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We present a configuration interaction method in which the Hamiltonian of an N-electron system
is projected on Slater determinants selected according to the seniority-number criterion along with
the traditional excitation-based procedure. This proposed method is especially useful to describe
systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the
excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements
(where the seniority-number technique is preferred). The hybrid method amends the shortcomings
of both individual determinant selection procedures, yielding correct shapes of potential energy
curves with results closer to those provided by the full configuration interaction method. C 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4904755]

I. INTRODUCTION

It is well known that the full configuration interaction
(FCI) method provides the exact solutions of the Schrödinger
equation for an N-electron system in a given Hilbert space.
Unfortunately, its factorial growth with respect to the number
of electrons and the number of basis set orbitals demands a
prohibitive computational cost. One of the most popular ap-
proaches used to reduce this computational cost is to limit the
number of Slater determinants in the configuration space; this
idea constitutes the foundation of the configuration interaction
(CI) methods. This technique requires to select, according to a
determined criterion, the Slater determinants in which the N-
electron Hamiltonian is projected. Most often, this selection
is performed in terms of the number of spin-orbitals excited
with respect to a given reference determinant. However, more
recently an alternative CI procedure has been proposed; in this
case, the selection of the Slater determinants is accomplished
according to the seniority number of the determinants used
to project the Hamiltonian1–5 (the seniority number has been
defined as the number of singly occupied orbitals in a
determinant).6,7 On the other hand, the electronic correlation
energy is usually decomposed into two components which
have been denominated as dynamic (weak) and static (strong)
correlations.8–12 The correlation is essentially dynamic when
a single-determinant reference is a good zeroth-order wave
function. The static (nondynamic) correlation is important in

a)Author to whom correspondence should be addressed. Electronic mail:
qfplapel@lg.ehu.es

systems with strong multireference character and necessarily
requires the use of wave functions composed of multiple Slater
determinants, even for suitable zeroth-order descriptions.
Systems with near-degenerate ground states, molecules with
stretched bonds, radicals, complexes of transition metals, and
so forth are examples which fit this correlation model, which
have also been found in bond-breaking processes and in
the description of superconductivity and other properties of
materials.

The performance of both excitation- and seniority-
number-based selection criteria in CI expansions to describe
N-electron systems has been tackled in Ref. 1 which reports
studies of atoms and molecular species in which either
dynamic or static correlation is dominant. The conclusions
reported in that reference indicate that the excitation-based
configuration selection procedure is more efficient than the
seniority-based approach when the system presents essentially
dynamic correlation. However, in those situations where the
static correlation is important, the seniority-number-based
selection procedure leads to better results. In the description
of dissociation processes or bond breaking, one often finds
molecular systems that show mainly dynamic correlation at
arrangements near the equilibrium distances but present static
correlation at stretched arrangements. A global study of such
systems raises the problem of choosing one of the two above
mentioned CI expansion construction criteria. The aim of this
work is to propose a method that combines both CI expansion
types, providing a framework that accounts efficiently for
both types of correlation. In our procedure, the N-electron
Hamiltonian is projected on a set of Slater determinants which

0021-9606/2014/141(24)/244118/6/$30.00 141, 244118-1 © 2014 AIP Publishing LLC
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possess a determined seniority number plus the additional
Slater determinants needed to complete a given excitation
level with respect to a reference. The method turns out to
be suitable to describe any system and is especially useful
for wave functions which undergo dramatic changes in the
dominances of the Slater determinants as a consequence of
the stretching of the internuclear distances within molecular
systems.

This work has been organized as follows. In Sec. II, we
review the main theoretical aspects involved in the proposed
methodology, indicating the formulation of the N-electron
seniority number operator by means of the spin-free second-
order replacement operators and the features of the CI
expansions. Section III reports the computational details as
well as the criteria followed to select the molecular orbital basis
to perform this treatment. In Sec. IV, we show results obtained
from the proposed hybrid method; in this work, the treatment
involves all Slater determinants whose seniority number is
zero, augmented with those of the single and double excitation
configuration interaction (CISD) method not yet included.
These results have been compared with those arising from the
seniority-number approach (at zeroth seniority-number level),
with those of the CISD or single, double, and triple excitation
configuration interaction (CISDT) methods and with those of
the FCI procedure. This section also reports the number of
Slater determinants required in each method, in order to assess
the computational expense. Finally in Sec. V, we summarize
the main conclusions of this work.

II. THEORETICAL REVIEW

The N-electron seniority number operator Ω̂ can be
formulated by means of the spin-free replacement operators
as2

Ω̂=

K
i=1

�
Êi
i − Êii

ii

�
(1)

in which Êi
i =


σ a†iσaiσ and Êii
ii =


σ1,σ2 a†
iσ1a

†
iσ2aiσ2aiσ1

are the spin-free first- and second-order replacement operators,
respectively.13–15 In this formalism, a†iσ and aiσ denote the
standard creation and annihilation fermion operators corre-
sponding to a spin-orbital iσ, where σ = α,β means the
spin coordinate and i represents an orbital of an orthonormal
basis set composed of K functions. According to Eq. (1), the
expectation value of the operator Ω̂ for an N-electron Slater
determinant ⟨Ω̂⟩ =Ω is the difference between the total number
of electrons N (i.e.,

K
i=1 ⟨Êi

i⟩) and the number of electrons
corresponding to doubly occupied orbitals in the determinant
(
K

i=1 ⟨Êii
ii⟩). In other words, Ω is a positive integer meaning

the number of unpaired electrons in the determinant.
The N-electron Slater determinants constructed with K

basis functions and a determined spin quantum number Sz can
be classified according to the valuesΩ= 0, 2, 4. . . (for N even)
orΩ= 1, 3, 5. . . (for N odd), satisfying the constraint condition
Ω ≥ 2|Sz |. In both cases, the maximum value of theΩ quantity
is Ωmax = N (if K ≥ N) or Ωmax = 2K − N (if K < N). The
projection of the Hamiltonian operator corresponding to an
N-electron system on one or more sets of determinants (each

set including all determinants with a given Ω value) yields
an N-electron CI Hamiltonian matrix. The diagonalization of
this matrix provides the eigenvalues and eigenvectors which
are the energies and wave functions of the seniority-number-
based CI method at levels Ω = 0, 2, 4. . . or Ω = 1, 3, 5. . ..
In the limit when all possible values of Ω are taken into
account (Ω= 2|Sz |, 2(|Sz |+1), . . .,Ωmax), the seniority-number-
based CI energies and wave functions coincide with those
arisen from the FCI method, which utilize all possible
determinants with a particular Sz value, constructed with the K
functions, to perform the Hamiltonian projection. This CI(Ω)
procedure constitutes an alternative to the traditional one, in
which the classification of the Slater determinants to project
the Hamiltonian is implemented according to the excitation
levels with respect to a reference determinant.16–19 Both CI
approaches lead to different energies, although they converge
to the FCI result when a high number of determinants is
used in the numerical determinations. Furthermore, a basis-
set transformation yields changes in the results arising from
both CI methods4 what makes it necessary to properly select
the type of molecular orbitals leading to more efficient wave
function expansions.1,4,20,21

The concept of seniority number has also been extended
to N-electron spin-adapted wave functions Ψ(N,S) with a
given spin quantum number S and any Sz.2 In this case, the
expectation value of the seniority number is

Ω̂

Ψ(N,S) =


Ψ(N, S)|Ω̂|Ψ(N, S)

=

i

1Di
i−2

i

2Dii
ii (2)

in which 1Di
i = ⟨Ψ(N, S)|Êi

i |Ψ(N, S)⟩ and 2Dii
ii =

1
2 ⟨Ψ(N, S)|

Êii
ii |Ψ(N, S)⟩ are elements of the spin-free first- and second-

order reduced density matrices, respectively, corresponding to
the wave functionΨ(N, S). In this formulation, the Sz quantum
number has been omitted, since these matrix elements are
independent of the spin projection. The expectation value
⟨Ω̂⟩Ψ(N,S) is no longer an integer like in a determinant case
but a quantity depending on the nature of the i orbitals. In
Refs. 2 and 4, we have proposed to perform transformations
of the molecular basis set so that the expectation value of the
seniority number operator for a FCI state, ⟨Ω̂⟩Ψ(N,S), gets a
minimum value. The computational procedure we have used,
based on the method reported by Subotnik et al.,22 allows
one to obtain more compact FCI wave functions and CI wave
functions attaining larger correlation energies. The orbitals
resulting from that minimization have been denominated Mmin
in contrast to the natural orbitals (NO) and the Hartree-
Fock canonical molecular orbitals (CMO). The functions that
constitute the basis sets Mmin are not, in general, symmetry-
adapted orbitals although the molecular symmetry can be
restored. Other applications of the expectation value ⟨Ω̂⟩Ψ(N,S)
arise from its relationship with the effectively unpaired electron
number corresponding to the state Ψ(N, S).23,24

As has been mentioned in the Introduction, the excitation-
based and the seniority-number-based CI expansions present
advantages and deficiencies, respectively, to describe systems
requiring a simple determinant as zeroth-order wave func-
tions, but both of them show the opposite behavior when
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multideterminantal wave functions are needed at this level
of approximation.1 There are ambiguous situations in which a
system is suitably described by expansions with a very strong
dominance of a Slater determinant at a determined geometrical
arrangement but requires several Slater determinants at other
arrangements. Consequently, it seems reasonable to study the
performance of the Hamiltonian projection on the union of
the sets of determinants from the seniority-number-based and
excitation-based CI methods (at givenΩ and excitation levels).
This configuration space is wider than that constituted by
each CI method individually and necessarily provides better
results at any geometrical arrangement. CI expansions of
hybrid character based on excitations and other features of the
determinants (energies) have also been recently proposed.25

In Secs. III–V, we describe results drawn out at several
geometrical arrangements of systems which present marked
changes in the dominances of the Slater determinants.

III. COMPUTATIONAL DETAILS

The reliability of our methodology has been tested by
determining ground-state electronic energies in closed-shell
atomic and molecular systems using the hybrid CI scheme.
We have projected the Hamiltonian of these systems on
the union of the Slater determinant sets required in the
CI(Ω = 0) and CISD procedures, what has been denoted
as CI(Ω=0)

SD . The dimensions of this N-electron Hamilto-

nian matrix is
2

i=0
i

p=0

(
K− N

2
p

) (
N
2
p

) (
K− N

2
i−p

) (
N
2

i−p

)
+

(
K
N
2

)
−
�
N
2

�
K − N

2

�
+1

�
, in which the first term is the CISD

Hamiltonian matrix size, the second term is the dimension of
the Ω= 0 Hamiltonian matrix, and the last one in the number
Slater determinants belonging to both spaces. The results
have been compared with those arising from the individual
CI(Ω = 0), CISD, and CISDT procedures, as well as with
those provided by the FCI method. The excitation level of the
determinants used in the CISD, CISDT, etc., procedures has
been evaluated with respect to a single reference determinant.
In the molecular calculations, we have used small basis sets
in order to get FCI results at an affordable cost. The basis sets
utilized for each system have been indicated in the tables and
figures in Sec. IV. We have carried out the corresponding
basis set transformations so that finally the N-electron CI
matrices have been expressed in the Mmin orbitals in which the
expectation values ⟨Ω̂⟩Ψ(N,S) attain the minimum values for

FIG. 1. Potential energy curves for the symmetric dissociation of the BeH2
molecule using STO-3G basis set transformed to the basis which minimizes
the seniority number for the FCI procedure (Mmin).

the FCI procedure.4 Experimental equilibrium bond lengths
and angles and symmetrically stretched configurations have
been used to describe potential energy curves in the molecular
systems. The one- and two-electron integrals required to
construct the N-electron CI matrices have been obtained from
a modified version of the PSI 3.3 package.26 We have also used
that code to calculate the Hartree-Fock CMOs utilized as initial
basis in the iterative procedure which determines the Mmin
basis sets. In subsequent steps, we have elaborated our own
codes to perform the basis set transformations and to construct
the N-electron CI(Ω= 0), CISD, CI(Ω=0)

SD , and CISDT matrices;
this last task has been implemented using the algorithms in the
programmes developed for Refs. 27 and 28.

IV. RESULTS AND DISCUSSION

Table I gathers energy values of selected atomic systems
arising from the CI(Ω = 0), CISD, CI(Ω=0)

SD , CISDT, and FCI
methods, as well as their computational cost. This cost has
been reflected by means of the number of Slater determinants
in the Hamiltonian projections. This table also shows the
Gaussian basis sets used in these numerical determinations
although all values reported in this table have been obtained
from the corresponding Mmin orthonormal orbital basis. The
Be atom has been chosen as prototype of system having a
marked static correlation;1 in fact, the CI(Ω = 0) result is

TABLE I. Values of energies, computational cost, and basis sets utilized for atomic systems calculated at different levels of CI methods. Results were obtained
using the orthonormal basis that minimizes the seniority number for the FCI procedure (Mmin).

No. determinants Energy/Eh

System Basis CI(Ω = 0) CISD CI(Ω=0)
SD CISDT FCI CI(Ω = 0) CISD CI(Ω=0)

SD CISDT FCI

Be cc-pVDZ 91 757 823 3925 8281 −14.617 064 −14.617 355 −14.617 365 −14.617 393 −14.617 409
F− cc-pVDZ 2002 2836 4792 36 916 4 008 004 −99.430 350 −99.553 918 −99.555 046 −99.554 522 −99.560 772
Ne cc-pVDZ 2002 2836 4792 36 916 4 008 004 −128.551 000 −128.675 320 −128.676 110 −128.676 430 −128.680 896
Mg 6-31G 1716 2479 4152 30 339 2 944 656 −199.627 920 −199.630 130 −199.630 160 −199.630 240 −199.630 374
Al+ 6-31G 1716 2479 4152 30 339 2 944 656 −241.690 140 −241.692 590 −241.692 620 −241.692 690 −241.692 805
Ar 6-31G 715 1801 2479 18 025 511 225 −526.784 570 −526.812 090 −526.812 220 −526.812 690 −526.813 352
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FIG. 2. Potential energy curves for the symmetric dissociation of the H2O
molecule using STO-3G basis set transformed to the basis which minimizes
the seniority number for the FCI procedure (Mmin).

close to the CISD one with lower computational cost (only
91 Slater determinants). The hybrid CI(Ω=0)

SD method, proposed
in this work, leads to a better result being very close to that
provided by the CISDT procedure with a markedly lower
computational cost (823 Slater determinants vs 3925 ones).
The correlation energy in the Ne atom has been considered to
be purely dynamic;1 our results confirm this behavior since the
CI(Ω= 0) result is no longer close to the CISD value as in the
Be case. However, the hybrid CI(Ω=0)

SD method yields a value
quite close to that of the CISDT method at lower computational
cost and in the F− case (a system isoelectronic with the Ne
atom) the CI(Ω=0)

SD value turns out to be even lower than that
obtained from the CISDT procedure. The systems Mg and Al+

can be classified between those possessing an intermediate
strength of static correlation energy; the hybrid CI(Ω=0)

SD method
also predicts satisfactory results for these systems. The results
found for the Ar atom show that this system presents a behavior
similar to that of the Ne atom; both atoms possess essentially
dynamic correlation, as expected.

In Figs. 1–3, we show potential energy curves of the
symmetrically stretched systems BeH2 and H2O as well as that

FIG. 3. Potential energy curves for the dissociation of the N2 molecule using
STO-3G basis set transformed to the basis which minimizes the seniority
number for the FCI procedure (Mmin).

TABLE II. MAE and NPE (in mEh) of the CI potential energy curves with
respect the FCI one. Results were obtained using the orthonormal basis set
that minimizes the seniority number for the FCI procedure (Mmin).

CI(Ω = 0) CISD CI(Ω=0)
SD

MAE NPE MAE NPE MAE NPE

BeH2 68.60 65.73 35.05 34.61 8.12 7.84
H2O 19.53 12.85 66.69 66.60 0.19 0.17
N2 84.79 40.75 147.1 143.3 47.71 45.18

of the N2 molecule. Our aim is to assess the performance of
the CI(Ω=0)

SD method by comparing its results and computational
cost with those arising from the more known CI(Ω= 0), CISD,
and FCI procedures. Each numerical value described in these
curves has been obtained using the basis set Mmin in which the
⟨Ω̂⟩Ψ(N,S) quantity gets a minimum value for the corresponding
FCI wave function Ψ(N, S). The accuracy of the potential
energy curves obtained from the CI methods with respect to
the FCI one is compared in Table II, where the maximum
absolute errors (MAE) and nonparallelity errors (NPE) are
shown for each method. As can be observed, the CI(Ω=0)

SD
method decreases these quantities in one and two orders of
magnitude for the BeH2 and H2O systems and near one order
of magnitude for the N2 molecule. The computational cost of
these numerical determinations has been reflected in Table III
in terms of the number of Slater determinants required in
each method. A survey of the BeH2 curve shapes described
in Fig. 1 shows very good agreement for all studied methods
at near-equilibrium distances. However, at longer internuclear
distances, where static correlation is higher, the CI(Ω = 0)
method exhibits a hump, which has also been reported and
discussed in other systems;1 although near the dissociation, this
curve converges to the FCI one. This hump is no longer present
in the results yielded by the hybrid CI(Ω=0)

SD method which
requires only a little more computational effort compared to
the CISD procedure. As expected, the CI(Ω=0)

SD method agrees
better with the FCI one in the whole interval of internuclear
distances studied. Fig. 2 describes the potential energy curves
of the H2O molecule. As can be observed, the results from the
CI(Ω=0)

SD method are near coincident with the FCI ones both for
near-equilibrium geometries as well as for distances close to
the dissociation limit, although the computational cost is only
slightly higher than the CISD one. In Fig. 3, we show the results
corresponding to the N2 molecule in which we appreciate the
crossing between the CI(Ω= 0) and CISD curves. The CISD
values are closer to the FCI ones than those of CI(Ω = 0)
method at the near-equilibrium region (low static correlation)

TABLE III. Computational cost reflected in the size of the Slater determinant
basis for molecular systems calculated at different levels of CI methods.

No. determinants

System Basis CI(Ω = 0) CISD CI(Ω=0)
SD FCI

BeH2 STO-3G 35 205 227 1225
H2O STO-3G 21 141 151 441
N2 STO-3G 120 610 708 14 400
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FIG. 4. Potential energy curves for the symmetric dissociation of the H2O
molecule using STO-3G basis set transformed to the NO set which diagonal-
izes the FCI first-order reduced density matrix.

but this behavior is quite opposite at the dissociation limit
region (high static correlation). Similarly to the BeH2 and
H2O molecules, the performance of the CI(Ω=0)

SD curve in the
N2 system is better than those provided by the CI(Ω= 0) and
CISD methods individually and its computational cost is only
slightly higher than that required by the CISD procedure.

We have studied the behavior of the results provided by
the CI(Ω=0)

SD method using molecular orbital basis sets other than
the Mmin ones. In Figs. 4 and 5, we have represented potential
energy curves of the symmetrically stretched H2O molecule
using the NO and CMO basis sets, respectively. As can be seen
by comparing Figs. 2 and 4, the CI(Ω = 0) results are closer
to the FCI ones in the Mmin basis set, in agreement with the
conclusions reported in Ref. 4, providing better results than the
CISD ones. However, the CI(Ω=0)

SD curve with the NO basis set
(Fig. 4) is just as nearly coincident with the FCI one as the
CI(Ω=0)

SD curve with the Mmin basis (Fig. 2). The results arising
from the use of the CMOs, shown in Fig. 5, also indicate the
closeness of the CI(Ω=0)

SD curve to the FCI one. From a compu-
tational point of view, the CMO basis sets are more easily
available than the NO and Mmin ones, and consequently, they
could be preferably used within the CI(Ω=0)

SD scheme, avoiding

FIG. 5. Potential energy curves for the symmetric dissociation of the H2O
molecule using STO-3G basis set transformed to the Hartree-Fock CMO set.

FIG. 6. Potential energy curves for the symmetric dissociation of the H2O
molecule using 6-31G basis set transformed to the Hartree-Fock CMO set.

the FCI determinations. Fig. 5 also shows the presence of a
small hump in the curves CI(Ω= 0), CISD, and CI(Ω=0)

SD in the
CMO basis set, which does not appear in their counterparts
calculated in the NO and Mmin basis sets. However, the hump
in the CMO curves gets its smallest size in the CI(Ω=0)

SD method.
In order to elucidate whether the hump is an artefact of using
a minimal basis set, we also performed calculations using the
split valence 6-31G basis set, revealing indeed that the use of
a larger basis set leads to the disappearance of this hump (see
Fig. 6). Also note that all main features reported for the STO-
3G data remain for the larger basis set.

Truncated methods, i.e., methods other than FCI one,
suffer from an undesirable dependence on the basis chosen, as
is clearly demonstrated above. We, therefore, also performed
preliminary calculations at CI(Ω=0)

SD level, with an energy
optimized single particle basis to examine the magnitude
of the further change in energy compared to the energies
obtained using the other molecular orbital bases. We have
chosen the N2 molecule as a prototype system. Although a
detailed description of the algorithm used and more detailed
examinations of this effect will be presented in future work,
Fig. 7 clearly shows that the energy optimized basis set

FIG. 7. CI(Ω=0)
SD energy differences with respect to the energy optimized basis

set for different single particle bases as a function of internuclear distance in
the N2 molecule.
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FIG. 8. Energy differences for CI(Ω = 0) and CISD methods with respect
to the CI(Ω=0)

SD model using energy optimized orbitals for each method as a
function of internuclear distance in the N2 molecule.

slightly improves on the energies calculated using the NO and
Mmin basis sets and that these energies are better than those
given by the CMO basis set although their respective order
may differ along the bond stretching coordinate. The key
conclusion of the paper is, however, confirmed in all cases:
as shown in Fig. 8, the union of the CI(Ω = 0) and CISD
determinant sets lowers significantly the energies provided by
those procedures individually without an important increase
in computational cost.

V. CONCLUDING REMARKS AND PERSPECTIVES

In this work, we have proposed a new procedure which
possesses a hybrid character within the CI technique frame-
work. The method is based on the projection of an N-electron
Hamiltonian on the union of two Slater determinant sets, each
of them constituted according to a different criterion. One
of these sets is composed of all Slater determinants up to a
determined seniority number; the other set is composed of a
reference determinant and its excitations up to a determined
level. We report numerical determinations on selected atomic
and molecular systems using a simple version of the hybrid
method, the CI(Ω=0)

SD one. Its results and computational cost
are compared with those obtained from its parents CI(Ω= 0)
and CISD methods. Our proposal turns out to be particularly
useful to describe systems which undergo strong changes
in the static correlation energies at stretched geometries
with respect to near-equilibrium arrangements, correcting the
deficiencies of the CI(Ω= 0) and CISD procedures. Notably,
the sets of the CI(Ω = 0) and the CISD Slater determinants
act like ideal complements to each other, solving many of
the issues related to strong static correlation. The NO and
Mmin basis sets are optimal for the traditional and seniority-
type CI procedures, respectively, from a compactness of wave
function perspective, and consequently, we have considered
these basis sets in our calculations. Our best results have
been obtained using the Mmin molecular orbital basis sets,
which minimize the seniority number for the FCI procedure.
However, we also show that other molecular basis sets, as

those of CMOs, improve the CI(Ω = 0) and CISD results
with lower computational costs. One can also find the optimal
molecular orbital basis sets for any CI-type method from an
energy perspective. We also report preliminary calculations
with a CI(Ω=0)

SD energy optimized molecular orbital basis set
pointing out a further energy lowering. Work along this line is
being pursued in our laboratories.
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