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Abstract

We study the connection between Zamolodchikov operator-valued relations in Liouville field the-
ory and in theSL(2, R);, WZNW model. In particular, the classical relations$h(2, R); can be
formulated as a classical Liouville hierarchy in terms of the isotopic coordinates, and their covari-
ance is easily understood in the framework of #uS3/CF T, correspondence. Conversely, we find
a closed expression for the classical Liouville decoupling operators in terms of the so-called uni-
formizing Schwarzian operators and show that the associated uniformizing parameter plays the same
role as the isotopic coordinates#(2, R);. The solutions of thgth classical decoupling equation
in the WZNW model span a spip reducible representation & (2, R). Likewise, we show that
in Liouville theory solutions of the classical decoupling equations span spapresentations of
9.(2, R), which is interpreted as the isometry group of the hyperbolic upper half-plane.
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1. Introduction

In [1] Al. Zamolodchikov proved the existence of a set of operator-valued relations in
Liouville field theory (LFT). There is one such relation for every degenerate primary field,
which is labelled by a pair of positive intege¢a, n). These relations correspond to a
higher order generalization of the Liouville equations of motion, and at the classical level
(n = 1, b2 — 0), they can be written as

1-m

Dml_)m[(peT‘p] = B,(,f)eHTm‘p, 1.1)

whereB,(,,") = (=21 M™m\(m — 1)! are classical Zamolodchikov coefficients and

1-m 1-m

Dm[e 2 ‘/’] = Dm[e 2 ‘p] =0. 1.2)
The linear differential operato®,, can be schematically written as

Dy =3 +1", (1.3)
wherel™ = ?:—02 d,ﬁ””@ﬁ with d,ﬁm) polynomials in the classical Liouville stress tensor

T = —%(8290)2 + 9% (1.4)

and its derivatives.

In [2], two of us derived an infinite set of operator-valued relations which hold for
degenerate representations ofﬂ/@)k Kac—Moody algebra and which are similar to those
found by Zamolodchikov for the Virasoro degenerate representations in LFT mentioned
above? In the classical limit, which correspondsko— oo, these relations are equivalent
to

01 B, = —ml(m — DD, (1.5)
where
2i+1 2 _ 2j
®j41(zlx) = (Jx — x0(2)|“e?@ + e ¢@) (1.6)

are functions on the homogeneous space, C)/SU(2) = ng the Euclidean version of
AdSs, and

B (2]x) = g(’x — 0@ 2D + OV (| — xo(2)| 2O + e-0),

(1.7)

1 The operators),, have scaling dimension. Hence, sincg /) = 3/ T has dimension 2 j, d,im) isasum
of terms of the forn{ ['_, 7U1) with 3L, ji + 2 +k=m.

2 Zamolodchikov’s proof of the hierarchy of operator-valued relations possesses some general, model-
independent features. In particular, it is plausible that it could be applied with appropriate modifications to “any”
CFT which involves a continuous spectrum and degenerate states. In order to determine the Zamolodchikov
coefficients, however, it is necessary to know the explicit form of the three-point functions.
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Furthermore, Eq1.5)are in one-to-one correspondence with the decoupling equations for
null states in the Kac—Moody Verma module

P, =" D, =0. (1.8)

The meaning of these decoupling equations is that the figjgdransform in a finite-
dimensional spinj = ”‘7*1 representation o8L(2, R). This is encoded in the fact that
®3j4+1(z|x) is a polynomial of order 2in x.

It was also observed if2] that in terms ofp(z|x) = —2In(5 ®2) the first equation in
(1.5)can be rewritten as

3y 0z (z]x) = —2¢7 ), (1.9)

which is the Liouville equation (with the “wrong sign”) in tH& (2, R)-isospin variables
(x, X). This is interesting since in the context of théS;/CF T, correspondencer, x) are
the variables of the Boundary CH3,4].

Egs.(1.1), (1.5) and (1.93how a manifest parallelism between the Zamolodchikov hi-
erarchy of equations in LFT and the similar one in 82, R);, WZNW model. This
raises the question as to whether there is a more precise correspondence between the two.
Furthermore, while on the WZNW side the decoupling operator is sigiplythe general
form of D,, involves quite complicated expressions of the classical energy—momentum
tensor{1]. We will work out the details of the connection betwe@ril) and(1.5) by ana-
lyzing the geometrical meaning of the entities involved. The principal element appearing in
the discussion turns out to be the uniformization problem of Riemann surfaces, which in-
cludes theSL(2, R) group as a basic element and the classical Liouville equation naturally
appears in this framework.

1.1. Uniformizing Schwarzan operators

In this paper, we will first show that the classical decoupling operalpysin LFT
correspond taniformizing Schwarzian operators (USO) S introduced in5]. Such op-
erators correspond to a particular kind of covariantizeid derivative. These operators are
a particular kind of the so-called “Bol operators”, independently rediscover&d in the
framework of the KdV equation formulated on Riemann surfaces. A st§g) inas been
the use of the polymorphic vector fieldd, with ¢ the inverse of the uniformizing map,
as covariantizing vector field. This leads to new structures involving uniformization theory
and covariant operators. Another important property of such operators is that they have a
compact form: this will enable us to answer the question about the existence of a closed
and generic explicit form for these differential operators besides the iterative computation
at the classical level presented in Section 2 of IRigf.We will see that

Dy, = Sf'm) — _L_/(mfl)/Z azf/71 . azt/ilaz r/(mfl)/Z’ (110)

m derivatives

wherer is the inverse of the uniformizing map.



G. Bertoldi et al. / Nuclear Physics B 709 [FS] (2005) 522-549 525

1.2. The PSL(2, C) gauge invariance of Sﬁ’”)

To connect the US@Y”) to the higher equations of motion of the Liouville theory, one
first notes that thesi’”) are invariant undePSL(2, C) transformations of. Furthermore,
following [5], one observes that the Poincaré metric

2

o 17
e? = 5
(Imt)

can be seen ag'(z) after aPS.(2, C) transformation ofr. In particular, since under a
PSL(2, C) transformation

_A@Tt+B®)

(1.11)

T y-p= T IR 1.12
Y =@+ DR (1.12)
one has’ — 1//(Ct + D)?, it follows that for
1 T
C:W, D:_W’ (1.13)
7’ is transformed into the Poincaré metric
e =0,(y 1), (1.14)

which is equivalent toe¥ = 9:(y - 7). Since the Poincaré metric is invariant under
PSL(2, R) transformations of, it follows thaty in (1.14)can be replaced by the prod-
ucty u with w an arbitrary element dSL(2, R) with constant entries.

It is interesting to observe that even if the abd®@&.(2, C) transformations depend
on the pointz through7 and 7/, they commute with, just like a constant. It follows
that the operato‘b‘i’"), which is invariant undePS.(2, C) fractional transformations af,
remains invariant also under such a point dependent transformation. Therefore, the global
PSL(2, C) symmetry ofSi’”) extends to a locaPSL(2, C) symmetry, and can be seen as
an anti-holomorphic gauge invariance. As a consequehimSi”’) can be replaced hs?.

Note that by the Liouville equatiof,¢; = ¢¥/2, we have thafl.14)impliesy -t =
290z + f(2), where f(z) is any solution ofd, f = 0. This means thap: = 9z ¢ itself is a
local PSL(2, C) transformation of:. Actually, we have

(pZ:_+2 -, (115)

T/ T—7T

which has the form

A@T +BE)

3 Observe that local univalence ofimplies thatt’ never vanishes, therefore there aredsingularities

contributing to it, e.g.azf’*l. Also note that thé-singularities at the punctures cannot be seen since the latter
are missing points on the Riemann surface.
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Summarizing, we have the invariance
Sy =8, (1.17)

which is equivalent to the invariance undegr— ¢ (the factor 2 can be adsorbed by a
different transformation iti1.16)).

The above local invariance is very useful to write down the explicit form of the USO in
terms of the classical Liouville field. In particular, as we will see, they depend only through
the energy—momentum tensor and its derivatives.

The anti-holomorphic local Mébius transformations and the use of the inverse of the
uniformizing map, have been first introduced®h. Such features distinguish our approach
from the previous definitions of covariant operators generalizing the Schwarzian derivative
(e.g.,[6-8)).

Another feature of the above operators is that, once expressed in termsrofitiizzing
coordinater, seen as independent variable, they essentially redu®és tdore precisely,
we have

3 _mT-l—l 3 1—2111
sm — (& am( ) 7 1.18
! (31’ t\ort (1.18)

This is equivalent to the fact that the classical energy—momentum tensor vanishes with
such a coordinate choice. Conversely, we will show that the classical limit of the equa-
tions derived in2] in SL(2, R); can be rewritten in a Liouville-like manner and that the
decoupling operators have such a simple form thanks to the vanishing of the associated
energy—momentum tensor.

A crucial role in the analysis is played by the link between Liouville theory and the the-
ory of uniformization of Riemann surfacs,9—-16] In particular, theSL(2, R) symmetry
which is manifest on the WZNW model side, is consistently mapped to the Liouville side
where it acquires a geometrical meaning. It is in fact the isometry group of the hyperbolic
upper half-plane. The Liouville decoupling operators are natul(, R)-invariant and
the classical solutions of the equati@p; 1y =0, j =0, % ..., Span a spirj repre-
sentation ofSL(2, R). It also follows thate—/¢, 2j € ZT, can be decomposed in terms of
these representations. The observation that this could be generalized at the quantum level
using the representation theory @f (sl(2)) was at the basis of the algebraic approach to
Liouville theory[19-21]

The paper is organized as follows. In Sect®yrihe basic aspects of uniformization of
Riemann surfaces are introduced. The Liouville equation and its relation to the uniformiz-
ing equation are reviewed. In Secti8nthe UsSos™ of [5] are introduced. They are a
generalization of the second-order linear differential operator associated to the uniformiz-
ing equation. In SectioB.2, we show that the decoupling operafy, of LFT is themth
USOS?”). This is consistent with the expressions given by Zamolodchikov for the first few
values of in [1]. The classical Zamolodchikov coefficierits1)” 121" M™m!(m — 1)!,
which appear in E¢(1.1), are also derived using two equivalent expressions of the USO,
first in Section3.3and then iMppendix C

Then we move on to the discussion on 42, R) side. In Sectiort, we will rewrite
the classicaBL(2, R); Zamolodchikov relations in a Liouville-like fashion, following the
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observation made if2], Eq. (1.9). The vanishing of the associated projective connection
provides an explanation of why the decoupling operators in the WZNW model have such
a simple form. In this sense, the isotopic or boundary variabpdays the same role as

the trivializing coordinater that belongs to the Poincaré upper half-pl&hen the Liou-

ville side. In Sectior.1, we point out that the covariance of the our discussion on the link
between the Zamolodchikov relation of t&k(2, R) model and Liouville theory can be
understood from the AdS/CFT correspondence. In addition, we discuss how the Zamolod-
chikov relations in theaL(2, R) will give Ward identities for the boundary CFT.

Section5 is devoted to remarks suggesting the relation between our results and other
known connections between Liouville theory and the WZNW model. Here we discuss
how theS_(2, R) symmetry which is manifest on the WZNW side is translated into the
Liouville context, where it coincides with the isometry group of the hyperbolic upper half-
plane. The solutions tD; 1(1/) = 0 span a spin representation diL (2, R). Connection
to the quantum group/, (sl(2)) is also suggested. In Sectiénwe present the conclusion
and some future directions.

In Appendix A we review how to express the classical Virasoro decoupling operator as
a formal matrix determinant and show that the corresponding quantum decoupling operator
reduces to the USO in the classical limit. Appendix B we show that the USO depend
only on the energy—momentum tensor and its derivativeApipendix G we provide an-
other derivation of the Zamolodchikov relation from the USO.

2. Uniformization and Poincaré metric

Let us denote byD either the Riemann sphefé: C U {oc}, the complex plan&
or the upper half-planél = {tr € C | Imt > 0}. The uniformization theorem states that
every Riemann surfac& is conformally equivalent to the quotiedt/I", wherel” is a
freely acting discontinuous group of fractional transformations presem®ingomorphic
to the fundamental groupy (). In particular, for genug > 2, the universal covering is
given by H. Let us consider this case and denoteJythe complex analytic covering
Ju:H — X. Then, I" is a finitely generated Fuchsian group belongind&.(2, R) =
S (2,R)/{I, —1I}. This acts orHl by linear fractional transformations

at+Db a b
Ty T= y—<c d)GF, Ju(y - 7) = Ju(r). (2.1)
A Riemann surface isomorphic to the quotiéft/” is endowed with a unique metric
& with scalar curvatureR; = —1 compatible with the complex structure. Consider the
Poincaré metric ofil
d 2
2= 1t (2.2)
(Imt)2

Note thatPSL(2, R) transformations are isometriesHfwith the above metric. Then, the
inverse of the uniformizing mapg*: ¥ — H, z — t = Jz(z), induces the Poincaré
metric onX¥

e _ TP

ds? = e?@9)dz)2, =
2] (Imz(z2))?

(2.3)
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which is invariant undeflL (2, R) transformations of (z). The condition

_ 1 .
R; = §0.0:Ingz =-1, giz= Ee(p(Z’Z) (2.4)

is equivalent to the Liouville equation
1 B}
0:0:90(z,2) = Ee“’(“), (2.5)

whereas the field) = ¢ + InM, M > 0, defines a metric of constant negative curva-
ture —M. The expressiof2.3)is the unique solution to the Liouville equation éh

2.1. TheLiouville equation

Here we consider some aspects of the Liouville equation. First of all, note that, by the
Gauss—Bonnet theorem, fif. ¢¥ > 0, then the equation

3;0:0(2,7) = Me? ¥ (2.6)

has no solutions on surfaces with ggf®’) = sgnM. In particular, on the Riemann sphere
with n < 2 puncture$there are no solutions of the equation (let usiget %)

1
3,0:0(z,7) = eW 2 /ew > 0. (2.7)
X

The metric of curvature-1 onC

4
ds?>=e?|dz|?, e0=— 2.8
2] 1+ |z]?)? 28)

satisfies the Liouville equation with the “wrong sign”, that is
1 _
0:9z00(2, 7) = — 5", (2.9)

If one insists on finding a solution of E(R.7) on C, then inevitably one obtains at least
three delta-singularities

1 -
3:0:0(z,7) = Ee“““) —21Y 6P —z)., n>3 (2.10)
k=1

However, the(l, 1)-differential ¢¥ is not an admissible metric of. In fact, since the
unique solution of the equatidhoz¢ = ¥ /2 on the Riemann sphereds= go + iz With
¢o € R, to consider the Liouville equation dh gives the unphysical metrige°|dz|?.

This discussion shows that in order to find a solution of(2d/) one needs at least three
punctures, that is one must consider Ej7) on the surfacex = C\{z1, z2, z3} where the
term 2t Zle 8@ (z — z) does not appear simply becaugez ¥, k = 1, 2, 3. In this case
x(X)=—1, sothat sgi (¥) = —sgnM in agreement with the Gauss—Bonnet theorem.

4 The 1-punctured Riemann sphere, i€, has itself as universal covering. For= 2 we haveJc:C —
C\{0}, z+—~ ez, Furthermore(C\{0} = C/(Ty), where(Ty) is the group generated 1§ : z — z + 1.
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2.2. Theinverse map and the covariant Schwarzan operator

The Poincaré metric o

7' @)
(t(z) — T(2))?
is invariant undePSL(2, R) fractional transformations of. Eq. (2.11) makes it evident
that from the explicit expression of the inverse mapg Jﬁl(z) we can find the dependence

of ¢ on the moduli ofY'. Conversely, one can express the inverse map (upP@a.&2, C)
fractional transformation) in terms @f. This follows from theSchwarzan equation

PR G (2.11)

{r.2}=T(), (2.12)
where
T(z) = —%(azw)z + 029 (2.13)

is the classical Liouville energy—momentum tengb#), or Fuchsian projective connec-
tion, and

{f )= fw _ § f_N 2 — _2f/1/2(f/—1/2)” (2 14)
’ ;o 2\f ‘ '

is the Schwarzian derivative gf. The Liouville equation implies that the classical energy—

momentum tensor is holomorphic

9:T = 0. (2.15)

Note also that’(z) has the transformation properties of a projective connection under a
change of coordinates, namely

- 9z\? - 9z \? 92\ _
T = <8_Z) T()+{z,2}= (8_Z> T(z) — <8_Z) {z,z}. (2.16)

FurthermorePSL.(2, C) transformations ot leaveT (z) invariant.
Let us define theovariant Schwarzian operator

8}2) — Y2y 1=ty 172 (2.17)

mapping—% into %-differentials. In the above formula, it is understood that e@achcts

on each term on the right. Since

1
SPy = (83 + 517, z})w (2.18)
the Schwarzian derivative can be written as
(f.ay=28% 1 (2.19)

Like the Schwarzian derivative alﬁJ}z) is invariant undePSL(2, C) fractional transfor-
mations off, that is

8P, =8P, yepPa20). (2.20)
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Therefore, if the transition functions & are linear fractional transformations, thef z}
transforms as a quadratic differential. However, except in the case of projective coordi-
nates, the Schwarzian derivative does not transform covariantly .ofhis is evident by
(2.19) since in flat spaces only (e.g., the torus) a constant can be considered%ers a
differential.

2.3. The uniformizing equation

As we have seen, one of the important properties of the Schwarzian derivative is that the
Schwarzian equation (2.12)can be linearized. Thus if1 and; are linearly independent
solutions of theuniformizing equation

(af + %Hz))lﬂ(z) =0, (2.21)

thenyrp/y1 is a solution of Eq(2.12) That is, up to #23L(2, C) linear fractional transfor-
matior?

T=v2/Y1. (2.22)
Indeed by setting

T V29, 7719, Y2y = ' Y29,¢'719,1=0 (2.23)
and

Y25, ¢ 719, 2y = ¢'1%9,1=0 (2.24)
it follows that

yr=1"12 Yo=1"Y% (2.25)

are independent solutions (#.21) Another way to prov€2.22)is to write Eq.(2.21)in
the equivalent form

Y25, ¢/ 19,72y =0 (2.26)

and then to set = Jy(t), whereJy : H — X is the uniformizing map.

The inverse map is locally univalent, that igif# z2 thent (z1) # t(z2). Furthermore,
the solutions of the uniformizing equation have non-trivial monodromy properties. When
z winds around non-trivial cycles of

()= ()=(& 2)(5) -

5 Note that the Poincaré metric is invariant undRSL (2, R) fractional transformations of whereas the
Schwarzian derivativel' (z) = {z, z} is invariant forPSL(2, C) transformations ofr. Thus, with an arbitrary
choice ofy1 and ¥, it may be that Inty»/v1) is not positive definite, so that in general the identification
T =1Yp/¥ is up to aPSL (2, C) transformation.
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which induces a linear fractional transformation of the inverse aiap

AT+ B A B

Thus, under a winding aof around non-trivial cycles of’, the pointz (z) € H moves from
a representativéF; of the fundamental domain df to an equivalent point of another rep-
resentativeF;. The monodromy group of the uniformizing equation is the automorphism
group of the uniformizing mapy(r) and is isomorphic to the fundamental groupXof
However, note thaf2.20)guarantees that, in spite of the polymorphi¢y28) the classi-
cal Liouville energy—momentum tensér= 289 - 1is singlevalued.

Observe that, sincg is a— 3—differential, Eq(2.21)on H readst’3/232¢ = 0, that is
we have the trivial equation

92¢ =0. (2.29)
In fact using

v@dz P=¢@di? = VY@ =40 (2.30)
we find that Eq(2.26)becomes

V25,071, 0V (2) = o' ¥%0%¢ (1) = 0. (2.31)
Note also that Eq(2.29)is consistent with the fact that {f2.12)and(2.16)

ﬂn=(%>2@y{§9iud:a (2.32)

In this sense, or a generaP3_(2, C) transformation of it, is #@rivializing coordinate. For
any choice of the two linearly independent solutions we higye1 = t up to aPSL(2, C)
transformation. Going back t& we gett = v2/vy1.

24. PSL(2, R) symmetry
Note that anyGL (2, C) transformation

()= (5)=(& 2)(%) -

induces a linear fractional transformation of It follows that the invariance 0é¥ un-
der PSL(2, R) linear fractional transformations af corresponds to its invariance under
PSL(2, R) linear transformations af1, ¥2. This leads us to the expressioneof’ ¢ as

eI = (=47 (a2 — Py (2.34)

In particular, when 2 is a non-negative integer, we get

eI =471 Y <—1>"(12+]k>1ﬁ{“‘wi"wé“‘wé", 2j . (2.35)
k=—j
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On the other hand, since we can chogséz) = ¥1(z) [© wl’z, we have

Z

z 2j
eI = (=& [y o)V (/ w‘z—/z/‘/‘2> . Vi, (2.36)

with

Z
¥ (2) = Ay (z) <1+ B / 1/f12>, A€R\{0}, BeR. (2.37)

We note that the ambiguity in the definition ¢f ¥ 2 reflects the polymorphicity of.

This property ofr implies that, under a winding around non-trivial loops, a solution
of (2.21) transforms in a linear combination involving itself and another (independent)
solution. It is easy to check that

(af + %T@))ﬂﬂ =0, (2.38)

which shows that the uniformizing equation has the interesting property of admitting
singlevalued solutions. The reason is that fh@ependence of~#/? arises through the
coefficientsyr; andy» in the linear combination of/; and .

Since[d;, Sﬁz)] =0, the singlevalued solutions of the uniformizing equation are

1
(33 ‘s T(Z))agewz —0, ¢=01.... (2.39)

Thus, sincee™? ande?9;¢ are linearly independent solutions of E&.21) their ratio
solves the Schwarzian equation

{0:0,2} =T (2). (2.40)

Higher order derivativeg!e=/2, ¢ > 2, are linear combinations @f /2 ande™¢/%9:¢
with coefficients depending dfi and its derivatives; for example

T
92e /% = —Ee—w/z. (2.41)

In particular ify2(z) = T1(z) then, in spite of the fact thaf is not a constant o&, v
andyr, are linearly dependent solutions of Eg.21)

Let us show what happens if one sets: 11 /v2 without considering the remark made
in the previous footnote. As solutions of the uniformizing equation, we can congider
e~%/2 and an arbitrary solutiog, such thai. (y»/y1) = 0. Sinced: (e %/2/yr2) # 0, in
spite of the fact thate=/2/yr5, z} = T, we haver # y1/v2.

We conclude the analysis of the uniformizing equation by summarizing some useful
expressions for the Liouville energy—momentum tensor
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1
T={t,z} ={0:0,2} = 2f’1/zaz;azr/1/2 1=2¢%%3,e7%0,¢%/? - 1

=2(e72 /) V20 (e 72 ) THou(e 2 pwa) V21
=—2e%/2(e791%)" = —2y 1y, (2.42)

with ¥ given in (2.37) and y» an arbitrary solution of Eq(2.21) such thatd, (e~%/?/
y2) #0.

3. USO and classical Zamolodchikov relations

Here we will consider a set of operat(ﬁézj”), Jj= % 1,..., corresponding tcBZZJ'Jrl
covariantized by means af. These operators were first introducedh and generalize

the Schwar zian operator 852) that was studied above. In the next section, we will prove that
they actually coincide with the classical decoupling operators in D;Tm =25 + 1. Let
us define

SW = pro=bi2g -ty pi -ty premI2, (3.1)
n derivatives

This is a linear operator mappiritj— n)/2 differentials to(n + 1) /2 differentials. The Ker
of S}”) is generated by

fk—l
Sk =" k=1,...,n. (3.2)
7
Under aPSL.(2, C) transformation off we have
Af +B / 2
cf = , . =(C D , 3.3
Vfcf+D (v - =Cf+D)y°f (3.3)

the solutionsy transform as
1 _ _
s~ S (Cf + D) “(Af + B (3.4)

Since this is a linear combination of thgs, the Ker oijE.”) is PSL(2, C)-invariant. This
means that th§}") themselves arBSL. (2, C)-invariant

(n) _ o)
S =8 (3.5)
From now on we will consider the operators with
f=r, (3.6)

wherer = Jﬁl(z) is the inverse of the uniformizing map. These operators have been intro-
duced in[5]. BesidesPSL(2, C)-invariance they satisfy some basic properties strictly re-
lated to Liouville and uniformization theories. We will call them uniformizing Schwarzian
operators (USO).
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3.1. Gauge invariance of the USO from the local univalence of ©

We want to show that
(1-—n)

SWe 7 ¢ =0, (3.7)
whereg is the classical Liouville field, that is
/2
¢ = 3.8
¢ T imr)2 (3:8)

is the Poincaré metric. A key observation#} is thate? can be seen as after a Mobius
transformation ot with the coefficients depending gnMore precisely, we see that under
thePSL(2, C) transformatiorr — (At + B)/(Ct + D), with

1 T

= iz D= REEGER (3.9
that is
4—/
v 2t 2a 4 S (3.10)
T—7T
the derivative of the inverse map is transformed into the Poincaré metric
= e?=0,(y -1)=0:(y - 7). (3.11)

A crucial step is to observe that nothing changes in the pro#.6jif the coefficients of,

are anti-holomorphic functions. In other words, the original gld®@Ll(2, C)-invariance
extends to a point dependent symmetry. This local symmetry is a rather particular one since
it depends org rather than orz. We can consider such a symmetry, related to the fact that
anti-holomorphic univalent functions commute with as a “left gauge invariance” of the

Sﬁ"). In this respect we note that the dependencé ofithe P (2, C) transformation is
throught and its derivatives. On the other hand, local univalenceiofplies thatr’ never
vanishes, so there are Besingularities contributing to, e.cf, 7’ L. In other words, on the
Riemann surface we always héve

[0;, T1=0=[3;, 7']. (3.12)

Apparently, Liouville theorem forbids non-trivial solutions of such equations. On the other
hand, constancy of holomorphic functions on compact manifolds refers to true functions.
In the present case we are treating with a polymorphic function, i.e., a function with a non-
Abelian monodromy around non-trivial cycles. As such, the inverse of the uniformizing
map can be seen as a polymorphic classical chiral bbson.

The above symmetry implies that

n—1 n—1
SW=¢7%,e % de Ve, (3.13)
6 §-singularities would appear for elliptic points or by filling-in possible punctures.

7 An issue which deserves to be investigated concerns the chiral boson deff@@fhwhose properties sug-
gest a relation with the inverse of the uniformizing map.
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which makeq3.7) manifest. Observe that univalenceménd thus the fact that'(z) #0
imply that the USO are holomorphic, so that

[sim SM]=0. (3.14)

Eq. (3.7) is manifestly covariant and singlevalued ah Furthermore, we will show in

Appendix Bthat the dependence 61}2”1) on f appears only throughy, z} and its deriv-
atives; for example

S® =83+ 219, + 1, (3.15)

which is the second symplectic structure of the KdV equation. The ope&?ﬁ)oappears
in the formulation of the covariant formulation of the KdV equation on Riemann surfaces
[6] where single-valued vector fields, explicitly constructelid] and also admitting es-
sential singularities of Baker—Akhiezer type, were used instead of the polymorphic vector
field 1/7'.

An important property of the equatioﬁézﬁl)w =0 is that its projection off is the
trivial equation

w192ty =0, weH, (3.16)

wherew = t(z) and

Y(2)dz ™ =P (w)dw . (3.17)

As we saw previously irf2.32)this is consistent with the fact thdt(w) = 0. This also
explains why only forj > 0 it is possible to have finite expansions«f/¢ such as in
Eq. (2.35) The reason is that the solutions of §g.16)are{w* |k =0, ..., 2;} so that
the best thing we can do is to consider linear combinations of positive powers of the non-
chiral solution Imw which is just the square root of inverse of the Poincaré metriglon

Note that Eq(3.13)can also be derived in the following way. By tR&L(2, C) invari-
ance of the Schwarzian derivative, in particular the fact that} = {0z ¢, z}, we find

1.3
-1 =
27 9 2’
On the other hand, by Liouville equation

S‘EZ,/‘F]-) — S§§£+l), .] — 0’ 2’ . (318)

. . . 1
ST =MooV e 0, =03,

The above expression will be crucial to prove that the USO and the classical Liouville
decoupling operators are the same.

1,.... (3.19)

3.2. Classical decoupling operatorsin Liouville theory

In [1] Zamolodchikov considered the fields

Vi =eXme2 ezt (3.20)
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and showed that the first few representatives satisfy the ODEs
9;-1=0,
2 1 —p/2
s+ 5T )e =0,
2
(03 +218,+T")e™* =0,

<a§‘ +5T92 4570, + (ZTZ + gr“>>e—3¢/z =0,

(92 + 10793 + 157792 + (1672 +97")d. + 16T T' + 2T"")e™% =0, (3.21)
together with the complex conjugates (> d:, T — T). By using the classical Liouville
equation

3.0:0 = Me? (3.22)
it is then possible to show that the field¥,, satisfy the relations

D1D1p = Me?,

DzDz((pe_(p/z) = —M2€3¢/2,

D3D3((pe_¢) = 3M3€2¢,

D4D4((pe_3‘p/2) = —18M4€5“0/2,

DsDs(pe™%) = 180M°¢%, (3.23)
which are some particular cases(dfl). The main result of1] is the proof that the above
relations hold for generat at the quantum level. However, the general form of the classical
decoupling operator®,, was considered unknown there.

In the following, we will prove that the operatoi3,, coincide with the usas™
introduced iff [5] (another independent proof is given Appendix A). First of all, the

operatorsS{™, like the D,,, havee1=¢/2 as solution. Secondly, also ti&™ depend
on d,¢ only through the classical energy—momentum terfsand its derivatives. This is

shown inAppendix B Furthermore, botts!™ and D,, are covariant operators mapping

(1 — m)/2-differentials to(m + 1)/2-differentials. In this respect note that covariance of
the D,, is understood a priori: a possible inhomogeneous term in changing coordinates in
the intersection of two patches would imply ti{at21)are not covariantly satisfied. Next,
since

[9:,8!]=0 (3.24)

it follows that, besides>~%/2, other solutions 08" = 0 have the formyte—me/2,
Furthermore, a basis of solutions@ﬁ’")m/f =0 is given by[5]

Y= 0:0) ™92 =0, .m—1 (3.25)

8 The coincidence of such operators was pointed out to us by Giulio Bonelli.
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To see this it is sufficient to insett; on the RHS of(3.13) and systematically use the
Liouville equation

e Y0.(0:0)) = jM(dz)' 1. (3.26)
On the other hand, since
[0z, D] =0 (3.27)

andd,T = 0, the functiong3.25) are also a basis of solutions &f,y = 0. Therefore,
we proved thatD,, = Si’"), which turns out to yield the classical Zamolodchikov rela-
tions(1.1) as we will see in the next subsectidkppendix Cpresents another equivalent
derivation of these relations starting from the expresgsoh3)of the decoupling operators.

3.3. Classical Zamolodchikov relations

By means of the above results we can now investigate the classical Zamolodchikov
relation in Liouville theory. Let us evaluate

A-m) m)

SIS (ge~z ¥). (3.28)
Since
2
o = |92 o (3.29)
dz
it follows thaf
dz d
3.5 =0z, z)+|n< >+In( Z) (3.30)
dz dz

implying that pe “3"¢ is not a covariant quantity. Howeve3.28) s still a differential
of Welght(’"+1 erl) In fact, the inhomogeneous term appearing under a holomorphic
coordinate transformatlon—> Z

m+1

FmEm (e 22 = | 9217 gmgim (g3 4 jn| * gy (3.31)
dz dz
cancels. Actually, by3.14)and(3.7) we have
_(m) (m) dZ 2 17”1(,0
S.L. S.[ lnd_f e 2
d l11
—S(’")In( >$<'"> _“’+S(’")In( )3<m> e —o. (3.32)
dz dz

9 In the guantum theory the geometrical nature of Liouville field is different; in that case the transformation is
givenbyg =9+ Q In(d~) + 0 In(dé) whereQ is the background charge which, after the appropriate rescaling
in the classical limit turns out to bQ — 1.
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We can express the operators in a form that considerably simplifies the calculations.
Actually, note the identity

1-m

m+1
az\ 2 az\ 2
Ssm _ (92 am( 2%\ ° 3.33
T (ar) T <a_’:> ( )

It is therefore convenient to consideras function ofr rather than vice versa. Thus we
have

1-m 3z |? 1] 9z m=1
pe 2 ?=—|In|—| +2Iny |)y" " |— , (3.34)
at at
wherey = Im t and(3.28)becomes
9z —(m+1) 9z 2
—|— aram| ym 1 In| = 2In
v o [y ( I >]
0z —m D mam (., m—1
=-2 3y 0z a7 (y In y). (3.35)

Noticing that 4™ 33’” is the only term irg;' 07" that does not contaidre., we see that our
problem reduces to compute the numerical coeffichgnin

83n1yn1—1 In y= bmy_m_l. (336)

Rather than evaluating,, using the Leibniz formula, we easily obtain it by induction.
By (3.36)we have

8)2,m+2ym Iny= ayayz'" (my"“1 Iny+ ymfl) = mbmayyfmfl
=—m(m + Dby y "2, (3.37)
which givesh,, 1= (—=1)"m!(m +1)!by and since?Iny = —y~2, we haveb; = —1, that
is
by = (=1)"m!(m — D). (3.38)

The final result is

—m m+1

SMSM (pe 2" ?) = 2(—1)" L4 mi(m — 1)1e" ¥, (3.39)

which, for M = % coincides with the expression Ed..1) argued in[1] by inspection of
the first few cases.

4. Liouville-like equations in SL (2, R); WZNW model

Now, we move to th&L (2, R) structure of Liouville hierarchy. In particular, in this sec-
tion, we will discuss the Zamolodchikov hierarchy of differential equations in the context
of the finite-dimensional representationssli®, R); algebra.

Let us first recall some basic facts about differentiable functionS.g8, C)/SU(2) =
]HI;“. These are associated to vertex operators of string theory on Euclinand
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in particular certain non-normalizable statesIHij describe hermitian representations
of (2, R).

Among the representations of tH&2), affine algebra, there is a set of reducible finite-
dimensional representations that are similar to those o8th@) group and are classified
by an index; as usual. These representations precisely correspond to the classical branch
of the Kac—Kazhdan degenerate states considerg2].imThey are labelled by 2+ 1 =
m € 7+ and are associated to the following functions

@, (zx) = g(’x O A ) L @.1)

which correspond to the Gauss parametrization of the homogeneousSsp2¢€) /SU(2).
They can be related to vertex operator@\dss with Poincaré metric whose sigma model
action is given by

S i dzz <3zt035t0 +23Zxo8g)fo>
2 15
k _
=5 / d?z (8,98:¢ + 9, x09:%0e*?), (4.2)

where the spacetime coordinates and their dependence on the worldsheet varilales(
given by{ro(z,2) = e ?@9  xo(z, 2), Xo(z, 2)}. We will also need the auxiliary functions

B, (z]x) = %(!x — x0(2)[2e?@ 4 0@
x In(|x — x0(2)|%e?@ + ¢, (4.3)
Form = 1 we simply have the identityp1(z|x) = % The most important case is
Da(z]x) = §(|x — x0(2)[e?@ 4 ¢79), (4.4)

which can be thought of as the basic block in the construction of any other function. In fact

m /T m—1
Dy, (z]x) = —<—¢2> s
b

2
- m m=l
Py (z]x) = —| 5 P2 In| 2. (4.5)
T\ 2 2
Then, if one defines the field
T
p(zlx) = -2 ln(Ecbz), (4.6)

the first (n = 1) of Egs.(1.5) becomes simply
Oy 050 = —2e%, (4.7)

which is the Liouville equation with the “wrong sign”, singé = —2 (cf. Eq.(2.9)). Thisis
not a coincidence sina# is actually a metric of constant positive curvature on the sphere
parametrized by (cf. Eg.(2.8)). In this respect we note that it is possible to Weyl rescale
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the metric in such a way that the curvature-bk everywhere except thatat> 3 singular
points. Then, removing the singularities will lead to the standard Liouville equation on the
punctured sphere.

In general, the classical Zamolodchikov relationSlifi2, R), WZNW model, Eq(1.5),
are equivalent to

" [pe 29 = —2mi(m — 1)![e 2"¢]. (4.8)
Notice also that the coefficient on the RHS of the above equation matches the correspond-
ing coefficient in(1.1) upon setting = —2. The decoupling equatioii.8) are

1-m

a0 e 7] = e Y] =0, (4.9)

which are completely analogous to E@$.1), (1.2)in LFT, except for the fact that the
differential operatoD,, is now d?". In other words, whereas in the case of LFT one con-
siders the Riemann surface rather than the upper half-plane, in the present case, that is the
Riemann sphere, the surface corresponds to its universal covering. Thus, in the case of the
Riemann sphere the operators simplifyd, just as in the case of the operatddg, on
the negatively curved Riemann surfaces that essentially red’&@toln other words, the
simplification of the covariant operators on the Riemann sphere corresponds to the simpli-
fication of theD,, once seen ofil, which in turn has the same origin of the simplification
of the Poincaré metric from the Riemann surfacEltas it reduces to/kIm )2, and solves
the Liouville equation in thél variablet, losing its Jacobiait’|2.

As in the case of the upper half-plane, where the Fuchsian projective connection van-
ishes!! the analogous quantity on the Riemann sphere

1
T = —E(ax(p)z + 029 (4.10)

is identically zero. Actually, one sees th@t4) and (4.6) give (3:¢)% = 28§<p. Besides,
we can directly observe the vanishing of thiéx) by noticing that7 (x) = 2¢%/292¢=%/2

and, thus, since the decoupling operators are simply derivativesfe.¥/2 = 0), we
eventually findT' (x) = 0 as a direct consequence.

Therefore, one can immediately conclude that the analogues of the Liouville decoupling
operatorsD,, reduce tod?. In this sense, the variableis atrivializing coordinate. In
order to better understand this statement, notice that upon a change of coordirates,
the projective connectiofi (x) transforms almost like a quadratic differential but not in a
homogeneous way

- 9x\ 2
nw=(£)r@@»+uyk (4.12)

10 ; . m . _ a7 51
More precisely, note that b{8.33)the solutions ofS; " - » = 0, have the common global tem%) "2 ,s0

. m+1 P m—1
thatSﬁ'") Y= (g—ﬁ)_T 9a'¢ =0, wherey = (g—ﬁ)T¢. Therefore, finding the inverse of the uniformizing

map reduces{™ - y = 0 to the trivial equation!” ¢ = 0.
11 since the Fuchsian projective connection is giverfty}, onH we simply have(z, 7} = 0.
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In particular, the presence of the Schwarzian derivative impliesithgtwill be in general
non-vanishing, unlessis a linear fractional transformation of

Furthermore, recall that the varialdéntroduced in LFT plays the role oftaivializing
coordinate. Correspondingly, in terms«afthe LFT decoupling operatoi3,, = Sﬁm) are

328 07 (3,2) 212
4.1. 9.(2, R) covariant hierarchy and AdS3/CF T3 correspondence

In the previous subsection, we showed that the clasSlo@, R), Zamolodchikov re-
lations derived if2], Egs.(1.5), (4.8) are in one-to-one correspondence with the classical
relations derived by Zamolodchikov in LHT], Eq.(1.1). Furthermore, the isotopic coor-
dinatex, which is interpreted as the boundary variable inAld&; /CFT, correspondence
[3], plays the role of drivializing coordinate. This means that the decoupling operators
reduce to simple partial derivative®) andoy’'. Then, theSL(2, R), decoupling operators

are in one-to-one correspondence with the US@ [5], with T thetrivializing coordinate
in LFT.

Because of the physical meaning of variablesi() as the coordinates on the manifold
where the boundary conformal field theory is formulated, we find a motivation to pay
particular attention to these. For instance, let us note that the first relation

3y Dz (zlx) = —2¢7 ), (4.12)

is covariant if and only if the RHS transforms as(&, 1)-differential under a holomorphic
change of coordinates — x. This, in the context of thé\dS;/CFT, correspondence,
amounts to saying that the above operator has conformal wéight = (1, 1) in the
boundary CFT. In fact, the boundary conformal dimensigsundaryis determined by the
highest weightj of the vertex operato®;; 1 via[3]

hboundary= —Js (4-13)

which encodes the fact that the generators of the global conformal symmetry of the bound-
ary correspond to the generators of the gldBal2, C) symmetry ofAdS; [22—24] Be-
sides, observe that ™) is the classical limit of a Kac—-Moody primary operatbs; 1,
whose highest weight is= jlfl = —1[2]. Thus,e? is a(1, 1)-differential in the boundary
variables, as is suggested from the fact that it satisfies the Liouville equation. A similar
analysis shows that the higher order relati@h$), (4.8) are also naturally covariant in the
boundary variables.

Furthermore, observe also that the relations founfjrturn out to be a set of Ward
identities for the boundary CFT. This is due to the fact thaiti®;/CFT» correspondence

12 one may realize an important subtlety here. While the Liouville geometry considered in the last section
has a negative curvature? for 3.(2, R) has a sphere geometry and hence a positive curvature. However, even
though we have fully utilized the Liouville geometry of the negative curvature (Poincaré upper half-plane) to
derive the explicit form of the Zamolodchikov relations, once we have written them down in an algebraic manner
as differential equations, the analytic continuation of the cosmological constant obviously works (see also the
discussion in SectioB.1). Thus the parallelism we propose does not break here.
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states that correlation functions in the BCFT are directly related to correlation functions of
appropriate bulk-boundary operators in the worldsfi&let

<l_[@j,«(xi,fi)> =<l_[/d2Zi ¢j,(Zi,Zilxi,fi)> . (4.14)

worldsheet
Therefore, via Eq(4.14) operator-valued relations on the RHS yield non-trivial Ward
identities for the boundary CFT on the LHS. In particular, E4s5), (4.8)and their quan-
tum counterpart play a special role since the corresponding decoupling operators naturally
involve only the isotopic or boundary coordinates x).13

BCFT

5. SL(2, R) finite representations in WZNW and LFT

Certainly, it is impossible to avoid the question about whether the connection between
Liouville theory andSL (2, R) symmetry we have studied so far is or is not connected with
the other known relations existing between this pair of CFTs. In fact, since the relation
between the WZNW model formulated &h(2, R) and the LFT (or deformations of these
models) frequently appears in different contexts, we find it convenient here to shortly dis-
cuss how the specific connection we point out in this paper relates itself to those other
works linking both conformal theories.

Let us first briefly comment on the geometrical nature of $hé2, R) symmetry, as
being the isometry group of the hyperbolic upper half-plane involved in the uniformization
problem where Liouville theory plays a central role.

The meaning of the decoupling equatiofds8) within the context ofd(2), algebra
is that the Kac—Moody primary field®,, generate a finite-dimensional spjn= ”’T‘l
representation ofL(2, R). This fact is reflected in the polynomial form d@f,, in terms
of x. Thus, the solutions of the decoupling equation that span the representation are the
monomials

Yim=xIT" m=—j, . ] (5.15)
In terms of this realization, the generators of th@) algebra ared = {+, —, 3})

D3 = xdy — j, D™ =—d, Dt = —x%3, +2jx (5.16)
and then, the action of the currents on the vertex operdtpfs|x) is given by

[Js, @) (zl0)] =" D}@;(z]x). (5.17)

13 |n general, the worldsheet correlation functions on the RHS will contain other vertex operators that come
from the CFTs that are combined with theéS3 WZNW factor. For instance, the full (super)string background
may beAdS3 x $3 x M. The presence of these vertex operators that multiply égely; . Z;|x;, X;) may actually
be necessary for the above formula to be covariant. Namely, covariance requires that the full vertex operators
@, (zilx;) x Viy have worldsheet conformal weigttt, 1), whereVyy refers to the vertex operator in the manifold

S3x M.
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The monomialsy; ,, are eigenfunctions OD:;’ and correspond to the usual bagisn) of
the spinj representation ‘

D3jm=mVjm,  DEYjm=(Ej —m)Yjmer. (5.18)

Similarly, the solutions of the classical Liouville decoupling equaﬁ&%*l)x =0spana

spin j representation oBL(2, R)

'L’(Z)j+'"
v(2))

The generators are given by

X],m(z)z s m=_j5"'aj' (5.19)

DP=7@) (i — DT, D =7V,
DY =1/(2)7 (~7%0, +2j7)7(2). (5.20)
As we discussed in Sectid) the S.(2, R) symmetry has a geometrical origin. It corre-

sponds to the isometry group of the hyperbolic upper half-plane. The exponential of the
Liouville field

o TOTG)

(Imt(2))? (>:21)
is invariant undeBL (2, R) transformations. It also follows that forj 2 Z+
e . wl 20\
e =4 Z ‘(_1) <] + m) Xim(@DXj,—m(2)- (5.22)

m=—j

The above expression shows that at the classical level negative powers of the metric are
decomposed into irreducible representationsSof2, R). Likewise, Gervais and Neveu

have shown that at the quantum level there exists a decomposition of these negative pow-
ers of the metric into operators that transform under irreducible representations of the
quantum groupl, (sl(2)) [19]. This observation is the basis of the algebraic approach

to Liouville theory[20,21] Representations d@f, (sl(2)) were also studied by Ponsot and
Teschne25] who expressed the fusion coefficients of Liouville theory in terms of the
appropriate Racah—Wigner coefficients. Certainly, it would be interesting to completely
understand the connection existing between the mentioned algebraic approach and the re-
lation we presented here. This requires further study.

6. Conclusion

We proved that the classical Liouville decoupling operators are given by [350
which once again shows the close relationship between Liouville theory and the theory
of uniformization of Riemann surfaces. This result enables us to defineiaizing co-
ordinater, such that the decoupling operators become simple partial derivativeand
the classical energy—momentum tensor vanishes. Conversely, we showed that the classical
9. (2, R);, Zamolodchikov relations derived if2], Egs.(1.5), (4.8) can be written in a
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manifestly Liouville-like fashion and are in one-to-one correspondence with the classical
relations derived by Zamolodchikov in LHI], Eq. (1.1). In particular, the isotopic coor-
dinatex, which is a boundary variable in thgS;/CF T, correspondence, plays the same
role of atrivializiing coordinate as does. The manifes (2, R) symmetry on the WZNW

side is mirrored by th&L (2, R) isometry of the hyperbolic upper half-plane, wherées.

There are some future directions worthwhile pursuing. First of all, it is important to
extend our results beyond the classical limit (i.e., fiiter k). As we can easily see, the
Zamolodchikov coefficients for the both theories have a similar structure even quantum
mechanically. As was signaled|[i26], the decoupling operator in tfg (2, R);, model has
an explicitly factorized form, while it does not in the Liouville (Virasoro) case. Therefore,
the connection at the quantum level may suggest an elegant way to derive Virasoro decou-
pling operators explicitly. In this context, the Hamiltonian reduction may be also useful.
Furthermore, the geometrical meaning of the Zamolodchikov coefficients will shed a new
light on the quantum LFT itself.

Secondly, our results have an obvious application té\ttg /CFT» duality. As we have
discussed in Sectiof the Zamolodchikov relations in tt& (2, R) model provide a set of
Ward identities for the boundary CFT after the integration over the worldsheet coordinate
In the case of the Liouville theory, it is believed that constraints from the Zamolodchikov
relations will give an important clue to the integrability of the minimal string theory (even
in higher genus). Therefore, it is very plausible, in view of the correspondence between
the two theories discussed in this paper, that further study of the Zamolodchikov relations
in the 9.(2, R); model will yield a hint towards the complete solution of thdS;/CFT»
correspondence.

Finally, the fact that the inverse uniformizing mag;) becomes a trivializing coordi-
nate of the Liouville decoupling equation in the classical limit suggests the introduction
of a quantunt (z) as a fundamental block of the quantization of the LFT. In the literature
(e.g.,[19,21) some attempts of the quantization based on the Backlund transformation
were discussed in the case of the simple geometry. On more complicated Riemann sur-
faces, the non-trivial global transformation of;) besides the univalence should play an
important role. The quantization of such a “scalar” with non-trivial global transformation
properties will be an interesting problem and also useful for the quantization of the Liou-
ville theory on the higher genus Riemann surfaces.
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Appendix A. Matrix formulation and explicit form of Virasoro null vectors

Here we give another independent proof of the fact that the classical decoupling oper-
atorsD,, coincide with the USG5 defined in Sectior. The strategy is the following.
First we introduce a nice and compact way to express our operators as “formal determi-
nants” of matrices. In particular, as found[8], this leads to an explicit formulation of the
quantum decoupling operatdr, 1. Taking the classical limit, we recover the usy.

A.1l. Operatorsas matrices

Now we explain how to write a general operator as a formal determinant of a matrix.
First we need a realization of tt#y2) algebra in the: x n space of matrices (we use also
2j +1=n). We take

[J—]p,q = 8p,q+1» [JO]p,q =J—-p+ 1)8p,q=
[J+lpg = p(n— P)8p+l,q‘ (A.1)

These matrices satisfy the commutation relatidas; J+] = +J+, [J4, J-] = 2Jo. We

call a generic operatap,,, and the corresponding matrix opera@r =—J_+ A, where

A is an upper triangular matrix. The operatoy is the formal determinant of the matrix
operatorO The formal determinant is defined as follows. We ﬁe& (f1, f2, ...y fu)
and F = (Fo,0,...,0). If the matrix satisfies the relatiol = On f then its formal de-
terminant sansﬂesVo = O, f,. There are a lot of matrices that correspond to the same
operator, so we can make a sort of gauge transformation for matrices. W takean up-

per triangular matrix with one on the diagonal. Two matrix operators related by the gauge
transformation

0, =N"10,N (A.2)
define the same differential operatfr.

A.2. The Virasoro null vector (n, 1)

The operatoiD,, 1, which annihilates the level null Virasoro primary, is obtained as
the formal determinant of the following matrix operaf8}:

o0
lA)n,l = —J_ —|— Z(b21+)kL_k_1. (AS)
k=0

To take the classical lim[t] we sendb — 0, L_1 — d. and 2k —2)!b2L_; — d.*—2T
atk > 1. By using(2.12) the classical decoupling operator is

N 1
D,=—-J_+d;1+ E{T’Z}]“L' (A.4)
14 Note that alsav—1 is an upper triangular matrix with 1 on the diagonal. The gauge transformation on the

vector(fy, ..., fn) leavesf, invariant, and on the vectary, O, ... ., 0) leavesfy invariant. At the end the formal
determinant takes into account only the dependengf &fom f;,.
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This is indeed the matrix formulation of the USO. In fact, defining the logarithmic deriva-
tive I = /v’ and making the following gauge transformation

b, = e—lJ+/23§n)el]+/2 (A.5)
we obtain
SW = —J_ 4+d1-1J. (A.6)

The formal determinant is equivalent(tb.10)

Appendix B. Schwarzian operators and Schwarzian derivative

The operatorsﬁm) depends o, = d,¢ only through the classical energy—momentum
tensor

T={t,z} ={d:0,2) = —%(azso)% 32¢. (B.1)

In order to prove this, we are going to show that the variation of the operator under a
deformation ofp, that keeps” invariant is vanishing271].
First of all, for§T to be vanishing we need

8T = 0:8¢; — p:6¢; = (3; — ¢:)3¢, = 0. (B.2)
The crucial observation is that this is equivalent to
(0; — jpz)d¢; = b¢; (8z -(- 1)901) < Ajdp;=0¢:Aj-1, (B.3)
whereA; = 9, — jg,. On the other hand, since
S = S — 019y ¢, ... 0,e7¥0,eY (B.4)
can be rewritten as
S = S@IHD = (10, ¢71¢) (=19 ,e~U=D9) ... (7197, 1%)
=AjAj 1 A_(j_pnA_j (B.5)
one finds
8S@ITY —§A;A; 1 A_j+ASAj_1-A_j+ -+ AjAj_1---8A_;
=—jdpAj_1-A_j—(j—DASg, - A_j+ -
:_j&/)zAj—l"'A—j _(] _1)8¢1Aj—1"'A—j+"'

j
= ( > k)agoZAj_l-.-A_j =0. (B.6)

k=—j
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Appendix C. Classical Zamolodchikov relations, Il

Here we show another way to derive the classical Zamolodchikov relations. First of all
note that

2j+1

S@IHD §RIHD (pe=i¢) = §@I+D Z Br.2j+10ke ™%, (C.1)

k=0

where we used

§@i+D (pei%) = oU+De (efwaz)zfﬂq, (C.2)
and

J4
(€0:) ' 0=e"" Burgl. (C.3)
m=0

The latter formula is valid because one can express a higher order derivagivie tdrms
of ¢, and the energy—momentum tensor together with its derivatives. Then, since

e (9P 1) = e 2 + D9 :0:0 = ¢ (2) + Vg Me?

=) + Mg (C.4)
one finds that

5@i+h ((p22j+1e—jw) — e(j+1)¢(e—¢32)2j+1(%2j+1)

= (2j + D)IM%HLi+De (C.5)
and likewise
$@ItD (gke=i?) =0 (C.6)
fork <2j + 1. Hence
SCIHD @I (9eI9) = B4 9j41(2) + 1)IMP HLUHDe, (C.7)

One can evaluaté,; 1,2;+1 by induction. In fact

(e_¢ az)@-i-lw

14
gt
=e Y97 Z B, el

m=0
14
— m— 1
e 3 [azﬂmw? — 1<T + égof) = Eﬂm,ﬂ(p;n+li|, (C.8)
m=0

which implies that

(n—21)!

14
Be+1,e41= _E,BZ,E = Baun= (—1)n+lW- (C.9)
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Finally

@n!
22

S@IHD gD (pei%) = (—1)% (2] + 1)IMZHLU+De (C.10)

. . . , . —1
which is exactly Zamolodchikov’s resy(t.1) once we usg = “5-=.

References

[1] Al. Zamolodchikov, Higher equations of motion in Liouville field theory, hep-th/0312279.
[2] G. Bertoldi, G. Giribet, Zamolodchikov operator-valued relationsJof2, R);, WZNW model, Nucl. Phys.
B 701 (2004) 481, hep-th/0405094.
[3] J. de Boer, H. Ooguri, H. Robins, J. Tannenhauser, String theo’dsy, JHEP 9812 (1998) 026, hep-
th/9812046;
O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, LArdield theories, string theory and gravity,
Phys. Rep. 323 (2000) 183-386, hep-th/9905111.
[4] J. Maldacena, H. Ooguri, Strings #dS3 and theSL(2, R) WZW model. Part 1: The spectrum, J. Math.
Phys. 42 (2001) 2929-2960, hep-th/0001053;
J. Maldacena, H. Ooguri, StringsAuSz and theSL (2, R) WZW model. Part 3: Correlation functions, Phys.
Rev. D 65 (2002) 106006, hep-th/0111180.
[5] M. Matone, Uniformization theory and 2D gravity, 1: Liouville action and intersection numbers, Int. J. Mod.
Phys. A 10 (1995) 289, hep-th/9306150.
[6] L. Bonora, M. Matone, KdV equation on Riemann surfaces, Nucl. Phys. B 327 (1989) 415.
[7] L. Benoit, Y. Saint-Aubin, Degenerate conformal field theories and explicit expressions for some null vec-
tors, Phys. Lett. B 215 (1988) 517.
[8] M. Bawuer, P. Di Francesco, C. ltzykson, J.-B. Zuber, Covariant differential equations and singular vectors in
Virasoro representations, Nucl. Phys. B 362 (1991) 515.
[9] P. Zograf, L. Takhtajan, On uniformization of Riemann surfaces and the Weil-Petersson metric on Teich-
muller and Schottky spaces, Math. USSR Sh. 60 (1988) 297-313.
[10] L. Takhtajan, Liouville theory: quantum geometry of Riemann surfaces, Mod. Phys. Lett. A 8 (1993) 3529,
hep-th/9308125.
[11] M. Matone, Quantum Riemann surfaces, 2D gravity and the geometrical origin of minimal models, Mod.
Phys. Lett. A9 (1994) 2871, hep-th/9309096.
[12] M. Matone, Nonperturbative model of Liouville gravity, J. Geom. Phys. 21 (1997) 381, hep-th/9402081;
G. Bonelli, P.A. Marchetti, M. Matone, Nonperturbative 2D gravity, punctured spheres and theta vacua in
string theories, Phys. Lett. B 339 (1994) 49, hep-th/9407091;
G. Bonelli, P.A. Marchetti, M. Matone, Algebraic—geometrical formulation of two-dimensional quantum
gravity, Lett. Math. Phys. 36 (1996) 189, hep-th/9502089.
[13] L. Takhtajan, Liouville theory: Ward identities for generating functional and modular geometry, Mod. Phys.
Lett. A 9 (1994) 2293, hep-th/9403013;
L. Takhtajan, Topics in quantum geometry of Riemann surfaces: two-dimensional quantum gravity, in: Como
Quantum Groups, 1994, pp. 541-580, hep-th/9409088.
[14] L. Alvarez-Gaumé, C. Gémez, Topics in Liouville theory, in: J. Harvey, et al. (Eds.), Proceedings of the
1991 Trieste Spring School on String Theory and Quantum Gravity, World Scientific, Singapore, 1992.
[15] P. Ginsparg, G. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011.
[16] Y. Nakayama, Liouville field theory: a decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771,
hep-th/0402009.
[17] M. Aganagic, A. Klemm, M. Marino, C. Vafa, The topological vertex, hep-th/0305132;
M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino, C. Vafa, Topological strings and integrable hierarchies,
hep-th/0312085.
[18] L. Bonora, A. Lugo, M. Matone, J. Russo, A global operator formalism on higher genus Riemann surfaces:
B—C systems, Commun. Math. Phys. 123 (1989) 329.



G. Bertoldi et al. / Nuclear Physics B 709 [FS] (2005) 522-549 549

[19] J.-L. Gervais, A. Neveu, The dual string spectrum in Polyakov’s quantization, 1, Nucl. Phys. B 199 (1982)
59;
J.-L. Gervais, A. Neveu, Dual string spectrum in Polyakov's quantization, 2: mode separation, Nucl. Phys.
B 209 (1982) 125;
J.-L. Gervais, A. Neveu, New quantum treatment of Liouville field theory, Nucl. Phys. B 224 (1983) 329;
J.-L. Gervais, A. Neveu, Novel triangle relation and absence of tachyons in Liouville string field theory,
Nucl. Phys. B 238 (1984) 125;
J.-L. Gervais, A. Neveu, Green functions and scattering amplitudes in Liouville string field theory, 1, Nucl.
Phys. B 238 (1984) 396;
J.-L. Gervais, A. Neveu, Locality in strong coupling Liouville field theory and string models for seven-
dimensions, thirteen-dimensions and nineteen-dimensions, Phys. Lett. B 151 (1985) 271.

[20] J.-L. Gervais, The quantum group structure of quantum gravity in two-dimensions, in: Proceedings, Random
Surfaces and Quantum Gravity, Cargese, 1990, pp. 347-361 (see High Energy Physics Index 30 (1992)
No. 17911).

[21] J. Teschner, Liouville theory revisited, Class. Quantum Grav. 18 (2001) R153-R222, hep-th/0104158;
J. Teschner, Quantum Liouville theory versus quantized Teichmuller spaces, Fortschr. Phys. 51 (2003) 865,
hep-th/0212243,;
J. Teschner, On the relation between quantum Liouville theory and the quantized Teichmdiller spaces, hep-
th/0303149;
J. Teschner, A lecture on the Liouville vertex operators, hep-th/0303150;
J. Teschner, From Liouville theory to the quantum geometry of Riemann surfaces, hep-th/0308031.

[22] J.M. Maldacena, The larg¥' limit of superconformal field theories and supergravity, Adv. Theor. Math.
Phys. 2 (1998) 231-252, Int. J. Theor. Phys. 38 (1999) 1113-1133, hep-th/9711200.

[23] J.M. Maldacena, A. StromingefdSs black holes and a stringy exclusion principle, JHEP 9812 (1998) 005;
hep-th/9804085.

[24] A. Giveon, D. Kutasov, N. Seiberg, Comments on string theonjd®s, Adv. Theor. Math. Phys. 2 (1998)
733, hep-th/9806194;
D. Kutasov, N. Seiberg, More comments on string theonAd&s, JHEP 9904 (1999) 008, hep-th/9903219.

[25] B. Ponsot, J. Teschner, Liouville bootstrap via harmonic analysis on a non-compact quantum group, hep-
th/9911110;
B. Ponsot, J. Teschner, Clebsch—Gordan and Racah—Wigner coefficients for a continuous series of represen-
tations oft4, ((2, R)), Commun. Math. Phys. 224 (2001) 613-655, math.QA/0007097.

[26] H. Awata, Y. Yamada, Fusion rules for the fractional Ie@ algebra, Mod. Phys. Lett. A 7 (1992) 1185.
[27] P. Di Francesco, C. ltzykson, J.-B. Zuber, Classical W-algebras, Commun. Math. Phys. 140 (1991) 543.



	Zamolodchikov relations and Liouville hierarchy in SL(2, R)k WZNW model
	Introduction
	Uniformizing Schwarzian operators
	The PSL(2,C) gauge invariance of S(m)tau

	Uniformization and Poincaré metric
	The Liouville equation
	The inverse map and the covariant Schwarzian operator
	The uniformizing equation
	PSL(2,R) symmetry

	USO and classical Zamolodchikov relations
	Gauge invariance of the USO from the local univalence of tau
	Classical decoupling operators in Liouville theory
	Classical Zamolodchikov relations

	Liouville-like equations in SL(2,R)k WZNW model
	SL(2,R) covariant hierarchy and AdS3/CFT2 correspondence

	SL(2,R) finite representations in WZNW and LFT
	Conclusion
	Acknowledgements
	Matrix formulation and explicit form of Virasoro null vectors
	Operators as matrices
	The Virasoro null vector (n,1)

	Schwarzian operators and Schwarzian derivative
	Classical Zamolodchikov relations, II
	References


