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Abstract
A simple model of damped harmonic motion is usually presented in
undergraduate physics textbooks and straightforwardly applied for a variety
of well-known experiments in student laboratories. Results for the decaying
vertical oscillation of a sphere attached to the lower end of a spring in containers
with different liquids are analysed here under this standard framework. Some
important mismatches between observation and theory are found, which are
attributed to oversimplifications in the formulation of the drag force. A more
elaborate expression for the latter within a semiempirical approach is then
introduced and a more appropriate description of the measurements is shown to
be attained. Two coefficients account for experimental corrections, which under
certain conditions permit in addition the calculation of specific fluid quantities
associated with the oscillating sphere. Rough relations between viscosity and
damping factor under appropriate limits are derived. The laboratory experience
may also be used to introduce the concept of a semiempirical model and exhibit
its utility in physics.

1. Introduction

Linear viscous damping (drag force term proportional to the first power of velocity) on a body
possesses an interesting characteristic: exact solutions to the resulting differential equation of
motion may be obtained by elementary mathematical methods and they are easy to interpret.
The pedagogical importance of the scheme due to its appealing simplicity is clear. However,
it is often an inadequate representation of reality. It then becomes essential to check that the
conditions of an experiment satisfy the validity ranges that imply linearity, which are rather
restrictive and rarely met in practice. Moreover, empirical versions of the ideal model are
apparently quite difficult to yield [1–8].
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This paper refers to an experiment that meets the stringent requisites for linear damping
(if appropriate conditions are chosen, see section 4): the vertical displacement of a sphere
suspended from a spring and submerged in a viscous fluid. Weight, upthrust, elastic and
drag forces are in this case present and the familiar equation for the displacement x (positive
upwards) of the sphere from the rest position is

ẍ + 2γ ẋ + ω2
ox = c (1)

where c is a constant that produces a fixed shift in x from the spring equilibrium position,
so we will set it null henceforth as we are rather interested in the motion of the sphere. If
ω2

o > γ 2, i.e. there is some preponderance of elastic over frictional force (at least for some
time), the solution in terms of time t will look like

x = A e−γ t cos(ωt + ϕ) (2)

where A is the amplitude of undamped oscillation, γ is the damping coefficient (the exponential
decay is independent of the initial amplitude due to the linear nature of the system),

ω =
√

k/M − γ 2 (3)

is the oscillation frequency (ωo ≡ (k/M)1/2 is the undamped natural frequency of the sphere,
where k is the spring constant and M is the hanging mass) and ϕ is the initial phase constant
(nonzero if timing does not start simultaneously with release). As ω is defined in terms of
k, M and γ , only three parameters remain independent (A, ϕ and γ or ω) and they may be
determined from the fit of equation (2) to every experimental displacement against time curve.
It is clear in this kind of experiment that the damping coefficient depends among many factors
on certain fluid properties, where viscosity surely plays an important role. A drag force given
by Stokes’ law leads in equation (1) to

γ = 3πrη

M
(4)

where η is the liquid viscosity and r is the radius of the sphere.
The experimental set-up is exhibited below and results are then presented for diverse

liquids. Problems emerge clearly when the appropriateness of the above standard model for
the present experiment is assessed. It will be shown however, that, an analysis of the observed
motion with an appropriate alternative approach may lead the students to bring observation and
theory closer and to extract physically meaningful information. The present experimental work
may also be helpful to introduce or reinforce in early curriculum alumni the idea of the use of
a semiempirical model as a convenient tool when one deals with shortcomings of the available
theory. In addition, we suggest that the experience can be used to stimulate the students for
further research on a general relation between damping factor and viscosity (the procedure may
be easily extended to liquids other than those considered here). It is demanding but suitable
for those who attend a first course on fluid dynamics or for a mechanics syllabus including
this area of physics. The necessary equipment should be available in most undergraduate
mechanics laboratories.

2. Experimental set-up and procedure

On a tall sturdy support rod, we clamped a Pasco CI-6519 force sensor and from its hook a
spring hung. We suspended an iron ball from it with an appropriately prepared thin cylindrical
aluminium rod, the ball being submerged a few centimetres under the liquid surface in a
measuring cylinder (figure 1) scaled up to 2 l with diameter and height respectively of (8.0 ±
0.1) cm and (46.8 ± 0.1) cm. The rod was used to avoid any immersion of the lowest part of the
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Figure 1. Schematic diagram of the experimental set-up (not all elements are to scale).

spring in the liquid. It had a small hole close to one extreme for the attachment to the spring and
it had already been fastened to the ball on the opposite side. The force sensor was connected to
a computer data acquisition system (MPLI), which recorded force against time. The sampling
frequency was set to 50 Hz in a compromise between time resolution and recording span
availability. A too large frequency would not only yield a very short observation time interval
but could also introduce uninteresting high frequency noise. We initiated free oscillations
of the system in the vertical plane with a small displacement of the rod either upwards or
downwards. We had to ensure that the deflections were one-dimensional and small, i.e. the
displacement amplitude had to be smaller than the sphere diameter. Measurement start and
system release were not necessarily simultaneous.

We have previously checked that there was a linear relation between spring force and
displacement and we determined the slope in order to convert the measurements of the former
quantity into values of the latter. This permitted us to display the curve displacement against
time and then find out the values of the parameters from the corresponding fit. The effective
oscillating spring mass fraction e was also determined, so we were able to calculate the total
oscillating mass M = mb + ems + mr, where mb, ms and mr refer to the ball, spring and rod
mass, respectively. A few variations of the experiment conditions have been conducted for
this laboratory experience. We used tap water, mineral (SAE 40) and vegetal (sunflower) oil.
The values of diverse quantities that are important for the experiment may be found in table 1.

3. Results of the standard model

Figure 2 represents displacement from the equilibrium position against time data when the
sphere was immersed in the measuring cylinder with, respectively, water, vegetal and mineral
oil and the parameters of the corresponding fits have been summarized in table 2. It may be
seen that there are some graphical discrepancies mainly due to inadequate ω and γ . The model
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Table 1. Quantities relevant to the experiment.

k (N m−1) 27.9 ± 0.1
e 0.379 ± 0.006
ms (g) 62.8 ± 0.1
mr (g) 20.1 ± 0.1
mb (g) 106.2 ± 0.1
r (cm) 1.50 ± 0.01
ηw(P )a 0.009 15 ± 0.000 10
ηv(P )a 0.56 ± 0.01
ηm(P)a 3.6 ± 0.1
ρw(g cm−3)a 0.997 ± 0.001
ρv(g cm−3)a 0.918 ± 0.001
ρm(g cm−3)a 0.859 ± 0.001

a The values correspond to a temperature of (23.5 ± 0.5) ◦C. Subindices w, v and m correspond
respectively to water, vegetal and mineral oil.

Table 2. Parameter values according to fits of the standard model.

Water Vegetal oil Mineral oil

A (cm) 0.41 ± 0.02 0.67 ± 0.03 0.29 ± 0.01
γ (s−1) 0.14 ± 0.01 0.87 ± 0.05 1.86 ± 0.10
ϕ (rad) 2.14 ± 0.02 0.00 ± 0.03 0.29 ± 0.03

Correlation coefficients r2 for the fits ranged between 0.8 and 0.9.

predicts nearly the same oscillation frequency for the three fluids. According to equation (3)
ω depends on ωo and γ , where the former parameter is much larger than the second quantity
in our cases (ωo ≈ 13.6 s−1, γ ∼ 1 s−1). Then ω is essentially given by ωo and therefore its
dependence on η (through γ ) is very weak. In addition, the damping coefficients obtained from
the experiments lead in equation (4) to order of magnitude wrong viscosity values: (1.44 ±
0.04) P, (9.23 ± 0.21) P and (19.8 ± 0.9) P, respectively, for water, vegetal and mineral
oil (compare with table 1). Something must be wrong; intuition suggests the use of a
generalization of Stokes’ law: drag force proportional to velocity and viscosity through some
unknown constant, so η ∼ γ . It is then very tempting to use a decaying oscillating body in
diverse liquids to obtain the relative viscosities from the ratios of the corresponding damping
factors [9], but this procedure is not correct. In fact, the values so derived are here in strong
disagreement with those that may be calculated from table 1.

Is it then possible to overcome the above difficulties? Some important aspects may
have been omitted in the standard model. This justifies the introduction of a more elaborate
description of the resistance force on the sphere than Stokes’ law, and it will also be necessary
to recall some specific fluid concepts.

4. An alternative approach

Linear damping is valid only for Re � 1 in the case of a sphere with uniform motion.
Some articles and textbooks have applied this law straightforwardly even at large Re with no
substantiation on its application. A damping term proportional to velocity has been observed
by experimental means [1, 6] for oscillating bodies at large Re, but according to theory three
conditions should be met [10, 11]: the flow should not separate from the solid boundary
and the characteristic length of the body must be much larger than the oscillation amplitude
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Figure 2. Displacement against time data (dots) for the sphere immersed in the measuring cylinder
with different liquids. Fits (solid curves) according to the standard model are also shown.
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and the penetration depth (to be defined below). It is extremely unlikely that the last two
conditions will be met (which reasonably happens in the present experiments) without the first
one [6]. Stokes’ law leads to wrong results when it is applied to the present experiment, but
there are obviously many more linear damping options available. Two possible sources for
improvements are the incorporation of a more appropriate proportionality factor between drag
force and velocity and the contemplation of the liquid mass accompanying the sphere motion.
We discuss this in the following paragraphs.

A large amount of experimental and theoretical work has been done on the drag force on
a body moving in a fluid. The formulae for a sphere undergoing uniform motion in the low
and large Reynolds number (Re) limits are well known, being, respectively, proportional to the
first (Stokes law) and second power of its velocity v. The expression for a sphere oscillating
in an incompressible fluid for small amplitude of oscillation with respect to the diameter 2r is
[10, 12]

F = −
[

6πηr
(

1 +
r

δ

)
v + 3πr2

(
1 +

2

9

r

δ

)
ρδ

dv
dt

]
(5)

where F is the drag force,

δ =
√

2η

ρω
(6)

is defined as the penetration depth and is used as an estimation for the thickness of the boundary
layer around the sphere, where ρ denotes the density of the fluid. The only restriction on
Re = 2 r v ρ/η is that it must be much larger than the ratio of oscillating amplitude and
diameter. The expressions accompanying the steady flow Stokes law in equation (5) are called
history and added mass terms and they approach zero for null oscillation frequency. If r/δ �1
(in the second term � means at least 40), which is roughly equivalent to Re � 1 [11], we
obtain

F = −
[

6πr2η

δ
v +

2

3
πr3ρ

dv
dt

]
where the second term represents the added mass (one half of the liquid displaced is the
amount supposed to accompany the sphere motion) in an incompressible ideal fluid or in the
large frequency limit if viscosity is included [10].

Some coarse approximations may be found in the derivation of equation (5). In order to
optimize its application to each case below, experimental correction factors will be used. This
practice has spawned several semiempirical equations, which are commonly used in diverse
applications. We will concentrate on two potential adjustments. In the first and second terms
of equation (5), we will respectively introduce empirical coefficients f1 and f2, so

F = −
[

6πηr

f1

(
1 +

r

δ

)
v + f23πr2

(
1 +

2

9

r

δ

)
ρδ

dv
dt

]
. (7)

We should note that both factors have a simple and straightforward meaning when r/δ �1:

F = −
[

6πr2η

f1δ
v + f2C

4

3
πr3ρ

dv
dt

]
so f1 considers any difference in the estimation of the boundary layer thickness by the
penetration depth [11] and f2 accounts for the deviation in the experiment from the coefficient
C = 1/2 deduced by ideal or viscous theory for the added mass of a sphere as mentioned above.
Values about 1 should be expected for f1 and f2 if the experimental conditions approximately
suit the validity ranges.



A semiempirical approach to a viscously damped oscillating sphere 7

Table 3. Parameter values according to fits of the semiempirical model.

Measuring cylinder Can

Water Vegetal oil Mineral oil Water Vegetal oil Mineral oil

A (cm) 0.421 ± 0.001 0.591 ± 0.001 0.290 ± 0.001 0.701 ± 0.001 0.710 ± 0.001 0.298 ± 0.001
γ (s−1) 0.111 ± 0.002 0.564 ± 0.009 1.67 ± 0.06 0.079 ± 0.001 0.516 ± 0.008 1.56 ± 0.02
ω (rad s−1) 13.39 ± 0.01 13.03 ± 0.01 12.53 ± 0.05 13.42 ± 0.01 13.10 ± 0.01 12.52 ± 0.02
ϕ (rad) 2.696 ± 0.005 0.340 ± 0.010 0.550 ± 0.020 0.884 ± 0.004 3.900 ± 0.010 3.320 ± 0.010

Correlation coefficients r2 for the fits were all above 0.95.

Table 4. Experimental determination of correction factors of the semiempirical model.

Measuring cylinder Can

Water Vegetal oil Mineral oil Water Vegetal oil Mineral oil

f1 0.31 ± 0.02 0.50 ± 0.04 0.49 ± 0.05 0.44 ± 0.02 0.56 ± 0.04 0.53 ± 0.04
f2 0.69 ± 0.10 1.12 ± 0.11 1.17 ± 0.13 0.62 ± 0.10 0.99 ± 0.10 1.20 ± 0.08

The equation of motion for the sphere after equation (7) becomes

ẍ +
6πrη

f1

(
1 + r

δ

)
f23πr2

(
1 + 2

9
r
δ

)
ρδ + M

ẋ +
k

f23πr2
(
1 + 2

9
r
δ

)
ρδ + M

x =
(

4
3πr3ρ − M

)
g

f23πr2
(
1 + 2

9
r
δ

)
ρδ + M

(8)

whereas for r/δ �1 it reduces to

ẍ +
6πr2η

f1δ
(
f2C

4
3πr3ρ + M

) ẋ +
k

f2C
4
3πr3ρ + M

x =
(

4
3πr3ρ − M

)
g

f2C
4
3πr3ρ + M

(9)

where g is gravity. The large fractions are all constants, so we may cast the above expressions
in the same form as equation (1). However, here we have an unknown f2, so ωo cannot be
calculated a priori (for example, in the expression of ωo obtained from equation (9) it is not
possible to clearly specify the added mass of the sphere prior to the experiment), and ω is now
a fourth independent parameter.

The new fits respectively for water, vegetal and mineral oil may be found in figure 3. An
improvement with respect to figure 2 becomes clear. The calculated parameters have been
summarized in table 3. It may be evaluated in equation (8) that ωo within this framework
mainly depends on the spring constant and the hanging mass and only marginally on the fluid
properties, but this slight change gives in the calculation of ω (equation (3)) an important
correction to improve the fits with respect to the standard model as it has an accumulative
effect in time. Note that this better ω does not stem from a more appropriate γ but from a more
adequate ωo which takes into account the fluid around the sphere. In addition, even with f1 =
f2 = 1 the new approach gives more appropriate viscosities than the standard model: (0.09 ±
0.04) P, (1.8 ± 0.1) P and (10.3 ± 0.1) P respectively for water, vegetal and mineral oil, which
are however still far from the values in table 1.

The possible presence of wall or bottom effects was evaluated by respectively repeating
these three experiments in a large can of volume around 8.5 l with diameter and height
respectively (21.6 ± 0.1) cm and (23.3 ± 0.1) cm, which was almost full with each of the
corresponding liquids. Some significant differences in γ and ω were observed with respect to
the measuring cylinder (see table 3), so we had to conclude that those effects were present.

We calculated the values of f1 and f2 from γ and ω for each part of the experiment. The
corresponding values may be found in table 4. Water exhibited the largest deviations from the
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Figure 3. Displacement against time data (dots) for the sphere immersed in the measuring cylinder
with different liquids. Fits (solid curves) according to the semiempirical model are also shown.
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ideal value of 1 and vegetal oil the smallest. There is a trend (although there are no significant
differences in every comparison) in the bigger container for smaller γ and larger ω and for
lower f2 and larger f1.

In reference to a possible relation between damping and viscosity, let us visualize the
second left-hand term in equation (8). For each liquid f1, f2 may be different, but always
of order 1. In the denominator M makes an overwhelming contribution in our experiments
(typically 90%). Considering the definition of δ in equation (6), we may then grossly infer
a γ ∼ η1/2 law for r/δ � 1 and γ ∼ η for r/δ � 1, as ρ and ω do not change significantly
among the liquids used.

For clearly underdamped cases (ω ≈ ωo), the validity of r/δ � 1 may be ensured according
to equation (6) by selecting the elements so that√

2η

ρ
� r 4

√
k/M. (10)

In the present experiments r/δ was of the order of 40, 5 and 2, respectively, for water, vegetal
and mineral oil. This implies that a dominant contribution to the drag force from the terms
containing this ratio in equation (5) is expected only for water. The empirical coefficients may
then be used to estimate the boundary layer thickness and the added mass coefficient of the
oscillating sphere in this liquid.

As already mentioned r/δ � 1 is roughly equivalent to Re � 1, which may be proved
and tested:

r

δ
≈ r

√
ωρ√
η

≈
√

Re.

In fact, the Re values of the experiments for water, vegetal and mineral oil are about 1500,
30 and 5 respectively (depending in detail upon whether one uses the radius or the diameter
of the sphere or the amplitude of oscillation as a reference length) and the above expression
seems to relate r/δ and Re in a quite faithful manner.

5. Conclusions

Besides its wide use, some failures are shown to exist in the standard model for the description
of the dynamics of a viscously damped oscillating sphere in a liquid. We therefore use a
more elaborate expression for the drag force to replace Stoke’s law and a relatively simple
semiempirical approach including two coefficients is then introduced. Changes with respect
to the standard model in the dependence of the oscillating frequency and the damping on the
variables of the problem emerge, which bring theory and observation closer. In particular, it
is then explained that the damping factor ratio of the decaying oscillation of a body in diverse
liquids may not be used to infer the corresponding relative viscosities. The results found for
the two empirical correction factors in three liquids showed that their use becomes advisable
in the description of oscillating spheres and the most important effect here was in water and
the least in vegetal oil. If the selected experiment conditions satisfy (10), it is then possible
to determine the values of two specific fluid magnitudes: the added mass coefficient and the
boundary layer thickness associated with the oscillating sphere. Wall and bottom produce
some small but noticeable effects on oscillating frequency and damping factor, i.e. on both
empirical correction coefficients. We have shown that square root or linear law relationships
between damping factor and viscosity are roughly to be expected if respectively condition (10)
or its opposite hold. We encourage students to repeat this experiment with other liquids in
order to test these laws and to extend the calculations of added mass and boundary layer with
configurations that suit (10).
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