 + a2. The triple collinear splitting process explicit
considered below provides us with a further check of the general result in Eq. (11).
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At the tree level, the splitting amplitudes are known for all possible partonic channels in the double [25,2
triple [11] collinear limits, and for pure gluonic splitting (g → 4g) also in the quadruple collinear case [11]. In t
double collinear case, the square of the splitting amplitudes gives the leading-order Altarelli–Parisi kerne
The square of the triple collinear splitting amplitudes was computed in Refs. [6,7], and checked in Ref. [11

At the one-loop level, the splitting amplitudes for all partonic channels in the double collinear limit
computed in Refs. [8,10] to all orders inε. In the following we consider the triple collinear limit and, more precis
the collinear splitting processq → q1 + Q̄2 + Q3, whereq andQ denote (massless) quarks of different flavou

We first recall the tree-level splitting matrix for the processq → q(p1) + Q̄(p2) + Q(p3):

(12)Sp(0)(β1,β2,β3)(β)

q1Q̄2Q3
(p1,p2,p3) = µ2ε

∑
c

tc
β3β2

tc
β1β

1

s123s23
ū(p3)γ µv(p2)ū(p1)γ νu(P̃ )dµν(p2 + p3, n),

whereβi (i = 1,2,3) andβ are respectively the colour indices of the final-state fermions and of the parent
and

(13)dµν(k,n) = −gµν + kµnν + nµkν

n · k

is the physical polarization tensor of the gluon with momentumk (nµ is the auxiliary light-like vector introduce
in Eq. (4)).

The square of the splitting matrixSpa1...am
, summed over final-state colours and spins and averaged over c

and spins of the parent parton, defines them-parton splitting function〈P̂a1...am〉, which is a generalization of th
customary (i.e., withm = 2) Altarelli–Parisi splitting function. Fixing the normalization of the tree-level splitt
function〈P̂ (0)

a1...am
〉 by

(14)
〈
P̂ (0)

a1...am

〉= (
s1...m

2µ2ε

)m−1∣∣Sp(0)
a1...am

∣∣2,

from Eq. (12) we have

(15)
〈
P̂

(0)

q1Q̄2Q3

〉= 1

2
CF TR

s123

s23

[
− t2

23,1

s23s123
+ 4z1 + (z2 − z3)2

z2 + z3
+ (

1− 2εδRS)(z2 + z3 − s23

s123

)]
,

where

(16)tij,k ≡ 2
zisjk − zj sik

zi + zj

+ zi − zj

zi + zj

sij ,

which agrees with the result obtained in Refs. [6,7]. The parameterδRS depends on the RS:δCDR = 1 andδDR = 0.
To evaluate the one-loop splitting matrixSp(1)

a1...am
we use a process-independent method [7,9,19]. In the

of the collinear splitting processq → q1 + Q̄2 + Q3, Sp(1)

q1Q̄2Q3
receives a contribution from two different colo

structures:

Sp(1)(β1,β2,β3)(β)

q1Q̄2Q3
(p1,p2,p3) = µ4ε 8π2

s123

{∑
c

tc
β3β2

tc
β1βS(p1,p2,p3)

(17)+
∑
b,c

(
tbtc + tctb

)
β3β2

(
tctb

)
β1β

A(p1,p2,p3)

}
.

The first term in the curly bracket has the same structure as the tree-level contribution in Eq. (12). The
structure of the second term is a new one-loop (quantum) effect.

The one-loop correctionP̂ (1) to the tree-level splitting function is obtained by simply performing
replacement|Sp(0)|2 → (Sp(0))†Sp(1) + (Sp(1))†Sp(0) on the right-hand side of Eq. (14). From Eqs. (12) and (1
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Fig. 1. One-loop diagrams contributing to the antisymmetric component of the splitting matrixSpq1Q̄2Q3
.

we obtain

(18)〈P̂q1Q̄2Q3
〉 = 〈

P̂
(0)

q1Q̄2Q3

〉+ αS

2π

[〈
P̂

(1)(sym.)

q1Q̄2Q3

〉+ 〈
P̂

(1)(an.)
q1Q̄2Q3

〉]+O
(
α2

S

)
.

Note that〈P̂ (0)

q1Q̄2Q3
〉 is symmetric with respect to the exchangep2 ↔ p3 of theQ̄2 andQ3 momenta (see Eq. (15)

Its one-loop correction has, instead, a symmetric component and an antisymmetric component, res
denoted by〈P̂ (1)(sym.)

q1Q̄2Q3
〉 and〈P̂ (1)(an.)

q1Q̄2Q3
〉. The antisymmetric component is entirely produced by the one-loop spl

amplitudeA(p1,p2,p3) on the right-hand side of Eq. (17).
The expression of the splitting amplitudeA(p1,p2,p3) is sufficiently compact to be presented explicitly in th

Letter. We have

A(p1,p2,p3) = −1

2
i

∫
ddq

(2π)d
ū(p3)

[
γ σ (/q + /p2)γ µ

(s2q + i0)
− γ µ(/q + /p3)γ σ

(s3q + i0)

]
v(p2)

(19)× dµν(q,n) dσρ(q + p2 + p3, n)
ū(p1)γ ν(/p1 − /q)γ ρu(P̃ )

(q2 + i0)(t1q + i0)(s23q + i0)
,

where

(20)t1q = (p1 − q)2, siq = (pi + q)2, s23q = (p2 + p3 + q)2.

The first and second contributions in the square bracket originate from the one-loop diagrams depicted in
and (b), respectively.

Note that the expression in Eq. (19) is valid in any RS. It is also valid in any numberd = 4− 2ε of space–time
dimensions or, equivalently, to all orders inε. To make the dependence onε explicit, we have to compute th
d-dimensional integral over the loop momentumq . This computation requires the evaluation of a set of b
one-loop (scalar and tensor) integrals. The corresponding integrands involve, besides the customary
propagators 1/(q2 + i0), additional propagators of the type 1/(n · q), which come from the physical polarizatio
of the virtual gluons (see Eq. (13)). Some of these integrals, which resemble those encountered in axi
calculations, were evaluated by Kosower and Uwer [10] in the context of their calculation of the one-loop
collinear splittinga → a1 + a2. More complicated integrals (higher-point functions) of this type are involve
triple collinear splitting processes. We have computed (to high orders in theε expansion) all the basic one-loo
integrals [19] that appear in any triple collinear splittinga → a1 + a2 + a3. Using these results, we have obtain
explicit expressions up toO(ε0) of the splitting amplitudeA(p1,p2,p3) in Eqs. (17), (19) and of the correspondi
splitting function〈P̂ (1)(an.)

q1Q̄2Q3
〉 in Eq. (18). We limit ourselves to presenting the expression of〈P̂ (1)(an.)

q1Q̄2Q3
〉, since the

expression ofA(p1,p2,p3) has a very similar structure.
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Including terms up toO(ε0), our result for the antisymmetric component of the one-loop splitting function

〈
P̂

(1)(an.)
q1Q̄2Q3

〉= Γ (1+ ε)Γ 2(1− ε)

(4π)−εΓ (1− 2ε)
CF TR

N2
c − 4

4Nc

(−s123− i0

µ2

)−ε

×
({

1

ε2

[((
s23

s123

)−ε

+ 1

)((
z2

z2 + z3

)−ε

−
(

z3

z2 + z3

)−ε

+
(

s13

s123

)−ε

−
(

s12

s123

)−ε)

+
(

s12

s123

)−ε(
z3

z2 + z3

)−ε

−
(

s13

s123

)−ε(
z2

z2 + z3

)−ε]}〈
P̂

(0)

q1Q̄2Q3

〉/
(CF TR)

+
{(

â − s13

s123− s13
b̂

)
ln

(
s13

s123

)
+
(

s23

s123− s23
â − b̂

)
ln

(
s23

s123

)

+ s123s12

s12 + s13 − z1s123

(
z2â − z1b̂

s12(1− z1)
+ â + b̂

s123

)
ln

(
s12z2

s13z3

)
ln

(
s23

s123(z2 + z3)

)

+ (2s12 + s23)â + (s12 − s13)b̂

s12

×
[
ln

(
s13

s123

)
ln

(
s23

s123

)
+ Li2

(
1− s13

s123

)
+ Li2

(
1− s23

s123

)
− π2

6

]
− (2 ↔ 3)

}
+O(ε)

)
(21)+ complex conjugate,

where

(22)â = s123

s23

(
z1s13

s123
+ z1(z1s23 − z2s13 − z3s12)

2(z2 + z3)s12
+ z1s23 + z2s13 − z3s12

2s123

)
,

(23)b̂ = s123

s23

(
z2s23

s123
+ z2(z1s23 − z2s13 + z3s12)

2(z2 + z3)s12
+ z1s23 + z2s13 − z3s12

2s123

)
.

It is quite straightforward to check that the divergent part of the one-loop splitting function in Eq. (21)
agrees with the result obtained by using the general formula in Eq. (11). Note that the double poles 1/ε2 cancel
in Eq. (21), so that the most divergent terms in〈P̂ (1)(an.)

q1Q̄2Q3
〉 are single poles 1/ε. These single poles origina

from the infrared region of the loop integral in Eq. (19). More precisely, they arise when the loop mom
q is soft (q → 0) but not collinear to any of the external momenta. Note also that, up to terms ofO(ε0), the
full RS dependence of〈P̂ (1)(an.)

q1Q̄2Q3
〉 is embodied in the corresponding dependence (see Eq. (15)) of the tree

term 〈P̂ (0)

q1Q̄2Q3
〉 on the right-hand side of Eq. (21). The absence of additional RS-dependent terms (such a

proportional toγ̃ RS
i andβ̃RS

0 in Eq. (11)) atO(ε0) is related to the absence of single poles 1/ε of ultraviolet and
collinear origin, as discussed in the second paper of Ref. [23].

An additional check of our result can be performed by considering the triple collinear limit of known one
matrix elements, such as the matrix element for the processe+e− → q̄qQ̄Q [28,29]. We have evaluated the on
loop splitting amplitude (19) in a spin basis of definite±1 helicities of the quarks and antiquarks. We have t
compared the result with that obtained by directly performing the corresponding collinear limit of the on
helicity amplitudes explicitly presented in Ref. [28] up toO(ε0) (note that the expressions in Ref. [28] refer to
DR scheme). We have found complete agreement.

The splitting functionP̂a1...am controls the singular behaviour in the multiple collinear limit. Moreover, it
have additional singularities (i.e., terms that are not integrable ind = 4 dimensions) in some subregions of t
collinear phase-space. The tree-level splitting function〈P̂ (0)

q1Q̄2Q3
〉 in Eq. (15) is indeed singular when the mome

p2 andp3 are parallel (i.e., when their relative angle is much smaller than the emission angle ofp1) and when
they are simultaneously soft. The singularity whenp2 andp3 are parallel is, instead, absent (to any order in
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s

ce.

for the
ools (in
evaluate

dación
/24 and

3/

rein.
ε expansion [19], and not only atO(ε0)) in the antisymmetric part,〈P̂ (1)(an.)
q1Q̄2Q3

〉, of the one-loop splitting function

The singularity whenp2 andp3 are simultaneously soft is still present in〈P̂ (1)(an.)
q1Q̄2Q3

〉, though its effect vanishe

after integration over the angles ofp2 andp3 because of the antisymmetry with respect to the exchangep2 ↔ p3.
The expression in Eq. (21) shows that〈P̂ (1)(an.)

q1Q̄2Q3
〉 has no other singularities in any subregions of the phase-spa

For the sake of brevity, we have limited ourselves, in this Letter, to presenting a few explicit results
one-loop triple collinear splitting. These results have mainly an illustrative purpose. The method and the t
particular, the one-loop integrals) used to obtain them are sufficient and can be applied straightforwardly to
the one-loop splitting matrix of any splitting processa → a1 + a2 + a3.
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