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Following the framework established by Hill and Chamberlin [T. L. Hill and R. V. Chamberlin,

Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 12779] to analyze the extension of thermodynamics of

small systems to metastable states, we have adopted the same basic ideas to study the

thermodynamic stability of core-shell nanoparticles. For the first time we are able to address the

question of whether or not core-shell nanoparticles have a limit of stability when they are under

oversaturation conditions. By the latter, we mean the excess of chemical potential of the

adsorbate (shell) atoms with respect to its bulk material, which is the driving force for

nanoparticle growth. In this situation the probability density exhibits multiple local maxima

associated with different core-shell metastable states. The decrease of the free energy barriers for

the growth of the bulk phase of the shell material is analyzed for increasing oversaturation. At

large positive oversaturations, the barrier disappears and the core-shell NP become unstable with

respect to the bulk deposit of the shell material. A brief discussion on the model is made

illustrating its application to a specific system by means of computer simulations using realistic

interatomic potentials. One of the most striking results of these specific studies is the occurrence

or not of a core-shell under undersaturation conditions depending on nanoparticle size.

Introduction

The special properties of nanocrystals have awakened great

interest in both scientific and technological communities, and

the size dependence of their thermodynamic properties has

been a topic of intensive research in recent years.1,2 These

properties make it possible for the design of new devices and

circuits of nanometric size. For example, nanoparticles (NP)

are promising for optical, electronic, catalytic, and biomedical

applications such as single electron tunneling devices, nano-

lithography, CO/CO2 catalysts, and antibody sensors among

others. Some applications related to biology, catalysis, and

nanotechnology can be found in the revision articles by

Ferrando et al.3 and M. C. Daniel et al.4

NP exhibit very interesting size-dependent properties that

cannot be achieved using their bulk counterparts. For novel

applications, the synthesis of particles with a highly uniform

distribution in size and shape, that is, ‘‘monodispersed nano-

particles’’, is of key importance. In this sense, much progress

has been made over the last decade for both wet and dry

methods of the synthesis of NP.5 Mechanistic studies have

shown that crystal size is mainly determined by the nucleation

and growth process combined with the subsequent diffusion-

controlled growth phenomenon.6 However, while extensive

fundamental and practical experience has been collected on

the fabrication of nanoparticles, it is still not easy to obtain

monodisperse systems required for some specific processes,

since multiple factors have decisive influence in the monodis-

persity and other relevant characteristics of the nano system.7

Terrell Hill has undoubtedly been one of the pioneers in

studying the thermodynamic properties of small systems,8 long

before the ‘‘nano’’ word was coined in the scientific literature.

This author was the one who in the early 60s, moved by the

behavior of proteins, amino acids, etc., analyzed the behavior

of small systems, making a parallelism with macroscopic

thermodynamics. This branch of thermodynamics, then called

nanothermodynamics (NT), is currently applied to systems of

low dimensionality and/or systems of nanometric size. Perhaps

the most remarkable result of NT is that the free energy is no

longer a homogenous first order function of the extensive

parameters, a fact that determines the loss of some useful

thermodynamic equivalences. For example, in NT the tradi-

tional Gibbs–Duhem relationship disappears. A small system

presents one more degree of freedom than their macroscopic

counterparts, so that some properties formerly intensive de-

pend in NT on the number of particles.

The surface energy, related to the energetic difference

between the surface atoms and the interior ones, is one of

the basic quantities to understanding surface structures, re-

constructions, roughening, relaxations and size dependence of

the thermodynamic parameters.7,8 In this framework, the

contribution of Hill and Chamberlin9 to the description of

metastable states (MS), is particular relevant for the present

work. Fortunately, it comes out that the rules describing stable

equilibrium states (SS) remain the same for nanometric sys-

tems,8 so that they can be obtained by entropy maximization

or minimization of the suitable thermodynamic potential for

each ensemble. A MS is one that presents a critical point in the
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entropy (free energy), but without corresponding to a global

maximum (minimum). Using a simple model, Hill and Cham-

berlin9 showed that boundary effects (surfaces, contours, etc.)

may be responsible for the existence of MS. In that work, it

was shown that a proper analysis of these MS must be done

taking into account mathematical divergences and physical

convergences of the partition function. An accurate descrip-

tion of the thermodynamic properties of nanoparticles should

include a correct description of their surface energy.

Concerning metallic NP, Jiang et al.10 have analyzed theo-

retical nucleation of a metal on a surface of the same material,

examining the free energy landscape using a drop model. In

that treatment for nucleation, the nucleus was assumed to be

spherical and the free energy of a cluster was analyzed as a

function of radius and temperature. Jiang et al. introduced the

size-dependence using a Laplace–Young equation (DP = 2g/r)

finding good agreement with experimental results. A similar

approach was performed by Wang et al.11 to elucidate dia-

mond nucleation. However, when a liquid is cooled below its

freezing temperature, the nucleation requires the formation of

a new stable phase (solid) that introduces an energetically

unfavorable solid–liquid interface and therefore creates a free

energy barrier between phases. Mendez-Villuendas et al.12

addressed this issue under the formalism of statistical me-

chanics using the critical size of the largest solid-type embryo

as an order parameter. In such work, they analyzed the free

energy profiles as a function of the order parameter at different

temperatures. At temperatures relatively close to the melting

point, the free energy function has a minimum for small size

values that indicates the presence of a metastable state. When

the temperature decreases, the free energy becomes monoto-

nically decreasing, indicating that the metastable state has

exceeded its limit of stability.

In the case of electrochemical synthesis of nanoparticles the

key parameter to control the behavior of the system is usually

not the temperature but the redox potential, since it allows the

control of the chemical potential of the metal constituting the

nanoparticle. In this respect, Plieth13 found a shift of the

reversible redox potential with nanoparticle size that was

explained using an expression analogous to the Kelvin equa-

tion, thus predicting that these changes are inversely propor-

tional to the radius of the NP.

The most remarkable differences between liquid and solid

surfaces are the surface energy (g) and the surface stress (s). g

describes the reversible work per unit area to form a new

surface while s denotes the reversible work per unit area due to

elastic deformation, which is equal to the derivate of g with

respect to the tangential strain to the surface.14 Rusanov and

Shchekin15 have tackled this problem and they have improved

the model including explicitly different g and s, this contribu-

tion extended Gibb’s formula to monometallic nanoparticles.

In this model the chemical potential is a function of curvature,

g and s.

In the case where the chemical nature of the metal to be

deposited is different from that of the surface, electrode

potential (or that of a redox couple) may be used to control

the coverage degree of foreign adatoms.16 In a previous

work,17 we presented a thermodynamic analysis and computer

simulations corresponding to the electrochemical formation of

pure and core-shell bimetallic nanoparticles. The behavior of

those systems where the binding energy of the adsorbate to the

substrate is more positive than that of the bulk adsorbate

showed close similarities to the behavior expected for the

growth of pure metal nanoparticles.17,18 However, when the

adsorbate–substrate interaction is stronger than the bulk

interaction of the adsorbate material, a manifold of behavior

arises depending on NP size and shape.17

In the present contribution, we follow the framework

established by Hill and Chamberlin,9 and develop a statistical

mechanical approach to extend our previous thermodynamics

analysis of core-shell NP to study the role of MS in these

systems. A brief discussion on the model is made illustrating

its application with computer simulations using realistic semi-

empirical interatomic potentials.

The model and calculation method

In the following we adhere to the notation used by Hill

et al.9,19 in order to assemble a statistical mechanical descrip-

tion of the problem that we tackled in our previous work

concerning the formation of metallic core-shell NP under

chemical potential control.17

Fig. 1 shows a scheme of the model system. For the present

purpose, we consider an ensemble of small incompressible

bimetallic NP immersed in a liquid solution containing ions of

the species being deposited onto a seed NP. Without loss of

generality, since the same approach could be used to study the

formation of alloyed NP, we assume that these clusters are

made of two components, Me and S, arranged in such a way

that the system is made of small core(S)/shell(Me) aggregates.

We also assume that the concentration of these small

metallic aggregates is small enough to neglect the interactions

among them.19

The grand canonical partition function of a single conglom-

erate U(mMe, NS, T) is related to the corresponding canonical

partition function Q(ni, NS, T) through:
8,9

UðmMe;NS;TÞ ¼
X

1

ni¼1

Qðni;NS;TÞ exp
nimMe

kT

h i

ð1Þ

where k is Boltzmann’s constant and ni is the number of Me

atoms deposited on S. In principle, the sum runs over all

positive integers but we will find that with practical purposes it

can be drastically reduced on physical grounds, as proposed by

Hill and Chamberlin.9
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Fig. 1 Schematic representation of the ensemble employed to study

core-shell NP growth. In the present model, the coverage is a function

of the size of the NP core (NS), the temperature (T), and the chemical

potential of the Me species (mMe).
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In order to write eqn (1) in a more suitable form, we will

consider that the Helmholtz free energy of the bulk metal Me,

say F0
Me, can be written in terms of its partition function Q0

(NMe, T) according to:

F0
Me =  kT lnQ0(NMe, T) (2)

In the case of a piece of bulk metal Me made of NMe atoms,

the chemical potential of Me in this limit, say m0Me, is given by:

m0Me ¼
F0
Me

NMe

ð3Þ

Thus, the free energy of a piece of bulk made of ni metal Me

atoms, will be given by:

F0
Me;ni

¼ nim
0
Me ð4Þ

With this in sight, we can rewrite eqn (1) as:

UðmMe;NS;TÞ ¼
Q0ðNMe;TÞ

Q0ðNMe;TÞ
UðmMe;NS;TÞ

¼
X

1

ni¼1

exp  
Fni

kT
þ
nimMe

kT
þ
F0
Me;ni

kT
 
nim

0
Me

kT

" #

ð5Þ

That can be rearranged to yield:

UðmMe;NS;TÞ ¼
X

1

ni¼1

exp  
Fni  F0

Me;ni

kT
þ
niDmMe

kT

" #

ð6Þ

where we have defined the quantities: DmMe = mMe  m0Me and

Fni
=  kT lnQ(ni,NS,T). Thus, DmMe represents an excess of

chemical potential with respect to the chemical potential of the

bulk Me material.

On the other hand, we can multiply and divide by the

canonical partition function of the core QS (NS,T) = exp

( FS/kT) (made only of the metal S):

UðmMe;NS;TÞ ¼ exp  
FS

kT

� �

X

1

ni¼1

exp  
Fni  F0

Me;ni

kT
þ
niDmMe

kT
þ

FS

kT

" #

ð7aÞ

UðmMe;NS;TÞ ¼ A
X

1

ni¼1

exp  
DFni

kT
þ
niDmMe

kT

� �

ð7bÞ

where FS is the Helmholtz free energy of the core and we have

defined DFni ¼ Fni  FS  F0
Me;ni

and A = exp( bFS). Note

that DFni
corresponds to the excess of free energy of the Me

type atoms in the cluster referred to the bulk metal Me.

In the case of electrochemistry, the excess of chemical

potential, DmMe associated with oversaturation (if positive)

or undersaturation (if negative) is related to an overpotential Z

measured with respect to a reference electrode of the same

metal Me in the same solution.20 Thus, for electrochemical

applications we should replace Dm by  zFZ, where z is the

valence and F is the Faraday constant. In electrochemical

jargon, Z 4 0 corresponded to underpotential deposition

(UPD) conditions, while Z o 0 (OPD) corresponded to over-

potential deposition. However, the same concepts would be

applied to the case of crystal growth of a surface in contact

with its vapour; in such a case the excess of chemical potential

is related to an increment of the pressure in the vapour

phase.19

Eqn (7b) allows in principle the calculation of all the

properties of the system but its straightforward use is prohi-

bitive because of the huge number of terms (in principle

infinite) involved in the sum. In order to tackle a particular

type of system, we will make some assumptions, which follow

in some aspects the treatment given by Hill and Chamberlin9

to deal with liquid-like clusters. Furthermore, we will apply it

to a similar model system to the one we have analyzed

previously on thermodynamic grounds,17 namely that of a

core-shell NP. The DFni
values in the sum (eqn (7b)) involve

the canonical partition function of the core-shell system for a

different number of adsorbate atoms, which also includes a

very large number of configurations. In order to circumvent

this calculation for liquid clusters, Hill and Chamberlin9

introduced a surface energy term, which was proportional to

the number of surface atoms of the clusters, so that a single

term was considered for the canonical partition function. In

the present work, we attempt the calculations of DFni
con-

sidering different contributions to it, namely, static (config-

urational), vibrational, rotational, and translational.

To proceed further, we write:

DFni ¼DUni  TDSni

�½DUs
ni
þ DUv

ni
þ DUr

ni
þ DUt

ni
� 

T ½DSs
ni
þ DSv

ni
þ DSr

ni
þ DSt

ni
�

ð8Þ

where the upper indices s, v, r, and t denote static, vibrational,

rotational, and translational contributions and we have de-

fined:

DU j
ni
¼ ½U j

ni
 U

0;j
Me;ni

 U
j
S� ð9Þ

and,

DSj
ni
¼ ½Sj

ni
 S

0;j
Me;ni

 S
j
S� ð10Þ

the subscripts: ni,(Me,ni) and S denote the core-shell, pure

metal Me and substrate contributions, respectively. The sym-

bol E in eqn (8) denotes that the coupling between the

different contributions has been neglected and they are con-

sidered additive.

With the purpose of making calculations for a model system

at room temperature, we make the following assumptions: the

static energy terms on eqn (8) were obtained from embedded

atom calculations,21 choosing a minimum energy configura-

tion for a given ni. Thus, U
S
ni
and US

S involve minimum energy

calculations for a core(S)–shell(Me) and a pure core(S), re-

spectively, while U
0;S
Me;ni

corresponds to the energy of ni bulk

atoms of Me. The vibrational contribution DUv
ni

was ne-

glected. This is tantamount to assume that the vibrational

status of the Me atoms in the shell is similar to that of the Me

atoms in the bulk. The corresponding assumption for the core

atoms is that they behave vibrationally the same way, inde-

pendent of whether they are covered by the shell atoms or not.

Although this is strictly not true, this contribution should be

negligible at room temperature as compared with DUs
ni
. In

fact, comparison between static22 and quasi-harmonic lattice
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calculations23 for metal monolayers deposited on foreign

surfaces indicate that the vibrational contribution to the

energy excess is a fraction of kT for small lattice misfits and

relatively compact surfaces ((111) and (100)). A similar con-

sideration can be made for the excess contribution DSv
ni
. In this

respect, Chui et al.24 have considered different structures of

Au–NP (perfect icosahedra, icosahedra with defects and

amorphous NP between 2 nm and 8 nm) calculating entropic

vibrational contributions using EAM potentials in the harmo-

nic approximation. These authors found that the vibrational

entropy contributes 2% to the free energy of the system,

independent from the shape and size of the NP. However,

there are in the literature other results showing that solid–solid

transformations in nanoparticles can be caused by vibrational

entropy contributions.25 This opens up many possibilities

involving calculations similar to those undertaken here but

with different cluster morphologies. However, the transition

between different morphologies can only occur surmounting

an important energy barrier.26 For example, experiments with

Au nanoparticles show that these must be heated to tempera-

tures close to the melting point for these transitions to occur.27

Since we consider here ordinary electrochemical conditions,

where experiments are driven at room temperature, we expect

that these transitions should not play an important role.

Increasing temperatures could lead to structural transforma-

tions that would make the calculations more complicated, but

the main physical features of the model will be retained.

Concerning DUr
ni
, we performed approximate calculations

by assuming a spherical cluster. Using eqn (9), we get for DUr
ni
:

DUr
ni
¼ Ur

ni
 Ur

S ð11Þ

In the classic approximation, this quantity is equal to zero.8

The entropic counterpart is in turn:8

DSr
ni
¼ Sr

ni
 Sr

S ð12Þ

with:

Sr
ni
¼ k ln

4p2InikT

h2

� �

ð13aÞ

Sr
S ¼ k ln

4p2ISkT

h2

� �

ð13bÞ

where the subscripts ni and S denote core-shell and core, and

Ini and IS are the moment of inertia of the core-shell and core,

respectively; h denotes Planck’s constant.

Concerning the classical translational energy contribution,

it can be easily shown that it is equal to zero8 and the entropic

term is:

DSt
ni
¼ St

ni
 St

S ð14Þ

with:

St
ni = kln[(2p(NSmS + nimMe)kT)

3/2 h 3 Ve5/2] (15a)

St
S = kln[(2p(NSmSkT)

3/2 h 3 Ve5/2] (15b)

where mMe and mS are the masses of Me and S atoms,

respectively, and V is the volume.

The static entropic contribution

DSs
ni
¼ St

ni
 St

S

will be also neglected. To test the accuracy of this approxima-

tion, we have performed the exploratory calculations de-

scribed in the Appendix. There, we show that this

contribution should be of the order of 0.3 eV at room

temperature.

With the purpose of computing the static energy contribu-

tions to the free energy, we followed the following routine:

different Au-core structures were built cutting a piece of Au fcc

bulk structure, on which the Ag atoms were located. Trun-

cated octahedron (TO) NP shapes were selected. We consid-

ered the first four members of the TO family, that is, TO_38,

TO_201, TO_586, and TO_1289, where the number makes

reference to the quantity of atoms constituting the NP core.

For a given number of deposited atoms on the cluster serving

as substrate, the minimum energy configuration was deter-

mined by choosing the lowest energy configuration for each

adatom added to the system followed by a low temperature

simulated annealing. The formation of alloys was not allowed

in the present studies. In principle, this is an approximation.

However, recent experiments show that meticulous control of

a metallic shell of Ag on Au is possible at the single monolayer

level,28 with no indication of massive alloying in the high

resolution TEM images, where core and shell boundaries

appear well defined. In order to explore regions of the config-

uration space close to those visited in electrochemical experi-

ments at room temperature, the simulated annealing

procedure was started at 300 K and finished at 0 K. This

was made so for two reasons: on one side, most electroche-

mical experiments are made at this temperature, so that during

the annealing procedure the system initially has access to the

same energy landscape as in the experiments. Increasing the

initial temperature would lead to some artificial alloying

formation that would not be found in the room-temperature

experiments. On the other hand, we finish the annealing at 0 K

since in the calculations described below we divide different

contributions to the free energy into ‘‘static’’ and thermal

parts. Thus, the static parts refer to the results at 0 K and

thermal contributions will be approximated using semi-classi-

cal approximations. An analytical embedded atom model was

used to compute the interaction between the particles.21 This

semi-empirical potential provides a reasonable description of

the many-body interactions present in metallic systems. For

further details on the simulation technique the reader may

follow ref. 17.

Results and discussion

We analyze in the first place the rotational and translational

contributions. As mentioned above, the rotational and trans-

lational energy excesses referred to the bulk state are zero, and

the entropic parts can be simply calculated through the
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moment of inertia according to:8

DSr
ni
¼ k ln

Ini
IS

� �

� k lnð1þMRrÞ ð16Þ

DSt
ni
�

3

2
k lnð1þMRtÞ ð17Þ

where M = mMe/mS is the mass ratio. Rr ¼ ðr5ni  r5SÞ=r
5
S and

Rt ¼ ðr3ni  r3SÞ=r
3
S are the form factors of the rotational and

translational contributions, rni and rS are the radius of the

core-shell and naked core, respectively.

Eqn (16) and (17) are obtained assuming a spherical shape

of the particle and similar atomic volumes for Ag and Au (rAu

= 0.136 � 0.006 nm and rAg = 0.145 � 0.005 nm). Note that

(16) and (17) depend on neither the volume nor on the

temperature of the system, although eqn (13) and (15) do.

Table 1 shows the rotational and translational entropic

contributions at 300 K for the case of Ag deposition on Au

NPs of different sizes. The crystallographic average radius of

TO structures containing 586, 1289 and 2406 was ca. 1.22 nm,

1.63 nm and 2.04 nm, respectively, while the thickness of the

Ag deposit on these surfaces was assumed to be that of one,

two and three monolayers, respectively. The rotational entro-

pic contributions are more important than the corresponding

translational entropic ones, and in all cases the values are of

the order of a few meV at room temperature. The rotational

and translational entropy excesses increase with the thickness

of the shell and decrease with the size of the core.

Fig. 2a shows the static energy contributions, corresponding

to Ag deposition on Au(TO_1289). In the first place, it is

worth noting that the DUs
ni
values are in the order of hundreds

of eV, rapidly increasing with increasing thickness of the shell.

This quantity represents the largest contribution to the free

energy. A close inspection of this plot shows that the energy of

the system presents a global minimum before the completion

of the monolayer. This minimum occurs at ni = 480, corre-

sponding to a coverage of 75% of the monolayer, a behaviour

that could not be described by a continuum theory of nuclea-

tion and growth. The physical reason for this behavior is very

simple: the energetically stable structure for the decorated

cluster at DmMe = 0 is where the [111] and [100] facets have

been covered, while the edges remain uncovered, since the

adatoms have a lower coordination here.

However, we note that this situation could be quantitatively

(but not qualitatively) altered for NP with different morphol-

ogies (i.e. decahedra, icosahedra, cubooctahedral, etc).

The probability density to have ni atoms of Me-type depos-

ited on a cluster made of NS atoms of S-type at the chemical

potential mMe and temperature T is:

pni ðmMe;NS;TÞ ¼
exp  

DFni
kT
þ niDmMe

kT

h i

UðmMe;NS;TÞ
ð18Þ

The previous equation shows that the location of maxima

(minima) in the probability density does not depend explicitly

on the partition function. In fact, the conditions for the

existence of local maxima or minima in the probability density

function are:

DFni;max 1 þ DmMe4DFni;max 1oDFni;max 1  DmMe ð19aÞ

DFni;min 1 þ DmMe4DFni;min 1oDFni;min 1  DmMe ð19bÞ

where ni,max and ni,min denote the number of shell atoms

yielding maxima and minima probability densities, respec-

tively. In the following and for visualization purposes, rather

than plotting the functions (pniU) or b( DFni
+ niDmMe), we

will rather show the function defined by:

f ðniÞ ¼ ðpni ðmMe;NS;TÞUðmMe;NS;TÞÞ
1
b ð20Þ
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Table 1 Rotational (top) and translational (bottom) entropic excess
contributions at 300 K for the case of Ag deposition on different Au-
NP at different thicknesses, corresponding to one, two and three
monolayers. All values are given in meV

TDSt TO_586 TO_1289 TO_2406

One monolayer 0.12 0.11 0.10
Two monolayers 0.18 0.15 0.13
Three monolayers 0.24 0.20 0.17
TDSr TO_586 TO_1289 TO_2406
One monolayer 0.04 0.03 0.02
Two monolayers 0.07 0.05 0.04
Three monolayers 0.11 0.08 0.06

Fig. 2 (a) Static energy excess and (b) probability density to have nAg

atoms deposited on Au(TO_1289) as a function the number of Ag

atoms forming the shell at zero excess of chemical potential. The lines

correspond to formation of: the first (black), the second (red) and the

third (blue) adlayers.
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which is monotonic with both of them and presents an extreme

at the same points of their domain.

Fig. 2b shows f(ni) for Ag atoms deposited on a

Au(TO_1289) cluster as a function on ni for zero overpoten-

tial.

We see that f(ni) presents many minima and maxima,

associated with the nucleation and growth process of two-

dimensional phases on the facets of the NP(TO_1289). The

largest maximum is associated with the completion of all facets

[100] and [111]. Following this process we find a decrease of

f(ni) due to the adsorption of Ag atoms at the edges of the

facets, namely the [111]–[111] and [111]–[100] borders. At ni =

636 the first monolayer of Ag on the Au–NP has been

completed (end of the black curve); then a second layer is

deposited on the first Ag monolayer (red curve in Fig. 2b). The

subsequent adsorption processes have a lower probability of

occurring (at overpotential zero), and even its limit is zero:

lim
ni!1

½pni ðmMe;NS;TÞ�

�

�

�

�

DmMe¼0
 ;NS ;T

¼ 0 ð21Þ

where DmMe = 0 denotes that the limit is taken for a small

undersaturation.

Thus, we conclude that the situation where ni = 480

corresponds to a global minimum at zero excess of chemical

potential. Under finite subsaturation conditions (DmMe o 0)

the limit of eqn (21) is also zero, but the maximum at ni = 480

decreases (with respect to the other maxima). At a more

negative DmMe there are other configurations (ni o 480) that

become eventually more stable and reach the status of global

minimum. Fig. 3 shows the behaviour of f(ni) for different

negative excesses of chemical potential. It is evident that in the

range  4 meV o DmMe o 0 meV the global minimum

corresponds to ni = 480 (Fig. 3a). In the range  13 meV o

DmMe o  4 meV the global minimum is found at ni = 96

(Fig. 3b and c), corresponding to the decoration of [100]

facets, while at DmMe o  13 meV the global minimum is at

ni = 0. Fig. 4 summarizes the general behaviour of f(ni) in the

whole range of excesses of chemical potential considered here.

For this Figure, we have selected three decoration states,

corresponding to ni = 0, ni = 98 and ni = 480. This choice

was made because these three states are the predominant ones

in the undesaturation range of the present system. The most

stable structure at each chemical potential is given by the

upper envelope of the lines. This behavior is expected accord-

ing to that of adatom deposition on single crystal surfaces,23

where it was found that this phenomenon occurs first on the

more open surfaces.

We turn now to analyze the positive region of DmMe, the

OPD region. Fig. 5 shows the behaviour of f(ni) for different

positive excesses of chemical potential, that is, for the region

marked in grey in Fig. 4, corresponding to free energy

calculations up to the third pseudomorphic Ag shell.

When the system is subject to a positive excess of chemical

potential (DmMe 4 0), f(ni) grows rapidly. In the range 0 meV

o DmMe o 35 meV the maximum is localized at ni = 480
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Fig. 3 Probability density of finding ni Ag atoms deposited on

Au(OT_1289) at different excesses of chemical potential. (a)  3

meV, (b)  4 meV, (c)  5 meV, and (d)  11 meV. The arrow shows

the most relevant probability density peaks.

Fig. 4 Behavior of the function f(ni) monotonically related to the

probability density of observing the three states ni = 0, ni = 98 and ni
= 480 as a function of the excess of chemical potential. The most

stable structure at each chemical potential is given by the upper

envelope of the lines. The upper scale corresponds to kT units. The

metastability region of the core-shell structures is marked in grey.

Fig. 5 Probability to have atoms ni deposited on Au(OT_1289) at

different excess of chemical potential. (a) 10 meV, (b) 70 meV, (c) 150

meV, and (d) 170 meV. The inset shows the structure of the core-shell

at the point marked with the arrow.
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(Fig. 5a), moving from ni = 480 to ni = 576 (Fig. 5b) when

DmMe changes only between 35 meV and 37 meV.

From the latter chemical potential, the maximum remains

stable at ni = 576. The latter state corresponds to a situation

where the Ag atoms have covered all the [100] and all the [111]

facets plus all the edges between [111] and [100] facets. The

edges between neighbouring [111] facets remain unfilled. The

frames corresponding to ni = 480 and ni = 576 are presented

in the insets of Fig. 5a and b, respectively. The last point of the

plots of Fig. 5 is ni = 1656, which corresponds to the filling of

all [100] facets with three pseudomorphic layers of Ag. It is

well known from electrochemical experiments that the deposi-

tion of Ag on Au leads to one or two layers in the under-

potential region,16,18 but not to three. This shows that the

third layer of Ag on Au is, with practical purposes, energeti-

cally indistinguishable from Ag bulk. This has also been

confirmed by our calculations, where we find that the binding

energy per atom for the formation of the third Ag layer on the

second differs from the Ag bulk binding energy in less than

0.1%. Thus, we can take the onset of the formation of the

third Ag layer as a measure for the beginning of the rise of f(ni)

toward infinity and proceed with an analysis similar to that

performed by Hill and Chamberlin9 for the mathematical

divergence of the probability density function.

In the range of positive excesses of chemical potential,

eqn (21) is no longer valid but we have the limit:

lim
ni!1

½pni ðmMe;NS;TÞ�

�

�

�

�

DmMe¼0
þ ;NS ;T

¼ 1 ð22Þ

In the framework of the study of a liquid cluster, Hill and

Chamberlin9 associated this limit with the massive growth of

the liquid drop. Similarly, we can connect this limit with the

growth of a bulk deposit of Me on the NP. This bulk deposit

has the highest probability density, corresponding to the

global free energy minimum. The term exp(bniDmMe) in

eqn (7b) is responsible for the divergence of the partition

function in this situation. However, for relatively small but

positive DmMes (DmMe - 0+), the onset of the divergence of

the probability density is located at relatively large ni values

(see Fig. 5c), separated from the most probable metastable

state by a region where the probability density is (for practical

purposes) negligible. As the overpotential increases, the diver-

gence is shifted to lower values of ni (see Fig. 5d), and

consequently the region where the probability is negligible

becomes thinner. This phenomenon is associated with a

decreasing stability of the metastable core-shell structure. Hill

and Chamberlin suggested that the low probability zone that

separates the first peak from the divergence acts as a ‘‘bottle-

neck’’ separating the metastable structure from massive

growth by a kinetic impediment.9 In the following, we will

characterize the magnitude of this bottleneck by two quanti-

ties: the ratio of the probability density of the largest local

maxima pmax of Fig. 5 to the probability density of the lowest

minimum pmin in the direction of the divergence, and the

difference in the number of particles between these two

extremes.

We will denote these quantities with prel = pmax/pmin and Dn

= nmin  nmax, where nmax and nmin are the number of

adatoms in the cluster at pmax and pmin, respectively. Fig. 6

shows prel (a) and Dn (b) as a function of the excess of DmMe. It

can be observed than an excess of chemical potential of 160

meV is translated into a change of the order of e6 in prel and in

a change of 103 in Dn. In other words, the bottleneck for the

formation of the bulk phase can only be surmounted by the

application of an overpotential of the order of 160 mV, which

is a meaningful amount from the electrochemical viewpoint.

We turn now to consider the behavior of f(ni) for different

core sizes (Fig. 7). There, it can be appreciated that the way in

which the nanoparticle becomes decorated at DmMe = 0 is

strongly dependent on particle size.

For example, when NS = 1289 decoration of all the [100]

and [111] facets is expected, since the maximum in the prob-

ability density is found at nAg = 480, which corresponds to

this situation. On the other hand, for the remaining smaller Au

cores (TO586, TO201, and TO38) no decoration of the core

occurs at all at DmMe = 0. In fact, for these smaller core sizes

all maxima in f(ni) are smaller than 1. This corresponds to the

non-occurrence of underpotential deposition in the electro-

chemical system. Thus, the present calculations show that the

existence of underpotential deposition in nanoparticles may be

size dependent. This can be interpreted as a curvature effect.

The existence of a positive curvature makes the deposits less

stable. Alternatively, it can be pointed out that Ag atoms on

small clusters have on the average lower coordination than on

big clusters, so they become less stable. On the other hand, we
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Fig. 6 (a) prel and (b) Dn as a function of the excess of chemical

potential DmMe. prel and Dn are a measure for the width of a bottleneck

separating the most stable metastable state from the bulk phase. Their

meaning is described in the text.
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have found that the existence of a negative curvature, as it is

the case of a nanocavity, may act as a promoter for under-

potential deposition.29

Conclusions

In the present work we presented a mechanical statistical

formulation devised to analyze nanoparticle decoration by a

foreign metal in terms of the interactions between the particles

of the system.

Calculations were performed for a model system, and some

interesting conclusions can be drawn:

KThe most important contribution to the excess of free

energy determining the stability of the decorated nanoparticle

stems from the excess of internal energy. The other contribu-

tions (kinetic, rotational, and vibrational) are orders of mag-

nitude smaller. Entropic effects are expected to become

increasingly important for small nanoparticles.

KThe type of decoration that can be achieved may depend

strongly on nanoparticle size. While in the larger nanoparticles

decoration of different facets may be achieved by control of

the excess of chemical potential in the undersaturation region,

in the case of small nanoparticles no decoration at all may be

found under similar conditions.

KIn the case of the electrochemical system, the previous

point means a shift from underpotential to overpotential

deposition on nanoparticles by changing nanoparticle size.

This effect is expected to occur for small systems (NP of the

order of 1000 atoms, which corresponds to an average dia-

meter of approximately 3 nm).

KIn the case of relatively large nanoparticles, metastable

core-shell states may survive relatively large oversaturation

conditions. Electrochemically speaking, overpotentials of the

order of 150 mV.

KThe present modeling may be extended to alloyed systems

as well. In this case, the main problem will be to find the

suitable configurations to calculate the canonical contribu-

tions to the Grand Canonical partition function.

KIn many cases metallic nanoparticles of the size studied

here (1–2 nm) are stabilized by a capping agent (i.e. thiols,

amines, polymers) to avoid aggregation and sintering. In those

cases where the interaction between the capping agent is

relatively small as compared with the metal–metal bond (0.1

eV/atom or less) the presence of the capping agent would only

add a (small) plus to the binding energy of the adsorbate

atoms and the results of the calculations should be at least

qualitatively valid. On the other hand, the present modeling

may be generalized to introduce the effects of capping species

by introducing Grand Canonical conditions for the latter. This

work is in progress.

Appendix

In the present Appendix, we compare analytical entropy

calculations with numerically exact results for a 4 � 6 patch

of Au(100) surface at different Ag coverages. Periodic bound-

ary conditions (PBC) were applied to this surface. The entropy

of this system was calculated exactly though the equation:

SexðYÞ ¼  k
X

i

Pi lnPi ða1Þ

with:

Pi ¼
e Ei=kT

P

i

e Ei=kT
ða2Þ

where the sum runs over all the energy states compatible with

the coverage degree Y. In the present calculation this sum

involved 16 777 216 configurations. This exact result was

compared with the result of the calculation for T - 0 K,

denoted with ST = 0, where the probability was calculated on

the basis of straightforwardly hand counting the number of

the most compact equivalent structures at each coverage. We

performed these entropy calculations using two types of

interaction potentials: EAM potentials and pair potentials

yielding the same interaction energy between nearest neigh-

bors as the EAM ones.

Fig. 8a shows Sex(Y) at T = 300 K calculated using the

EAM potentials and ST = 0. It is found that the T = 0 K

calculation somehow underestimates the entropy values. How-

ever, they deliver the correct order of magnitude. The reason

for this underestimation is mainly grounded on the many-

body nature of the potential, where the second nearest neigh-

bor can play an important role in delivering more structures

with a similar energy.

This can be shown by considering the analogous problem

using (Ising like) pair potentials. Fig. 8b shows configurational

entropy calculations performed using pair potentials with a

pair interaction of  0.25 eV at 300 K and 1000 K. It is found

that the results for 300 K are indistinguishable from the

analytical ones.

We now turn to perform a crude estimation of the config-

urational entropy of the different systems on the basis of

considering the more compact structure for a given coverage

degree.

Let us consider a square lattice with M sites with periodic

boundary conditions, with a compact structure of N atoms

adsorbed on it. If the structure made of N atoms is perfectly

square, the entropy will be given by:
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Fig. 7 Probability of observing nAg atoms deposited on Au(core)

truncated octahedral nanoparticles of different sizes at zero excess of

Ag chemical potential. The inset shows a zoom at small nAg.
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ST = 0 = klnM (a3)

since the square may be located on any of the M sites of the

lattice with PBC. On the other hand, if the adsorbate consists

of a square surrounded by some atoms, its entropy will be

roughly given by:

ST = 0 = kln[M(4N1/2)] (a4)

where 4N1/2 makes reference to the number of different sites

available at the perimeter of the square of side N1/2. Since the

eqn (a4) is an upper bound of eqn (a3), we will use it to

estimate the order of magnitude of the entropy for the

different structures.

Fig. 9 shows the behavior of eqn (a4) for a system with a

number of adsorption sites (636) similar to that of the largest

NP considered in the body of the present work. In the inset, we

give the results for the small system considered above in Fig. 8

as compared with the exact results at 300 K.

We can conclude that the largest configurational entropy

contribution of the present core-shell system, delivers a con-

tribution to the free energy of the system of the order of 0.3 eV

at room temperature, being thus negligible as compared with

the energetic contributions.
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Fig. 8 Configurational entropy as a function of the number of Ag

atoms deposited on a Au(4 � 6) substrate. (a) Using eqn (a1) with

EAM potentials at 300 K (red squares); and hand counting the

number of states (black circles). (b) Using eqn (a1) with ‘‘Ising like’’

pair potentials at 300 K (red dots), at 1000 K (blue squares) and hand

counting the number of states (black dotted line).

Fig. 9 Configurational entropy at a function of the number of

substrate sites, calculated according to eqn (a4). The inset compares

the results for the Fig. A1b (red line and dots) with the configurational

entropy upper bound given in eqn (a4) (black dots).
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