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Abstract

Principal component analysis is a technique widely used for studying the move-

ments of proteins using data collected from molecular dynamics simulations. In spite

of its extensive use the technique has a serious drawback: equivalent simulations do

not afford the same PC-modes. In this article we show that concatenating equivalent

trajectories and calculating the PC-modes from the concatenated one significantly en-

hances the reproducibility of the results. Moreover, the consistency of the modes can

be systematically improved by adding more individual trajectories to the concatenated

one.

∗To whom correspondence should be addressed
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Introduction

The understanding of how proteins work needs a joint description of their dynamical and

structural characteristics. Molecular dynamics (MD) simulations constitute a powerful ap-

proach to investigate their dynamical features. Within this framework, the use of principal

component analysis (PCA) has emerged as one of the most widely employed techniques to

analyze protein movements.1–4 The methodology was introduced in MD studies of proteins

by Karplus et. al.,5,6 but it has also been extensively used in other branches of science and

technology.7,8

In MD studies, PCA is mainly applied to change from a description based on local

atomic coordinates to one provided by collective coordinates, called the PC-modes. They

describe the simultaneous motion of different parts of the protein. The PC-modes are the

eigenvectors of the covariance matrix, which is calculated with the configurations sampled

from a MD trajectory.1 A key feature of PCA is that only a bunch of PC-modes, those

associated with the highest eigenvalues, account for approximately 70% to 90% of the total

fluctuations of the protein.9–11 This allows for a huge reduction in the number of degrees of

freedom required to indicate the deformations of the system: just a few PC-modes provide

a description equivalent to hundreds or thousands of atomic coordinates. The subspace

formed by the PC-modes associated to the largest eigenvalues is called the essential space

(ES). It is usually assumed that the motions related to the biological function of a protein

are contained within its ES.12–15 The remaining PC-modes account for irrelevant, small-

amplitude fluctuations. It is said that they span the “near-constraint subspace” which is

normally of no interest.16

In spite of the many examples in which PCA has proved to be useful, the PC-modes

calculated by the standard procedure have an undesirable characteristic that casts doubts

on their actual significance and utility: equivalent simulations do not afford the same PC-

modes.17–19 This lack of reproducibility can be assessed by calculating the inner product

between PC-modes obtained by equivalent but independent MD simulations. Ideally the
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absolute value of these inner products should be 1.0 for modes having the same index and

zero otherwise. A less restrictive condition consists of requiring that the ESs obtained by

equivalent simulations describe the same subspace. The parameter that evaluates the overlap

between such subspaces is called the root mean squared inner product (RMSIP), and has

been widely used to assess the convergence of the main PC-modes of proteins. The RMSIP

is equal to 1.0 if the two ESs span the same subspace while it is zero if they are orthogonal.

It is also a common practice to calculate the RMSIP with the ESs obtained from different

halves of the same trajectory, using increasingly longer simulation times. This is done to

evaluate the convergence of the main PC-modes with respect to the length of the simulation.

This test has been applied to many different systems and in all cases the same qualitative

result was obtained.20–26 Initially the RMSIP grows fast, but then it levels out reaching a

plateau value which is sensibly smaller than 1.0. This behavior indicates that extending the

simulation time, within the ranges typically used in current MD simulations, is not effective

to improve the convergence of the ES.

Many studies have focused on evaluating the main features of protein PC-modes.27–31

They comprise from small soluble proteins to large membrane proteins, and from short

simulations of just a few ns to relatively long simulations of more than 50 ns. In all cases it

was found that the main PC-modes obtained by equivalent trajectories were different, and

that the RMSIP computed from them was smaller than one. In this article we show that the

consistency of the PC-modes can be improved by employing a correlation matrix obtained by

concatenating independent but equivalent trajectories. The performance of the procedure

is demonstrated by applying it to the principal component analysis of bovine pancreatic

trypsin inhibitor (BPTI) and lyzozyme.

The use of PCA of concatenated trajectories was introduced by Berendsen and co-workers

in 1995.32 Since then, it has been widely used as one of the diverse tools employed to charac-

terize the most relevant motions of proteins and other systems of biological interest. However,

the results of those studies were interpreted on intuitive foundations since analytical formulas
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showing the precise meaning of the eigenvectors and eigenvalues obtained by concatenated-

PCA had not been provided. Recently we presented such analytical expressions and discussed

that two opposite limits could be found.24 One extreme case occurs when the trajectories

belong to two or more free energy minima, and the root mean square deviations between

these minima are significantly larger than the typical fluctuations around them (i.e. the tra-

jectories cannot go from one minimum to the other). This case was thoroughly analyzed

in Ref. 24. The other extreme occurs when the concatenated trajectories are initiated and

remain within the same free energy well. The method proposed in this article is aimed to

univocally determine the main PC-modes in this case. We note that only in this situation the

ES of a protein contains a set of collective coordinates useful to describe the most important

fluctuations. When multiple minima are implied the main PC-modes contain the so-called

“static contribution”.24 It can partially or completely mask the “dynamic contribution” of

protein fluctuations.

Concatenated trajectories have also been used for other purposes. In particular, they were

employed in different methodologies developed to characterize protein folding processes. In

these methods, the concatenation has to be performed following specific prescriptions aimed

to accelerate the conformational sampling. Important examples of these applications can be

found in Ref. 33 - 34 and the references cited wherein. The analysis of the PC-modes obtained

with this kind of trajectories lies outside the scope of this article. Instead we concentrate

on the characterization of the dynamics of stable conformations of proteins, whose main

PC-modes have a clear and straightforward interpretation as collective coordinates useful to

describe their most important fluctuations.

Materials and Methods

Statement of the problem
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In applications of PCA to the study of protein dynamics, the PC-modes are obtained by

diagonalizing a correlation matrix whose elements are given by,

Cij =
1

N

N
∑

k=1

(xk
i − xi)(x

k
j − xj). (1)

Here xk
i , x

k
j , are a pair of elements of vector xk, which describes the configuration of the

system at time step k, while xi and xj are their average values calculated from the N

structures sampled in the MD simulation. Normally, x is a vector containing the Cartesian

coordinates of the Cα atoms of the protein, but other choices can also be used.35–37 During

the setting of any MD simulation several parameters are chosen at random. Besides, the

sampling interval and the time at which the first structure is recorded are arbitrarily decided.

Therefore the atomic coordinates of the selected structures are random numbers too, as are

random the Cij coefficients calculated from them.

For an infinite long simulation, from which an infinite number of samples could be taken,

the Cij coefficients would assume perfectly defined values, free of statistical errors. However,

infinite long simulations are not possible and the experience indicates that currently feasi-

ble simulations are not long enough to produce correlation matrices with sufficiently small

statistical uncertainties. Thus, if C∞ is the correlation matrix corresponding to an infinite

long sampling and C is a correlation matrix computed from a finite number of samples, the

relation between them can be written as,

C = C∞ + E, (2)

where the elements of matrix E contain the statistical errors of the correlation coefficients

computed from the sample. Since the elements of E are different than zero, the eigenvalues

and eigenvectors of matrix C differ from those of the actual correlation matrix C∞. These

discrepancies can be estimated if the elements of E are small enough and fulfill some defined

characteristics (i.e. they are normally distributed).38 Such estimations have successfully been
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done in applications of PCA to other branches of science, technology and economy.39,40

Recognizing that infinite sampling is not possible, one faces the problem of determining

which sampling procedure minimizes the statistical error of the results. The use of increas-

ingly longer simulations is normally employed but, as already described in the introduction,

such strategy does not lead to the desired result. Alternatively, one can use several equiv-

alent MD simulations that just differ from each other in the initial velocities of the atoms.

We recently demonstrated that the correlation matrix C(n), obtained by concatenating n

trajectories with the same number of samples can be decomposed as,24

C(n) =
1

n

n
∑

i=1

Ci + S(n). (3)

Here Ci is the correlation matrix corresponding to the i-th trajectory while S(n) is the

correlation matrix computed from the n average structures. If the individual MD simulations

were able to sample all regions of the accessible configurational space, trajectories that just

differ in their initial atomic velocities would produce almost the same average structures.

In this case matrix S(n) should be significantly smaller than the Ci matrices, because the

deviation of the individual average structures with respect to the global average would be

much smaller than the fluctuations observed in any single trajectory. Under such conditions,

the correlation matrix of the concatenated trajectory becomes quite close to the average of

the individual correlation matrices, C(n)
av .

C(n) ≈ 1

n

n
∑

i=1

Ci = C(n)
av . (4)

According to the Classical Central Limit Theorem the last equality implies that for large

values of n, the statistical uncertainty in the elements of C(n)
av will be smaller than those

of the Ci’s by a factor of about 1/
√
n. Thus, one is induced to think that concatenating

trajectories should provide a route for obtaining reproducible PC-modes.

However, it could also happen that the single trajectories are relatively short or get
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trapped and sample only a portion of the available configurational space. In such case,

the individual averages will be disperse with respect to the global average structure and

matrix S(n) will not be negligible. Even in this apparently adverse condition, the correlation

matrix of the concatenated trajectory can still be equal to the average of some conveniently-

defined correlation matrices Ci. To see how to achieve this, one has to recognize that matrix

C(n) remains unchanged with respect to any permutation of the structures used to compute

it. Usually, structures 1 to N correspond to the first simulation, structures N + 1 to 2N

to the second one, and so on. However one can shuffle the nN structures employed to

calculate C(n) and then divide them into n sets of N arbitrarily-selected structures. Any

of these new sets will have structures originated from different MD simulations. Therefore,

for sufficiently large n and N , the average structures of these sets will be pretty similar to

each other, and the new S(n) matrix will be negligible with respect to the new C(n)
av . Thus,

the shuffling procedure does not affect C(n) but it changes C(n)
av and S(n), in such a way

that their changes mutually compensate. When the structures sampled from a single MD

simulation are biased, the correlation matrix computed from them underestimates the actual

correlations. This occurs because the deviations of the sampled structures with respect to

their own average are smaller than their deviations with respect to the true average. For

the same reason, also matrix C(n)
av underestimates the actual correlations. The calculation of

matrix C(n) corrects this error because the correlations that get lost in C(n)
av appear in S(n).

We therefore conclude that, even if the individual trajectories perform a biased sampling of

the available configurational space, matrix C(n) converges to an average of n conveniently-

defined individual correlation matrices. Accordingly, its statistical uncertainly is reduced by

a factor of 1/
√
n.

In what follows, we will refer to matrix C(n) as the correlation matrix of the concatenated

trajectory. However, from the previous discussion, it should be clear that there is not a real

need to “concatenate” the trajectories, since any order of the whole set of structures produces

the same result. The key point here is to compute the correlation matrix using structures
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sampled from multiple equivalent trajectories.

Molecular dynamics simulations

Principal component analysis of BPTI and lysozyme were used to test the consistency of the

PC-modes. The initial coordinates of the proteins were obtained from the Protein Data Bank,

ID=5PTI for BPTI41 and 1REX for lysozyme.42 The systems were solvated in a truncated

octahedral cell of TIP3P explicit water molecules and minimized at constant volume. In a

second stage they were heated at constant volume from 0 K to 310 K during 1 ns, using the

weak coupling algorithm with τP=2.8 ps. After that, we switched to constant temperature

and pressure conditions using a value of 2.0 ps for both, τTP and τP. Finally, an equilibration

run of 10 ns was performed. For each system, the final structure of the equilibration stage was

used as the initial configuration of the production runs. We run 180 equivalent trajectories

of 5 ns and 80 trajectories of 50 ns for each system. These trajectories just differed in the

initial velocities of the atoms, which were chosen from a maxwellian distribution at 310 K.

Snapshots were taken every 25 ps in the 5-ns trajectories and every 250 ps in the 50-ns

trajectories.

The simulations were performed with the AMBER 14 package using the ff99SB force

field, applying periodic boundary conditions with a cutoff of 12.0 Å. The shake algorithm

was employed to maintain bond distances to hydrogen, allowing for a time step of 2.0 fs.

We tested that the projections of the individual trajectories onto their first two PC-modes

did not resemble cosine functions.43 Also, it was checked that the RMSIP calculated from

different halves of the same trajectory was converged with respect to the simulation time.20

Thus, any of the individual simulations employed in this work would pass the convergence

assessments usually applied in PCA studies of protein.
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Measurements of the convergence

The convergence of PCA is usually evaluated by comparing the PC-modes obtained from a

reference trajectory against the ones derived from trial trajectories whose convergence one

is trying to evaluate. Normally the reference trajectory is much longer than the trial trajec-

tories or it has been obtained with procedures that improve the conformational sampling.

This kind of assessment is based on the assumption that the reference trajectory provides

a fair enough sampling, so that its PC-modes are already converged. Here we apply a cri-

terion that does not require the a-priori knowledge of such reference trajectory. Instead,

we consider that the PC-modes or the essential space of a protein are converged when two

alternative but otherwise equivalent computations afford the same PC-modes or ESs. The

similarity between the PC-modes and ESs of the alternative computations were measured

using different parameters. They are described in the following paragraphs.

We analyzed the absolute value of the scalar product between corresponding PC-modes

calculated from alternative simulations a and b, |PCa
i · PCb

i |, with particular emphasis on the

first mode, PC1. We also employed the RMSIP, which measures the common portion of the

ESs determined from the pair MD simulations,

RMSIPM =

√

√

√

√

√

1

M

M
∑

i=1

M
∑

j=1

|PCa
i .PC

b
j|2. (5)

Here M denotes the dimension of the subspaces while PCa
i and PCb

j are the i-th and j-th

eigenvectors obtained from simulations a and b, respectively. In our analysis, we set M = 2

since it is a common practice to analyze protein motions in the subspace spanned by the first

two eigenvectors.18,25,28,44–46 It should be noted that the use of M = 2 makes the evaluation

as strict as possible. Finally, for each pair of trajectories, we also evaluated the covariance

overlap, s, proposed by Hess.43 The overlap is not a measure of the convergence of the

essential space. Instead, it assesses the similarity of the spaces sampled from a given pair of
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trajectories. The overlap is defined as,

s = 1− dN (Ca,Cb) , (6)

where dN is the normalized distance between the correlation matrices Ca and Cb. The

normalized distance is calculated as

dN (Ca,Cb) =





tr
(

Ca +Cb − 2C1/2
a C

1/2
b

)

tr (Ca) + tr (Cb)





1/2

, (7)

where C1/2
α , the square root of correlation matrix Cα, is calculated as,

C1/2
α = Rα Λ1/2

α RT
α . (8)

In the last equation Rα is the matrix that diagonalizes Cα and Λα is the diagonal matrix

that contains its eigenvalues. When two independent simulations afford the same sampling,

the two correlation matrices are the same, the distance between them is zero and the overlap

amounts to 1.0. On the contrary, if the subspaces sampled in the simulations are orthogonal,

the normalized distance evaluates to 1.0 and the overlap is zero.

Results

Each individual simulation was used to compute a set of PC-modes. Therefore, for each

system, we obtained 180 sets of PC-modes with the 5-ns trajectories and 80 sets with the

50-ns trajectories. For both, BPTI and lysozyme, PC-mode sets computed from trajectories

of equal length were grouped into pairs. All possible pairs were generated. Thus, we formed

16110 pairs with the trajectories of 5 ns and 3160 pairs with the trajectories of 50 ns. For

each pair we calculated the absolute value of the inner product |PCa
i · PCb

i |, the RMSIP2

and the overlap. This allowed us to estimate reliable probability distributions for the three
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parameters.

To evaluate the hypothesis that concatenating trajectories improves the reproducibility

of the PC-modes we collected individual simulations of equal length into batches of n sim-

ulations, so that each trajectory was allocated into a single batch. Then, we concatenated

the trajectories of a given batch and computed C(n), the correlation matrix of the concate-

nated trajectory. Finally, the reproducibility of the PC-modes so obtained was assessed by

computing |PCa
i · PCb

i |, RMSIP2 and overlap, for all possible pairs of batches formed with

the given n. We tried different values of n. In Table 1 we present the alternative values of n

employed in this work, along with the number of batches and the number of pairs of batches

that can be formed with the given n.

PC modes from single trajectories of BPTI

Figure 1 shows the probability distributions for |PCa
1· PCb

1|, calculated from all the indepen-

dent simulations of BPTI. The vertical black line indicates the value of the inner product

that corresponds to 99% of cumulative probability, for normalized random vectors of the

same size. The cumulative probability was evaluated as,

Pcum(x
∗) =

∫ x∗

0
ρ(x)dx, (9)

where ρ(x) is the probability density that a random vector of dimension M has a square

projection x onto a subspace of dimension m. For the present case M = 58× 3 = 174, since

the model of BPTI has 58 residues, while m = 1 since we are considering the projection onto

a single PC-mode. According to the equations provided by Amadei et. al. in Ref. 20, ρ(x)

is given by,

ρ(x) =
(M − 1)!

(m− 1)!(M −m− 1)!
x(m−1)(1− x)(M−m−1), (10)

that in our case simplifies to ρ(x) = (M − 1)(1− x)(M−2).

It is seen that the scalar product between the first PC-modes of individual MD simulations
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affords significantly larger values than those expected for random vectors. However very low

values, which imply almost orthogonal PC1, are likely to be obtained too. Figure 1 also shows

that the reproducibility of PC1 is better for the trajectories of 50 ns than for those of 5 ns.

However, even for these longer simulations, pretty low values of the scalar product are usually

found. The distributions presented in Fig. 1 remind the ones reported by Grossfield et. al.31

who analyzed the reproducibility of PC1 for different membrane systems, using relatively

long trajectories. Thus, Fig. 1 does not provide new evidence about the characteristics of

PC1 obtained from individual MD simulations, but just reinforces the conclusion that its

direction is random to a large extent.

Fig. 2 presents typical examples for the inner-product matrices formed with the first six

PC-modes of two equivalent simulations. Ideally, the out-of-diagonal elements should be

null. The pictures presented in Fig. 2 differ from this ideal, indicating that the first PC-

modes of a given simulation are mostly distributed among the first PC-modes of the other

simulation. This characteristic has already been described for other systems.27,47 Because

of this behavior, it is more difficult to obtain a one-to-one correspondence between the

individual PC-modes than to converge the subspace spanned by some of them. This is in

fact the conclusion afforded by the probability distributions of RMSIP2, presented in Fig. 3,

which show that pretty low values of RMSIP are rather unlikely. However, the agreement

for RMSIP2 is still far from satisfactory since the most likely values are just ≈0.55 (5-ns

trajectories) and ≈0.65 (50-ns trajectories). The probability distributions for the covariance

overlap are also presented in Fig. 3. They are somewhat narrower than those of RMSIP2 and

their maxima are shifted to the left. In spite of these differences the conclusions attained from

both distributions, RMSIP2 and overlap, are similar. We finally note that the distributions

obtained with the longer trajectories are shifted to the right of those computed with the

shorter ones. Thus, increasing the simulation time helps to improve the reproducibility of

the essential space but, as noted above, the results are still far from satisfactory.
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PC modes from the concatenated trajectories of BPTI

Figure 4 shows the evolution of the overlap and RMSIP2 as the number of simulations in the

concatenated trajectory, n, is increased. For the short trajectories one can readily appreciate

that both, overlap and RMSIP2, raise very rapidly between 1 and 30 trajectories. Then there

is a change of behavior and the two parameters variate more slowly. In particular, the overlap

seems to level out at about n = 60 where it reaches a value of 0.88. The increase of RMSIP2,

on the other hand, does not stop after n = 60 but just becomes slower. For n = 90 we found

a RMSIP2 of 0.98 indicating that the subspaces spanned by the first two PC-modes of such

concatenated trajectories are nearly the same. RMSIP2 and overlap of the long trajectories

also increase with n. However, in this case, the initial improvement is not so marked as

in the case of the short trajectories. This is mainly because the two parameters start from

higher average values. In this case, we found a RMSIP2 of 0.98 for n = 40. For this n the

overlap evaluates to 0.89.

The fact that the RMSIP2 is almost fully converged while the overlap is not indicates that

the first two PC-modes are mostly contained in the subspace shared by the two concatenated

trajectories, while the orthogonal subspace accounts for the non-important PC-modes. Be-

sides, this reveals that the first PC-modes converge faster than those corresponding to higher

indexes. This is really a good characteristic since PCA is normally used to reduce the di-

mensionality of the system under analysis. The concatenated-PCA technique can reliably

determine the subspace that contains the most important collective motions of the protein,

even though the sampling of the available configurational space is still not perfect.

In general, for a given n, RMSIP2 calculated from the 50-ns trajectories gets higher

averages than those derived from the 5-ns trajectories. For example, for n = 5, the average

of RMSIP2 is 0.68 for the short trajectories and 0.78 for the long ones. For n = 20, the

values are 0.82 and 0.90, respectively. However, the benefits of concatenating trajectories

become more evident if one considers not just the average values but the whole range of

possible outcomes, for an equivalent simulation time. Thus for example, by concatenating
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10 trajectories of 5 ns we obtained an average RMSIP2 of 0.74. Exactly the same average

was obtained for single trajectories of 50 ns. But, in the former case, the range of possible

outcomes was 0.53-0.96 while in the second one it was 0.09-0.96. A closer inspection to the

results presented in Fig. 4 shows that the increase in the average values of RMSIP2 with n

is mainly caused by the increase in the minimum values while the maxima are all similar.

Thus, by doing a principal component analysis with concatenated trajectories one can avoid

obtaining really ill-defined PC-modes.

It remains to be checked how the reproducibility of the individual PC-modes variates

with the number of simulations included in the concatenated trajectory. In the following,

we will just present the results obtained with the 5-ns trajectories. The previous discussion

demonstrates that it is more difficult to obtain consistent PC-modes in this case than with

the longer trajectories. Figure 5 shows typical inner product matrices for the first six PC-

modes obtained from C(n), for n = 10, 20, 30 and 90. For n = 90 we only have one matrix

to show. For n = 10, 20 and 30 we have several options and decided to show matrices

that present an average behavior. This is, neither the best nor the worst matrix for the

given value of n, but an intermediate one. The improvement in the reproducibility of the

individual PC-modes can be clearly seen. By increasing n, the elements in the diagonal or

their closest neighbors reach significant values, while more distant elements become smaller.

For n = 90, the inner product between the two PC1 is 0.979, while that of the PC2 is 0.977.

Similar almost perfect agreement is found for PC5 and PC6. However, something odd seems

to happen between the PC3 and PC4 since the PC3 of one batch is mostly contained in PC4

of the other one and vice versa. This occurs because PC3 and PC4 are almost degenerate.

The direction of degenerate eigenvectors is arbitrary since any linear combination of such

vectors is also an eigenvector with the same eigenvalue. Thus, in cases like this, one cannot

do better than determining the subspace spanned by the degenerate vectors. The near-

constrained subspace is plenty of almost degenerate eigenvectors. However, this causes no

troubles because these vectors are discarded in applications of PCA to molecular dynamics
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of proteins. On the contrary, if the degeneracy occurs in vectors with high eigenvalues, all of

them have to be included in the essential subspace. It is important to note that the mixing

between PC3 and PC4 shown in Fig. 5 is fortuitous. We could have missed it if we had

grouped the simulations in different batches of 90 elements.

PC modes for the concatenated trajectories of lysozyme

The distributions of |PCa
1· PCb

1|, RMSIP2 and overlap, computed from individual trajectories

of lysozyme follow the same qualitative behavior as those of BPTI (presented in Figs. 1 and

3). They show that PC-modes calculated from a single simulation, either of 5 ns or 50 ns, are

poorly defined. To be concise we will not present those distributions here. Instead we will

focus on what happens when trajectories are concatenated since that is the main subject

of this work. We show in Fig. 6 the evolution of RMSIP2 and overlap as the number of

concatenated trajectories, n, is increased. It is readily noted that the same trends observed

for BPTI also apply to lysozyme. The average values of RMSIP2 and overlap increase with

n. This is mainly caused by the increase of the minimum possible values while the maximum

values are all similar and high. For the same n, better results are obtained with trajectories

of 50 ns than those of 5 ns. However, what is more relevant here, is the comparison of

the results corresponding to the same simulation time. For example, the average RMSIP2

between independent trajectories of 50 ns is 0.64, with a lower bound of 0.13 and an upper

bound of 0.93. On the other hand, if one calculates RMSIP2 between trajectories obtained

by concatenating 10 simulations of 5 ns, the average value is 0.82 and the boundaries are

0.57 and 0.97. Thus, concatenating trajectories improves the reproducibility of the results

and significantly reduces the chances of getting ill-defined PC-modes. As observed in the

case of BPTI, for the highest n tried in this work, RMSIP2 is very close to 1.0 while the

overlap still noticeably deviates from that. This reinforces the observation that the first PC-

modes converge faster than those corresponding to higher indexes. Therefore, well-defined

essential spaces for proteins can be computed even though the sampling of the available
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configurational space is not fully-converged.

Discussion

The results presented above demonstrate that reproducible PC-modes can be obtained by

diagonalizing the correlation matrix of a concatenated trajectory, formed from n equivalent

but independent simulations. Agreement of the most important PC-modes, within any

desired accuracy, can be reached by systematically increasing n. A particularly convenient

characteristic of the procedure is that relatively small values of n (i.e. between 10 and 20)

significantly increase the average RMSIP by elevating the minimum possible value. In this

way, one can avoid obtaining ill-defined essential spaces. The convergence of the individual

PC-modes, on the other hand, requires larger values of n.

The reason why concatenating trajectories improves the reproducibility of the PC-modes

was outlined in Section “Statement of the problem” and is based on the formulas presented

in Ref. 24. A practical example of the performance of the procedure can be seen in Fig. 7.

It shows the projection of typical 5-ns trajectories of BPTI onto the plane spanned by the

first two eigenvectors of C(180). A contour plot of the free energy calculated with the whole

set of 5-ns trajectories of BPTI is also shown there. It is observed that single trajectories

just occupy a fraction of the available area. They can repeatedly pass through a given region

and never visit a nearby accessible zone. The use of different initial velocities takes the

trajectories to different regions. Therefore, even though they individually move around a

limited zone, the full accessible region is recovered when they are considered altogether.

Many years ago Caves et. al. described the same behavior for simulations of crambin18.

They concluded that multiple equivalent trajectories are more efficient to provide a fair

sampling of the available conformational space than a single long trajectory. Other studies

of that time made similar observations and attained to the same conclusion48–53. However the
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use of multiple trajectories is normally not considered a requirement for obtaining statistically

significant results. Therefore it is not routinely used. Very recent investigations are re-

installing the subject54,55. The present work aims to contribute in the same direction, but

the focus is put on the behavior of PC-modes. To the best of our knowledge, this issue has

never been systematically studied before.

Finally, it is interesting to discuss how the PC-modes obtained by concatenating short

trajectories compare with those calculated by concatenating long trajectories. Unfortunately,

there is not a single answer to that question since it depends on several factors such as the

time-scale of the simulations being considered or the rigidity of the structure under analysis.

Ref. 18 described that trajectories starting from the same structure but differing in the

atomic velocities rapidly diverge from the initial point. Then they stabilize and move within

a hyperspherical cortex defined by a nearly constant RMSD with respect to the original

structure18. If that were strictly the case, converged PC-modes computed by concatenating

short and long trajectories would be the same. However more recent studies showed that the

description of Ref. 18 does not hold on the much longer time-scales affordable nowadays56.

In general, if during the extra time the trajectories move further away from their initial point,

converged PC-modes computed by concatenating short and long trajectories will differ. In

the present study, we found that RMSIP2 for converged PC-modes computed from 5-ns

and 50-ns trajectories was 0.595 for BPTI and 0.795 for lyzozyme. This suggests that the

description of Ref. 18 fits better the lyzozyme case than the BPTI case. It should also be

noted that, since the PC-modes involved in these comparisons are already converged, the

values obtained for the RMSIP2 are insensitive to the total simulation time. To probe this

we run extra trajectories of 5-ns, so that we had a set of 400 of such trajectories. Then

we concatenated the 400 trajectories and calculated the PC-modes. These PC-modes were

compared with those obtained by concatenating 40 trajectories of 50 ns so that, in the two

cases, the total simulation time was 2.0 µs. In this case, the value of RMSIP2 was 0.603 for

BPTI and 0.804 for lyzozyme, which are nearly the same as reported above. It could also
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happen that, in the extra time, some trajectories move between different wells. This would

be rare for stable conformations of proteins if using the simulation times typically employed

nowadays. However, the chances of observing such transitions increase as the number of

concatenated trajectories gets large.33 In that case, a more drastic effect on the converged

PC-modes should be observed. As stated above, the method described in this article is not

meant to address those cases. Nevertheless, it could be used to characterize the fluctuations

observed within each well after the conformations sampled in the simulations have been

clusterized so that they can be ascribed to each well. In any case, the most important

conclusion to be drawn from this discussion is that PC-modes obtained by concatenating n

trajectories of a simulation time Ts are representative of the configurational space attainable

in time Ts. In general, they are not expected to be the same as PC-modes computed by

concatenating longer trajectories.

Conclusions

We have shown that concatenating n independent but equivalent MD simulations, and

computing the PC-modes from the correlation matrix of the concatenated trajectory C(n),

significantly improves the reproducibility of the main PC-modes. The procedure has two

important and convenient properties. First, small values of n provide a significant enhance-

ment against the results obtained from single MD simulations. In particular, the possibility

of getting badly-defined essential spaces is greatly reduced. Second, if desired or needed, the

quality of the results can be systematically improved by increasing n. The main limitation

of the procedure has also been stated. The PC-modes so obtained are representative of a

specific simulation time: the time of the individual trajectories. They are not expected to

be the same as PC-modes converged from longer simulations. We believe that the proce-

dure proposed here will be particularly useful in quantitative applications of PCA, such as
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calculations of entropy or free energy, as well as for approximate methods that rely in the

selection of appropriate coordinates to reduce the dimensionality of the system.
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Supporting information

A procedure to assess the consistency of the essential space determined by concatenating

a given number of equivalent MD simulations is presented as Supporting information. The

proposed method is completely general and easy to implement. It would allow to the users

to recognize if the calculations already performed are enough or, on the contrary, some extra

calculations are required. This information is available free of charge via the Internet at

http://pubs.acs.org .
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(22) Mart́ın-Garćıa, F.; Papaleo, E.; Gomez-Puertas, P.; Boomsma, W.; Lindorff-Larsen, K.

Comparing Molecular Dynamics Force Fields in the Essential Subspace. PloS One 2015,

10, e0121114.
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Figure 1: Normalized probability distributions for |PCa
1· PCb

1|, computed from independent
MD simulations of 5 ns (red) and 50 ns (blue) of BPTI. The vertical black line indicates
the value of the inner product that contains 99% of cumulative probability, for normalized
random vectors of the same dimension (see text).
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Figure 2: Typical examples of inner-product matrices for PC-modes computed from two
independent MD simulations of BPTI. (a) and (b) correspond to 5-ns trajectories; (c) and
(d) to 50-ns trajectories. The label of the axis refer to the index of the PC-modes while the
radius of the circles measures the absolute value of the inner products.
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Figure 3: (a) Normalized probability distributions for RMSIP2 and overlap computed from
the 16110 pairs of PC-mode sets formed from the 180 individual MD simulations of 5 ns of
BPTI. (b) Normalized probability distributions for RMSIP2 and overlap computed from the
3160 pairs of PC-mode sets formed from the 80 individual MD simulations of 50 ns of BPTI.

29

Page 29 of 35

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



��

����

����

����

����

��

�� ��� ��� ��� ���

	


�

RMSIP

Overlap

�� ��� ��� ��� ���
��

����

����

����

����

��

�


�

RMSIP

Overlap

Figure 4: Evolution of RMSIP2 and overlap with the number of trajectories, n, included
in the concatenated correlation matrix. Data correspond to simulations of BPTI. The solid
lines indicate the average values. The shadows go from the minimum to the maximum value
observed in the sample. (a) 5-ns trajectories; (b) 50-ns trajectories.

30

Page 30 of 35

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6

1.0

0.8

0.6

0.4

0.2

In
d

e
x
 2

Index 1

a)

 1

 2

 3

 4

 5

 6

 

c) d)

 1  2  3  4  5  6

 

b)

Figure 5: Inner product matrices for PC-modes computed from alternative batches of con-
catenated trajectories of BPTI. The label of the axis refer to the index of the PC-modes
while the radius of the circles measures the absolute value of the inner products. a) n = 10;
b) n = 20; c) n = 30; d) n = 90.
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Figure 6: Evolution of RMSIP2 and overlap with the number of trajectories, n, included in
the concatenated correlation matrix. Data correspond to simulations of lysozyme. The solid
lines indicate the average values. The shadows go from the minimum to the maximum value
observed in the sample. (a) 5-ns trajectories; (b) 50-ns trajectories.
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Figure 7: Typical individual trajectories projected onto the plane spanned by PC1 and PC2

of matrix C(180) of BPTI. The colored contour plot shows the free energy (in arbitrary units)
computed from the snapshots collected along the 180 independent trajectories.

33

Page 33 of 35

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Tables

Table 1: Number of batches (Nbatch) and number of pairs of batches (Npairs) that can be
formed from the individual trajectories for each selected value of n.

180 traj (5 ns) 80 traj (50 ns)
n Nbatch Npairs n Nbatch Npairs

1 180 16110 1 80 3160
5 36 630 5 16 120
10 18 153 10 8 28
20 9 36 20 4 6
30 6 15 40 2 1
60 3 3
90 2 1
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