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Abstract

We consider the singular behaviour of one-loop QCD matrix elements when several external partons become simultaneously
parallel. We present a new factorization formula that describes the singular collinear behaviour directly in colour space. The
collinear singularities are embodied in process-independent splitting matrices that depend on the momenta, flavours, spins
and colours of the collinear partons. We give the general structure of the infrared and ultraviolet divergences of the one-loop
splitting matrices. We also present explicit one-loop results for the triple collinear splijtingg 0 0, of a quark and a quark—
antiquark pair of different flavours. The one-loop triple collinear splitting is one of the ingredients that can be used to compute
the evolution of parton distributions at the next-to-next-to-leading order in QCD perturbation theory.
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The high precision of experiments at past (LEP), present (HERA, Tevatron) and future é'dC,linear
colliders) particle colliders demands a corresponding precision in theoretical predictions. As for perturbative QCD
predictions, this means calculations beyond the next-to-leading order (NLO) in the strong caupliRgcent
years have withessed much progress in this field (see Ref. [1] and references therein). In particular, a great deal
of work has been devoted to study the properties of QCD scattering amplitudes in the infrared (soft and collinear)
region [2-12].

The understanding of the infrared singular behaviour of multiparton QCD amplitudes is a prerequisite for the
evaluation of infrared-finite cross sections (and, more generally, infrared- and collinear-safe QCD observables) at
the next-to-next-to-leading order (NNLO) in perturbation theory [1]. The information on the infrared properties
of the amplitudes have also been exploited to compute large (logarithmically enhanced) perturbative terms and to
resum them to all perturbative orders [13]. The investigation of these properties is also valuable for improving the
physics content of Monte Carlo event generators (see, e.g., Ref. [14]). In addition, the results of these studies prove
to be useful beyond the strict QCD context, since they can provide hints on the structure of highly symmetric gauge
theories at infinite orders in the perturbative expansion (see, e.g., Ref. [15]).
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In this Letter we consider the collinear limit of multiparton QCD amplitudes at one-loop order. We present a
general factorization formula, which is valid directly in colour space, and discuss some properties of its infrared-
divergent contributions. These results apply to the multiple collinear limit of an arbitrary number of QCD partons.
As an example of application beyond the double collinear limit, we present the result of the explicit evaluation of
a triple collinear configuration of three quarks. Besides its interest within the general framework outlined above,
our study of the one-loop triple collinear limit has specific relevance to the NNLO calculation of the Altarelli—
Parisi kernels that control the scale evolution of parton densities and fragmentation functions [16]. This formidable
NNLO computation is being completed [17] by using traditional methods. Kosower and Uwer [18] have proposed
to exploit collinear factorization at the amplitude level as an alternative method to perform the NNLO calculation
of the Altarelli-Parisi kernels. To this purpose, the one-loop triple collinear splitting is one of the necessary
ingredients. Two other ingredients are the tree-level quadruple collinear splitting [11] and the two-loop double
collinear splitting. A detailed discussion of the multiple collinear limit and of the results presented in this Letter
will appear in a forthcoming paper [19].

We consider a generic scattering process involving final-state QCD partons (massless quarks and gluons)

with momentap1, p», .... Non-QCD partongy*, Z%, W=, ...) are always understood. The corresponding matrix
element is denoted by
MR 52 (py, p, ), (1)

where{cy, c2,...}, {s1,s2,...} and{a1,az,...}, are, respectively colour, spin and flavour indices. To take into
account the colour and spin structures, we use the notation of Refs. [3,20]. We introduce an orthonormal basis
{lc1, €2, ...) ® |51, 52, ...)} In colour+ spin space, in such a way that the matrix element in Eq. (1) can be written

as

ML 3132 (py o) = (et ez, .| ® (51,52, .. .) [May.ap....(P1. P2, .. ))- )

Thus| Mg, a,....(p1, P2, .. .)) IS @ vector in colour- spin space. It is important to specify that the matrix elements
M(p1, p2, ...) that we are considering are physical ones. Their external legs are on(ﬁf]eH 0) and have
physical spin polarizations.

The matrix elementM (p1, p2,...) can be evaluated in QCD perturbation theory as a power series expansion
(i.e., loop expansion) in the strong couplig (as = gé/(4n')). Throughout the Letter we are mainly interested in
the expansion up to one-loop order. We write

M = (gs)? [M“’) + Z—;M(D + o(ag)}, ©)

where the overall powey is integer § = 0,1,2,3,...). In the evaluation of the one-loop amplitudel®,
one encounters ultraviolet and infrared singularities that have to be properly regularized. We use dimensional
regularization ind = 4 — 2¢ space—time dimensions. The dimensional-regularization scale is dengted by
The multiple collinear limit of the matrix elementin Eq. (1) is approached when the momenta, p,, of m
partons become parallel. This implies that all the particle subenesgies(p; + pj)z, withi,j=1,...,m, are
of the same order and vanish simultaneously. We thus introduce a pair of back-to-back ligt#likéd( n2 = 0)
momentaP” andn”, and we write
vV
(P-4 pm) = P4 2 s = (o1t )P (4)
2n- P
wheres1._,, is the total invariant mass of the system of collinear partons. In the collinear limit, the VBEtor
denotes the collinear direction, and we haye— zi P”, where the longitudinal-momentum fractionsare

n- pi
Zi= = 5
= 5)
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and fulfil the constrain®_?" ; z; = 1. To be definite, in the rest of the Letter we limit ourselves to explicitly
considering the collinear limit in the time-like region;(> 0, 1> z; > 0).

In the limit when them parton momentaps,..., p,, become simultaneously parallel, the matrix el-
ement M(p1,..., Pm, Pm+1,...) becomes singular. At the tree level, the dominant singular behaviour is
MO(p1, .., pm Pmats .- ) ~ (1/4/5)" L, wheres generically denotes a two-particle subenesgyor a three-
particle subenergy;;, and so forth. At one-loop order, this singular behaviour is simply modified by scaling vi-
olation, MDD (p1, ..., pm, Pmst. .. .) ~ (1//5)" L(s/u?)~¢. The dominant singular behaviour can be captured
by universal (process-independent) factorization formulae [5—12]. At the matrix element level, the factorization
formulae are usually presented upon decomposition in colour subamplitudes. Nonetheless, collinear factorization
is valid directly in colour space [19], and we present the factorization formulae in this more general form.

The colour-space factorization formulae for the multiple collinear limit of the tree-level and one-loop amplitudes
MO and MD are:

|Mé??...,am,am+1,...(pl’ v o» Pms Pm+1, - )> = c(z?)am (pl’ T pm)|Mé(2m+1,._,(ﬁv Pm+1, .. )>, (6)
1 1 D
|Mél?__7am’am+1,__(Pl, cvos Pms Pm+1, - - )) ~ le)_._am (p1,..., pm)|Méc2m+1“_.(P, Pm+1, - ))
1 -
+5p2 o (P P MY, (B s, ). @

These factorization formulae are valid in any numblet 4 — 2¢ of space—time dimensions or, equivalently, at
any order in thes expansion around = 4. The only approximation involved on the right-hand side amounts to
neglecting terms that are less singular in the multiple collinear limit. Egs. (6) and (7) relate the original matrix
element (on the left-hand side) with + k partons (wheré is arbitrary) to a matrix element (on the right-hand
side) with 1+ k partons. The latter is obtained from the former by replacingitfellinear partons with a single
parent parton, whose momentumAsand whose flavour is determined by flavour conservation in the splitting
process: — a1+ ---+ap.

The process dependence of the factorization formulae is entirely embodied in the matrix elements. The tree-
level and one-loop factor$p® andSp™, which encode the singular behaviour in the multiple collinear limit, are
universal (process-independent). They depend on the momenta and quantum numbers (flavour, spin, colour) of the
m partons that arise from the collinear splitting. According to the notation in EqSga3,a matrix in colour-spin
space, and we name it thglitting matrix. Making the dependence on the colour and spin indices explicit, we have

SpfcL o emistesmCase) = ((cq, | ® (51, -+ s Sm|)SPay...a, (ICa) © I5a)), ®)

so thatin Egs. (6) and (8p(p1, ..., pn) acts onto the colour and spin indicésy( ..., ¢p; $1, ..., Sn}) Of them
collinear partons on the left and onto the colour and spin indiegsy,}) of the parent parton on the right.

The essential difference between Egs. (6) and (7) and the known collinear-factorization formulae discussed in the
literature [5,9] regards the role of the colour quantum number. The derivation of the tree-level factorization formula
(6) in colour space is quite straightforward [7]. Its one-loop extension, Eq. (7), is less straightforward and, in
particular, it exploits colour coherence of QCD radiation [19]. The factorization formulae of Refs. [5,9] are written
in terms of colour subamplitudes and process-independent splitting amplitudes denoted &y,Splitp,,).
Generically speaking, the splitting amplitudes Split can be regarded as colour-stripped components of the splitting
matricesSp. For example, in the case of the tree-level collinear splitting g1 + g2, the splitting matrix is

SPAL2 (1, po) = ufrglﬁzs—izﬁmw*(P)v(pz), ©)
wheret¢ (¢ =1,. NC2 — 1) are theSU(N,) colour matrices in the fundamental representation (we use the
normalization T¢4r?) = Tr89%, Tk = 1/2), u, v are customary Dirac spinorsjs the physical polarization vector
of the parent gluon, and the corresponding spin indices are understood. The splitting amplitté%g Bpibtained
from Eq. (9) by simply removing the colour factxg[ﬂz. Analogous proportionality relations apply to any tree-level
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and one-loop splitting proceas— a1 + a2. When the splitting involves: > 3 collinear partons, splitting matrices
and splitting amplitudes are not simply proportional. Nonetheless, the two formulations of collinear factorization
are related by gauge invariance and colour algebra, and each formulation has its own practical advantages.
Several general properties of the one-loop splitting amplitudes 3git, p,) and, consequently, of
Sp (p1, p2) were discussed in Refs. [5,8,10]. Here, we present an additional general pro@a®) Qf1, . . ., pm).
When computed il = 4 — 2¢ space—time dimensions, the one-loop amplitud€® and, henceSp have
ultraviolet and infrared divergences that show upgmles in the expansion around the pairt 0. To make the
divergent behaviour explicit, we write the one-loop contribution to the splitting matrix as

3)(1)(p17 MR pm) = 3)(1)dlv(plv LI ] pm) + 3)(1)fln(plv MR pm), (10)

where SpDIV- pehaves as /&2 and Sp™Pi- is finite whene — 0. We also recall that different regularization
schemes (RS) can actually be implemented within the dimensional-regularization prescription. Two customary
RS are the conventional dimensional-regularization (CDR) scheme [21] and the dimensional-reduction (DR)
scheme [22]. The RS dependence of the tree-level and one-loop splitting m&pi®eand Sp? starts ai(¢?)
and at?(1/¢), respectively. In Eq. (10), we defigp®™- in such a way that it is RS-independentt°), though
it is still RS-dependent at higher orders in thexpansion. Therefor&®9V- contains the full RS-dependence of
S atO(1/€2), O(1/€) andO(€9).

The divergent part of the one-loop splitting matrix can be evaluated along the lines of Refs. [3,20,24], and the
result can be expressed in terms of a process-independent factorization formula. We obtain [19]

Sp(l)dlv(plv MR pm)

F(1+6)F2(1—e)1 1 & —i0
(4)—€T (1 — 2¢) E{_Z 2. i T( )

i.J=1G£))
T (‘”+‘l°) LZ Hle T2 @) = ) )
—;(i; Vi — €779 - _EVaR%_— 0—6555)>”
x S (p1,.... pm), (11)

where we have used the same notation as in Ref. [3]. The colour charge (matrix) of the collinear parton with
momentump; is denoted byT;, and colour conservation implies’; T;:Sp® = Sp@r, (T, is the colour
charge of the parent parton in the collinear splitting). The flavour coefficignamd go arey, = y; = 3Cr/2
andy, = fo/2 = (11C4 — 2Nf)/6. The flavour coefficients*® and B> are RS-dependent [23]. In particular,
yCPR = PR =0, while PR = =7, R =Cr/2andpPR = PR/2=Ca/6.

Note that, so far, we have not specified whether the one-loop amplithtiésand splitting matricessp®
are renormalized or unrenormalized quantities. Since the renormalization procedure commutes with the collinear
limit, the factorization formula (7) equally applies to both renormalized and unrenormalized quantities. However,
the divergent pargp™V- explicitly given in Eq. (11) refers to the (charge) unrenormalized splitting matrix (thus,
as is the bare QCD coupling). In the curly bracket of Eq. (11), the contribution proportiortal meﬁgs is of
ultraviolet origin, and it would disappear by working at the level of renormalized matrix elements and splitting
matrices.

It is straightforward to check that Eq. (11) agrees with the divergent behaviour of the known [5,8,10] one-loop
splitting amplitudes for the double collinear limit— a1 + az. The triple collinear splitting process explicitly
considered below provides us with a further check of the general result in Eq. (11).
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At the tree level, the splitting amplitudes are known for all possible partonic channels in the double [25,26] and
triple [11] collinear limits, and for pure gluonic splitting (- 4g) also in the quadruple collinear case [11]. In the
double collinear case, the square of the splitting amplitudes gives the leading-order Altarelli-Parisi kernels [27].
The square of the triple collinear splitting amplitudes was computed in Refs. [6,7], and checked in Ref. [11].

At the one-loop level, the splitting amplitudes for all partonic channels in the double collinear limit were
computed in Refs. [8,10]to all ordersdnin the following we consider the triple collinear limit and, more precisely,
the collinear splitting process— g1 + Q2 + Q3, whereg andQ denote (massless) quarks of different flavours.

We first recall the tree-level splitting matrix for the process- ¢ (p1) + Q(p2) + Q(pa):

©
PO (py, pa. py) = u? P ﬁlﬁs ——— i)y (P (pVY " u (P (p2 + pa.m), (12)

whereg; (i =1, 2, 3) andp are respectively the colour indices of the final-state fermions and of the parent quark,

and

k/LnV +n/Lkv
n-k

is the physical polarization tensor of the gluon with momentugn* is the auxiliary light-like vector introduced

in Eq. (4)).

The square of the splitting matr8p,, ,, , summed over final-state colours and spins and averaged over colours
and spins of the parent parton, definesthparton splitting functior(ﬁal,,,am), which is a generalization of the
customary (i.e., withn = 2) Altarelli-Parisi splitting function. Fixing the normalization of the tree-level splitting
function (P> . ) by

d;w (k n) ILV (13)

5(0) _ [ S1.m (0) a0 12
<Pa1...am> - (2#26 ) |Spa1 am| (14)
from Eq. (12) we have
2 2
5(0) 1 s123[  To31 4ni+ (z2—23) R ( 523 )]
P =-CrTrp—| — + +(1—2¢6 2+zwm——) | 15
< (11Q2Q3) 2 FIR 523 |: $235123 72+ 23 ( % 2 3 §123 (15)
where
Lijk = ZZisjk — ik + 4% Sijs (16)

Z2i +2j zi+zj

which agrees with the result obtained in Refs. [6,7]. The paramBdepends on the R§PR =1 andsPR = 0.
To evaluate the one-loop splitting mati$pY’ ~ we use a process-independent method [7,9,19]. In the case

ai...am
of the collinear splitting process— g1 + 02 + 03, SD;?QZQS receives a contribution from two different colour
structures:

2
(D (B1.B2.63)(B) 4877 ¢ e
pqu2Q3 (p1, p2, p3) = slzs{Xcz%ﬂfﬁlﬂs(mmzps)

+Z (t°1° +1°1%) ) g ﬁz(tctb)ﬂlﬁA(Pl»PZ»PS)}. (17)

The first term in the curly bracket has the same structure as the tree-level contribution in Eqg. (12). The colour
structure of the second term is a new one-loop (quantum) effect.

The one-loop correctio?® to the tree-level splitting function is obtained by simply performing the
replacementSp© |2 — (Sp@)Tsp® + (Sp™)Tsp© on the right-hand side of Eq. (14). From Egs. (12) and (17),
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P3

Pp3

P2 P2

q+p2+Dps

P123 P1—4q P P123 P1—q P
(@ (b)

Fig. 1. One-loop diagrams contributing to the antisymmetric component of the splitting ﬁpﬂiéng.

we obtain
5o _/p© S 1 5(D)(sym) 5(D(an) 2
<P‘11Q2Q3> N <P41Q2Q3) + 2 [(Pq1Q2Q3 )+ (Pq1Q2Q3>] + O(aS)' (18)

Note that(ﬁq(%zQ3> is symmetric with respect to the exchange« p3 of the 0, andQ3 momenta (see Eq. (15)).

Its one-loop correction has, instead, a symmetric component and an antisymmetric component, respectively
denoted by( ﬁq(llg:g?)) and(ﬁq(ll)Q-(Z‘gly The antisymmetric componentis entirely produced by the one-loop splitting
amplitudeA(p1, p2, p3) on the right-hand side of Eq. (17).

The expression of the splitting amplitude p1, p2, p3) is sufficiently compact to be presented explicitly in this
Letter. We have

1
A(p1, p2, p3) = —Zi

d'q _ [v°@d+pv"  v"d+p3v° w(p2)
2' | @) pz

a(p3) (52 +i0) (53 +i0)
i(pD)y' (b1 — )y u(P)
(g% +i0)(t1g +i0) (523, +i0)’

X dyy(q,n) dop(q + p2+ p3, n) (19)

where

g = (p1— )%, sig = (pi + )2, 5233 = (p2+ p3+q)°. (20)

The first and second contributions in the square bracket originate from the one-loop diagrams depicted in Fig. 1(a)
and (b), respectively.

Note that the expression in Eq. (19) is valid in any RS. It is also valid in any nuthbet — 2¢ of space—time
dimensions or, equivalently, to all ordersdn To make the dependence erexplicit, we have to compute the
d-dimensional integral over the loop momentymThis computation requires the evaluation of a set of basic
one-loop (scalar and tensor) integrals. The corresponding integrands involve, besides the customary Feynman
propagators A(q° + i0), additional propagators of the typé(t - ¢), which come from the physical polarizations
of the virtual gluons (see Eqg. (13)). Some of these integrals, which resemble those encountered in axial-gauge
calculations, were evaluated by Kosower and Uwer [10] in the context of their calculation of the one-loop double
collinear splittinga — a1 + a. More complicated integrals (higher-point functions) of this type are involved in
triple collinear splitting processes. We have computed (to high orders ia ¢éixpansion) all the basic one-loop
integrals [19] that appear in any triple collinear splitting> a1 + a2 + az. Using these results, we have obtained
explicit expressions up (%) of the splitting amplituded(p1, p2, p3) in Egs. (17), (19) and of the corresponding
splitting function(2 @)y in Eq. (18). We limit ourselves to presenting the expressiohﬁél%jgl), since the
expression ofd(p1, p2, p3) has a very similar structure.
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Including terms up t@ (%), our result for the antisymmetric component of the one-loop splitting function is

<ﬁ(1)(an) - IF'l+e)%(1—e) CoT N? — 4 ( —s5123—i0\ €
010204/ T amyer1—2¢) ' K an, 112
1 —€ —€ —€ —€ —€
(alC2) (G -G +62) ()
€ 5123 z22+123 z22+123 5123 §123
—€ —€ —€ —€
512 23 513 22 5(0)
4 (222 -2 PO CrT,
<5123> (zz+zs) <5123> <Z2+Z3) ]}( q1Q2Q3>/( F k)
) ()
§123— 513 5123 §123— 523 5123
i—z1b  a+b
n $123512 ( i —ub | a + ) In(Sngg) In( $23 )
s12+ 513 — 215123\ s12(1 —z1) 5123 51373 5123(z2 + 23)
n (2512 + 523)a + (512 — 513)b
512
2
[In( 513 ) In( s23) T Li 2(1— —> L 2(1— E) - ”—] - (2<—>3)} +(9(e)>
5123 §123 5123 5123 6
+ complex conjugate (22)
where
. 8$123( 271513 21(21523 — 22813 — 23512) = 21523+ 22513 — 23512
5 %123 , (22)
523 \ 5123 2(z2 + z3)s12 25123
o S123 <Z2S23 72(21523 — 22513+ 23512) | 21523+ 22513 — Z3S12) (23)
523 \ 5123 2(z2 + z3)s12 25123 ’

It is quite straightforward to check that the divergent part of the one-loop splitting function in Eq. (21) fully
agrees with the result obtained by using the general formula in Eq. (11). Note that the double/pdleantel
in Eq. (21), so that the most divergent terms('@llgjg)s) are single poles /&. These single poles originate
from the infrared region of the loop integral in Eq. (19). More precisely, they arise when the loop momentum
q is soft (3 — 0) but not collinear to any of the external momenta. Note also that, up to terré«%, the

full RS dependence o(fﬁq(ll)Q-(z‘gi) is embodied in the corresponding dependence (see Eq. (15)) of the tree-level

term (P(O) )y on the right-hand side of Eg. (21). The absence of additional RS-dependent terms (such as those

10203
proportlonal topRS and S in Eq. (11)) atO(e?) is related to the absence of single pol¢s &f ultraviolet and

collinear origin, as discussed in the second paper of Ref. [23].

An additional check of our result can be performed by considering the triple collinear limit of known one-loop
matrix elements, such as the matrix element for the pragess — gq 0 Q [28,29]. We have evaluated the one-
loop splitting amplitude (19) in a spin basis of definitd helicities of the quarks and antiquarks. We have then
compared the result with that obtained by directly performing the corresponding collinear limit of the one-loop
helicity amplitudes explicitly presented in Ref. [28] up@ge®) (note that the expressions in Ref. [28] refer to the
DR scheme). We have found complete agreement.

The splitting functionﬁal,,,am controls the singular behaviour in the multiple collinear limit. Moreover, it can
have additional singularities (i.e., terms that are not integrablé=sn4 dimensions) in some subregions of the

collinear phase-space. The tree-level splitting functiéq%zQs) in Eq. (15) is indeed singular when the momenta

p2 and p3 are parallel (i.e., when their relative angle is much smaller than the emission angil® afid when
they are simultaneously soft. The singularity whgnand p3 are parallel is, instead, absent (to any order in the
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e expansion [19], and not only &(¢?)) in the antisymmetric par(,ﬁ;ll)Q_(jg)s), of the one-loop splitting function.

The singularity wherp, and p3 are simultaneously soft is still presentdﬁq(l)Q_(jg)a), though its effect vanishes
1
after integration over the angles pf and p3 because of the antisymmetry with respect to the exchange ps.
The expression in Eq. (21) shows thé{tﬁé?&) has no other singularities in any subregions of the phase-space.

For the sake of brevity, we have limited ourselves, in this Letter, to presenting a few explicit results for the
one-loop triple collinear splitting. These results have mainly an illustrative purpose. The method and the tools (in
particular, the one-loop integrals) used to obtain them are sufficient and can be applied straightforwardly to evaluate
the one-loop splitting matrix of any splitting process> a1 + az + as.
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