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Abstract

We compute the gravitational effective action by integrating out quantum matter fields in a weak

gravitational field, using the Schwinger-Keldysh (in-in) formalism. We pay particular attention to

the role of the initial quantum state in the structure of the nonlocal terms in the effective action,

with an eye to nonlinear completions of the theory that may be relevant in astrophysics and

cosmology. In this first paper we consider a quantum scalar field in thermal equilibrium, in a

stationary gravitational field. We obtain a covariant expression for the nonlocal effective action,

which can be expressed in terms of the curvature tensor, the four-velocity of the thermal bath and

the local Tolman temperature. We discuss the connection between the results for ultrastatic and

static metrics through conformal transformations, and the main features of the thermal corrections

to the semiclassical Einstein equations.

1

http://arxiv.org/abs/1709.10435v2


I. INTRODUCTION

The observation of the present accelerated expansion of the universe catalyzed a large

number of theoretical speculations, looking for natural explanations for the acceleration.

The aim of many theoretical constructions is to modify general relativity in the infrared, in

order to produce an effective cosmological constant at the late stages of the universal evolu-

tion. One kind of such modifications are nonlocal cosmological models, which have been the

subject of numerous works [1–6]. Nonlocality naturally arises when considering the back-

reaction of quantum fields on the evolution of the universe. Exact calculations for generic

spacetimes are very difficult, and therefore there have been several alternative methods to

suggest viable modifications. On the one hand, for weak gravitational fields, the effective ac-

tion resulting from the integration of massless or massive quantum fields is very well known.

Light or massless fields could introduce significant infrared modifications. Nonlinear com-

pletions of these effective actions have been considered by several authors (see [1–3] and

references therein). The nonlocal structure of the effective action is of the form RF (✷)R
where R denotes the components of the Riemann tensor and F is a non-analytic function

of the D’Alembertian. Related phenomenological proposals consider effective actions of the

form RF ( 1
✷
R), where R is the Ricci scalar [7].

The usual in-out effective actions obtained after the integration of quantum matter fields

produce nonlocal and noncausal equations of motion for the metric [9]. This problem is

generally avoided in the nonlocal cosmological models by using a procedure suggested many

years ago by Barvinsky and Vilkovisky [8], which consists in computing the effective action

in Euclidean spacetime, obtaining the field equations, and then replacing there the Euclidean

propagators by retarded propagators. It was proved there that this replacement produces

the correct field equations when the quantum state of the field is the ground state, and

when the metric is, initially, asymptotically flat. In more general situations the use of the

so called Schwinger-Keldysh or in-in/CTP formalism [9, 10] becomes unavoidable, and it

is in general advocated to justify the prescription of Barvinsky and Vilkovisky. Note that,

in the phenomenological models, the use of the retarded propagator is just an additional

prescription which is crucial to force the reality and causality of the equations of motion.

Another strong argument in favor of using the in-in formalism is that it provides more

information than its Euclidean counterpart, i.e. it includes the stochastic effects. Indeed,
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the resulting field equations contain a stochastic noise source, whose statistical properties

are given by the imaginary part of effective action, accounting for fluctuation and dissipation

effects [10–12].

So far in the literature most of the works regarding nonlocal modifications of general

relativity induced by quantum fields consider the field to be in the vacuum state. However,

under general conditions the field is expected to be in a different quantum state, the most

reasonable of which being that of finite temperature. For this reason, in this paper we

will discuss the dependence of the effective action of a massless field with its quantum

state, focusing on stationary spacetimes in the limit of weak gravitational fields. Moreover,

for massless fields, the most interesting astrophysical and cosmological scenarios lie in a

regime where T ≫ L−1, where T is the temperature and L a characteristic curvature scale.

Therefore, we will pay particular attention to the high temperature expansion of the effective

action and the resulting field equations. As we will see, the initial quantum state strongly

modifies the nonlocal structure. In addition to its intrinsic interest, we expect the results

to be useful for new proposals of in-in nonlinear completions of the effective action that

produce real and causal equations of motion.

The dependence of the nonlocal effective action with the initial quantum state of the

field has been discussed in previous papers. Indeed, Gusev and Zelnikov [13] computed

the Euclidean effective action for a massless quantum field in a thermal state for an ultra-

static gravitational background (ie. in adequate coordinates the metric is g00 = −1, g0i =

0 and gij = gij(x̄)), using the covariant perturbation theory [8]. The in-in effective action

has been computed by Campos and Hu [11] (see also [14]), in the limit of weak gravitational

fields. They obtained the effective action and the corresponding equations of motion for

the metric. The technical complexity of the calculation produces cumbersome results, and

therefore we found it relevant to compute the effective action for stationary metrics, using

an alternative procedure that allows us to find covariant expressions for effective action. As

expected, the covariant effective action will involve not only the Riemann tensor but also a

vector uµ that describes the four-velocity of the thermal bath, as well as a local redefinition

of the temperature. Equivalently, it can be written in terms of the Riemann tensor and the

Killing vector κµ associated to the stationary geometry.

The paper is organized as follows. We present the calculation of the effective action for

weak gravitational fields in Section II, where we obtain explicit expressions for the nonlocal
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kernels. We also write the effective action in a covariant way, adapted to nonlinear com-

pletions. In Section III we describe the high temperature expansion of the effective action,

showing that the leading nonlocal contribution of the real part is linear in the temperature.

In Section IV we show that, for static metrics, the effective action can be derived from the

ultrastatic case, using a conformal transformation. In Section V we write the field equations,

and discuss qualitatively some features of the quantum corrections. Section VI contains the

conclusions of our work. In the Appendices we include further details of the calculations.

II. EFFECTIVE ACTION

In this section we compute the in-in effective action for a massless, minimally coupled

scalar field in a nearly flat spacetime. We follow Ref.[15], generalizing their approach to

the case of a thermal state. The classical action for a scalar massless quantum field with

minimal coupling is given by

Sm[gµν , φ] = −1

2

∫

d4x
√
−g gµν∂µφ∂νφ. (1)

We are using the signature (− + ++) for the metric, and natural units ~ = c = 1. For a

weak gravitational field we write a perturbation around flat spacetime as

gµν(x) = ηµν + hµν(x) , (2)

and expand the action up to quadratic order in hµν

Sm =
1

2

∫

d4x φ

(

✷+ V (1) + V (2) + ...

)

φ , (3)

where the perturbative operators in derivatives are

V (1) = −∂µh̄
µν(x)∂ν − h̄µν(x)∂µ∂ν , (4a)

V (2) = ∂µl
µν(x)∂ν + lµν(x)∂µ∂ν , (4b)

and

h̄µν(x) = hµν(x)−
1

2
h(x)ηµν , (5a)

lµν(x) = h α
µ (x)hαν(x)−

1

2
h(x)hµν(x) +

1

8
h2(x)ηµν − 1

4
hαβ(x)h

αβ(x)ηµν , (5b)
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with h(x) = hα
α(x). The complete thermal in-in effective action reads

Γ =
i

2
Tr

[

V
(1)
+ (G++ +GT ) + V

(2)
+ (G++ +GT )

]

− i

2
Tr

[

V
(1)
− (G−− +GT ) + V

(2)
− (G−− +GT )

]

− i

4
Tr

[

V
(1)
+ (G++ +GT )V

(1)
+ (G++ +GT )− 2V

(1)
+ (G+− +GT )V

(1)
− (G−+ +GT )

+V
(1)
− (G−− +GT )V

(1)
− (G−− +GT )

]

, (6)

where Gab, (a, b = +,−) are the usual flat space propagators in the vacuum state, and GT

the thermal contribution. Note that GT does not depend on the CTP indices a, b [11, 14].

Explicitly

Gβ
±±(x, y) =

∫

d4q

(2π)4
eiq(x−y)

[

(∓1)

q2 ∓ iǫ

]

, (7a)

Gβ
±∓(x, y) =

∫

d4q

(2π)4
eiq(x−y)(−2πi)θ(∓q0)δ(q

2), (7b)

and

GT =

∫

d4q

(2π)4
eiq(x−y)(−2πi)n(|q0|)δ(q2), (7c)

where n(|q0|) = (eβ|q0|−1)−1 is the bosonic thermal particle distribution and β is the inverse

temperature.

In principle, one should compute the effective action in n-dimensions, and absorb the

infinities adding appropriate counterterms. However, in what follows we will consider only

the temperature-dependent part of the effective action ΓT , which is finite due to the presence

of the Bose factor n(|q0|). Therefore we can omit the counterterms and the discussion of

renormalization. We split the thermal effective action as ΓT = Γ(1) + Γ(2), with

Γ(1) =
i

2
Tr

[

(V
(1)
+ + V

(2)
+ )GT

]

− i

2
Tr

[

(V
(1)
− + V

(2)
− )GT

]

, (8a)

Γ(2) = − i

2
Tr(V

(1)
+ G++V

(1)
+ GT )−

i

4
Tr(V

(1)
+ GTV

(1)
+ GT )

− i

2
Tr(V

(1)
− G−−V

(1)
− GT )−

i

4
Tr(V

(1)
− GTV

(1)
− GT )

− i

4
Tr(−2V

(1)
+ G+−V

(1)
− GT )−

i

4
Tr(−2V

(1)
+ GTV

(1)
− G−+)

− i

4
Tr(−2V

(1)
+ GTV

(1)
− GT ), (8b)
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where Γ(1) and Γ(2) are linear and quadratic in the propagator respectively. The zero temper-

ature part can be found elsewhere, for example in Ref. [15]. The main nonlocal contribution

is

Γ
(NL)
T=0 = − 1

23040π2

∫

d4x

∫

d4y

[

3Rµναβ(x)R
µναβ(y)− R(x)R(y)

]

×
[

∫

d4p

(2π)4
eip(x−y) log

(

p2 − iǫ

µ2
0

)]

(9)

Let us now elaborate on each of the two contributions to ΓT .

A. Calculation of Γ(1)

The terms proportional to V (1) in Eq.(8a) can be written in terms of h̄µν , and read

i

2
Tr
[

V (1)GT

]

=
i

2

∫

d4x

∫

d4k

(2π)4
h̄µν(x)k

µkν
[

(−2πi)n(|k0|)δ(−k2
0 + k̄2)

]

=
π2

60β4

∫

d4x

[

h00(x) + hij(x)
ηij

3

]

. (10)

Analogously, for the terms proportional to V (2), we have

i

2
Tr
[

V (2)GT

]

= − i

2

∫

d4x

∫

d4k

(2π)4
lµν(x)k

µkν
[

(−2πi)n(|k0|)δ(−k2
0 + k̄2)

]

= − π2

60β4

∫

d4x

[

− h2
00(x)

2
− h00(x)hij(x)η

ij

3

− hij(x)hlm(x)

6

(

ηijηlm − 2ηilηjm
)

+
2

3
h0i(x)h0j(x)η

ij

]

. (11)

The full action Γ1 is obtained by adding the above two equations evaluated at hµν → h
(+)
µν

and then subtracting the same expression evaluated at hµν → h
(−)
µν .

B. Calculation of Γ(2)

The calculation of Γ(2) is much more involved. Before presenting the details, it is useful to

take into account that, on general grounds [10, 11], the quadratic part of the CTP effective
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action must be of the form

Γ(2) =

∫

d4x

∫

d4y

{

h+
µν(x)

[

Hµνρσ(x, y) + iNµνρσ(x, y)
]

h+
ρσ(y)

− 2h+
µν(x)

[

Dµνρσ(x, y) + iNµνρσ(x, y)
]

h−
ρσ(y)

− h−
µν(x)

[

Hµνρσ(x, y)− iNµνρσ(x, y)
]

h−
ρσ(y)

}

, (12)

for some real and symmetric kernels H(x, y) andN(x, y), and a real and antisymmetric kernel

D(x, y). The dissipation (D) and noise (N) kernels are related by a fluctuation-dissipation

relation. Moreover, for the particular situation considered in this paper, a stationary geom-

etry, there are no dissipative effects and the kernel D vanishes. Therefore, it is enough to

compute the ++ part of the effective action, and read from it the nonvanishing kernels H

and N . Furthermore, in terms of Fourier transform of kernels, the time-independence of the

metric translates into p0 = 0.

To evaluate the different terms of Eq.(8b) let us first consider the trace

− i

2
Tr
[

V
(1)
+ G++V

(1)
+ GT

]

= − i

2

∫

dt

∫

d3xd3y

∫

d3p

(2π)3
eip̄(x̄−ȳ)

× h(+)
µν (x̄)Aµναβ(0, p̄)h

(+)
αβ (ȳ) . (13)

The kernel Aµναβ(0, p̄) reads

Aµναβ(0, p̄) =

∫

d4q

(2π)4

[

(−2πi)δ
(

(q − p)2
)

n(|q − p|)
]

p0=0

[

(−1)

q2 − iǫ

]

p0=0

×

×
(

[

ηρµτν(q − p)ρqτ

][

ηλασβ(q − p)λqσ

]

)

p0=0

, (14)

where ηρµτν = ηρµητν − 1
2
ηµνηρτ .

The strategy for evaluating this kernel is as follows: we first perform the integration in q0,

which is trivial due to the Dirac δ-function and the fact that for a stationary metric p0 = 0.

We then perform the angular integral in the plane perpendicular to p̄, and leave the answer

in terms of an integral in k ≡ |k̄| = |q̄ − p̄|, and in the remaining angular variable.
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To exemplify, we schematically show the calculation of A0000(0, p̄):

A0000(0, p̄) =

∫

d4q

(2π)4

[

(−2πi)δ
(

(q − p)2
)

n(|q − p|)
]

p0=0

[

(−1)

q2 − iǫ

]

p0=0

×

×
(

ηρ0τ0[(q − p)ρqτ ]η
λ0σ0[(q − p)λqσ]

)

p0=0

=
i

(2π)3

∫

dq0 d3q
δ(−q20 + (q̄ − p̄)2) n(|q − p|)

−q20 + q̄2 − iǫ
×

×
[

q20
2
+

1

2
(q̄ − p̄)q̄

][

q20
2

+
1

2
(q̄ − p̄)q̄

]

. (15)

As mentioned above, computing the integral in q0 is trivial. Then, changing to the k̄ = q̄− p̄

variable, we arrive at

A0000(0, p̄) =
i

(2π)2

∫ π

0

dθ sin θ

∫ ∞

0

dk k
n(k)

|p̄|2 + 2p̄.k̄ − iǫ
×

[

kikjklkmηijηlm + klkikjpmηijηlm +
1

4
kikjplpmηilηjm

]

. (16)

At this point, we can rely on symmetry properties to simplify the tensorial structure (see

Appendix A), and find

A0000(0, p̄) =
i

4π2
|p̄|4
(

I22
4

+ I31 + I40

)

, (17)

where the result is now expressed in terms of the scalar integrals Iαγ , defined as

Iαγ(p̄) =

∫ ∞

0

dk

∫ 1

−1

dχ
kα+1χγ |p̄|−α

|p̄|2 + 2k|p̄|χ− iǫ
n(k) , (18)

with χ = cos θ.

In a similar way we can calculate every other contribution of Aµναβ(p̄) (see Appendix B),
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thus obtaining from Eq.(13) that

− i

2
Tr
(

V
(1)
+ G++V

(1)
+ GT

)

=
1

64π5

∫

dt

∫

d3xd3y

∫

d3p eip̄(x̄−ȳ)

{

h
(+)
00 (x̄)p4

(

I22
4

+ I31 + I40

)

h
(+)
00 (ȳ)

+h
(+)
00 (x̄)|p̄|4P ij

(

− I22
2

− I31
2

− I33
2

+ I40 − I42

)

h
(+)
ij (ȳ)

+h
(+)
ij (x̄)h

(+)
lm (ȳ)

{

|p̄|4P ijP lm

(

I22
4

− I31
2

+
I33
2

+
I40
8

− I42
4

+
I44
8

)

+ |p̄|4P imP jl

(

I40
4

− I42
2

+
I44
4

)

+|p̄|2P ilpjpm

[(

I20
2

+ I31

)

−
(

I22
2

+ I33

)]

+ |p̄|2pipjP lm

[

− 1

2

(

I22
2

+ I33

)]

+|p̄|2P ijplpm

[

− 1

2

(

I22
2

+ I33

)]

+ pipjplpm

[

1

2

(

I22
2

+ I33

)]}

+ pipjh
(+)
00 (x̄)h

(+)
ij (ȳ)|p̄|2

(

I22
2

+ I33

)

+h
(+)
0i (x̄)h

(+)
0j (ȳ)|p̄|2pipj

(

I20 + 2I31

)}

, (19)

where P ij = ηij − pipj

p2
, P i0 = P 0i = 0 and P 00 = η00 = −1. In this expression we identify

two kind of terms: those which are proportional to a pair of projectors Pµν = ηµν − pµpν
p2

and

those which are not. Since the former can be easily written in terms of the Riemann tensor

and the four-velocity uµ (see Appendix C), it is necessary to work out the latter, which are

all proportional to combinations of the form,

Iαγ + 2I(α+1)(γ+1) =

∫ ∞

0

dk

∫ 1

−1

dχ n(k)kα+1χγ |p̄|−α−2

1

βα+2|p̄|α+2

∫ ∞

0

dz n(z) zα+1 [1 + (−1)γ ]

(1 + γ)

=
1

(β|p̄|)α+2
Γ(α + 2)ζ(α+ 2)

[1 + (−1)γ ]

(1 + γ)
. (20)

Note that this particular combination of integrals can be exactly evaluated, and that the

result vanishes for odd values of γ.

In order to complete the calculation of the ++ part of the effective action, it is neces-

sary to evaluate the term − i
4
Tr(V

(1)
+ GTV

(1)
+ GT ) in Eq.(8b). Using the explicit form of the

propagators, Eqs. (7a) and (7c), it is easy to see that GT (k) = (−2πi)n(|k0|)Im(G++(k))

then this trace is purely imaginary which can be related with the imaginary part of Eq. (19)

replacing n → n2.

It is convenient to evaluate separately the real and imaginary parts of the ++ contribution

to Γ(2): the real part can be read from Eq.(19), just taking the real parts of the integrals Iαβ.

9



On the other hand, the imaginary part can be obtained from Eqs.(8b) and (19), replacing

Iαβ → Îαβ , giving the following result

− i

2
Tr(V

(1)
+ Im(G++)V

(1)
+ GT )−

i

4
Tr(V

(1)
+ GTV

(1)
+ GT ) =

1

64π5

∫

dt

∫

d3x d3y

∫

d3p eip̄(x̄−ȳ) ×
{

h
(+)
00 (x̄)h

(+)
00 (ȳ)|p̄|4 Im

(

Î22
4

+ Î31 + Î40

)

+ h
(+)
00 (x̄)h

(+)
ij (ȳ)|p̄|4Pij Im

(

− Î22
2

− Î31
2

− Î33
2

+Î40 − Î42

)

+ h
(+)
ij (x̄)h

(+)
lm (ȳ)

[

|p̄|4PijPlm Im

(

Î22
4

− Î31
2

+
Î33
2

+
Î40
8

− Î42
4

+
Î44
8

)

+|p̄|4PimPjl Im

(

Î40
4

− Î42
2

+
Î44
4

)]

+ h
(+)
0i (x̄)h

(+)
0j (ȳ)

[

2|p̄|4P ij Im

(

Î40 − Î42

)]}

, (21)

where

Îαβ(|p̄|) =
∫

dk

∫ 1

−1

dχ
kα+1χγ |p̄|−α

|p̄|2 + 2k|p̄|χ− iǫ

(

n(k) + n(k)2
)

. (22)

C. The complete effective action: covariant form

We now collect the previous results. The real and imaginary parts of the ++ effective

action read

Re(Γ++) =
i

2
Tr
[

(V
(1)
+ + V

(2)
+ )GT

]

− i

2
Tr
[

V
(1)
+ Re(G++)V

(1)
+ GT

]

(23)

and

Im(Γ++) = −1

2
Tr
[

V
(1)
+ Im(G++)V

(1)
+ GT

]

− 1

4
Tr
[

V
(1)
+ GTV

(1)
+ GT

]

. (24)

First, let us notice that throughout the different contributions to Re(Γ++), Eqs. (10), (11)

and (19), we find explicit terms proportional to β−4. However, there will also be implicit

contributions coming from the Iαγ integrals of Eq. (19) that will surface only after an ex-

pansion in high temperatures is performed. This expansion will be discussed in more detail

in the next section, but for now we shall borrow these terms in order to treat them in the

same standing as the explicit ones. The crucial point is that, when combining all of the

contributions that go as β−4, the resulting term is in fact local. This is also the case for the

terms proportional to β−2, which in this case are all contained within the Iαγ ’s. For this

reason we will separate both types of terms from the other, truly nonlocal, contributions.
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All the contributions proportional to β−4 in Γ++ are

Re(Γ++)
(4) =

π2

60β4

∫

d4x

[

h
(+)
00 (x̄) + h

(+)
ij (x̄)

ηij

3

]

− π2

60β4

∫

d4x

[

− (h
(+)
00 (x̄))2

2
−

h
(+)
00 (x̄)h

(+)
ij (x̄)ηij

3

−
h
(+)
ij (x̄)h

(+)
lm (x̄)

6

(

ηijηlm − 2ηilηjm
)

+
2

3
h
(+)
0i (x̄)h

(+)
0j (x̄)ηij

]

+
1

480πβ4

∫

dt

∫

d3x

∫

d3y

∫

d3p eip̄(x̄−ȳ)

[

− 1

12
h
(+)
ij (x̄)h

(+)
lm (ȳ)(ηijηlm − 2ηilηjm)

+
1

6
ηijh

(+)
00 (x̄)h

(+)
ij (ȳ) + h

(+)
0i (x̄)h

(+)
0j (ȳ)ηij

]

, (25)

which, after comparing with Eq. (C1a), it is found to be the weak field expansion of

Re(Γ++)
(4) =

π2

90β4

∫

d4x

√

−g(+)

g
(+) 2
00

. (26)

Under a similar analysis, the terms proportional to β−2 combine to form the weak field

expansion of

Re(Γ++)
(2) =

1

144β2

∫

d4x

√

−g(+)

g
(+)
00

R(+)(x̄). (27)

After separating both these contributions, and combining Eqs.(10), (11), and (19), we obtain

Re(Γ++) =
π2

90β4

∫

d4x

√

−g(+)

g
(+) 2
00

+
1

144β2

∫

d4x

√

−g(+)

g
(+)
00

R(+)(x̄)

+
1

8π2

∫

dt

∫

d3x

∫

d3y

∫

d3p

(2π)3
eip̄(x̄−ȳ)

{

h
(+)
00 (x̄)h

(+)
00 (ȳ)|p̄|4A(|p̄|)

+h
(+)
00 (x̄)h

(+)
ij (ȳ)|p̄|4P ijB(|p̄|) + h

(+)
ij (x̄)h

(+)
lm (ȳ)|p̄|4

[

P ijP lmC(|p̄|)

+P imP jlD(|p̄|)
]

+ h
(+)
0i (x̄)h

(+)
0j (ȳ)|p̄|4P ijE(|p̄|)

}

, (28)

where

A(|p̄|) = I22
4

+ I31 + I40 −
π4

10β4|p̄|4 +
π2

18β2|p̄|2 , (29a)

B(|p̄|) = −I22
2

− I31
2

− I33
2

+ I40 − I42 −
π4

45β4|p̄|4 − π2

36β2|p̄|2 , (29b)

C(|p̄|) = I22
4

− I31
2

+
I33
2

+
I40
8

− I42
4

+
I44
8

+
π4

90β4|p̄|4 − π2

72β2|p̄|2 , (29c)

D(|p̄|) = I40
4

− I42
2

+
I44
4

− π4

45β4|p̄|4 +
π2

72β2|p̄|2 , (29d)

E(|p̄|) = 2I40 − 2I42 −
2π4

15β4|p̄|4 +
π2

72β2|p̄|2 . (29e)

11



Note that the local terms in Eq.(28) are multiplied by powers of the Tolman temperature

(β
√

|g00(x̄)|)−1 = β(x̄)−1 [16]. These contributions have been correspondingly subtracted

to the nonlocal kernels, which now will not contain any terms that go as β−4 or β−2 when

expanded at high temperatures.

Thanks to the presence of the projectors Pµν we can write the effective action in terms of

the Riemann tensor. However, as we are considering a quantum field in a thermal state, this

is not enough to obtain a covariant expression, due to the presence of a privileged direction

associated to the four-velocity uµ of the thermal bath, as well as the space-dependent Tolman

temperature β(x̄)−1. In order to be able to obtain a fully covariant expression, it is necessary

to also introduce the timelike Killing vector κµ (κ2 < 0) related to the stationary nature of

the geometry [17, 18]. In terms of this vector, we have uµ = κµ/
√
−κ2 and g00 = κ2. Indeed,

using Eqs. (C4a) and (C2) we obtain

Re(Γ++) =
π2

90

∫

d4x

√−g

β4κ4
+

1

144

∫

d4x

√−g

β2κ2
R(x)

+
1

8π2

∫

d4x

∫

d4y

{

4Rµν(x)u
µuνA1(x, y)Rαβ(y)u

αuβ

+2Rµν(x)A2(x, y)u
µuνR(y) +R(x)A3(x, y)R(y)

+Rµναβ(x)A4(x, y)R
µναβ(y) + 4Rµν(x)A5(x, y)R

ν
β(y)u

µuβ

}

(30)

where the nonlocal kernels read

A1(x, y) =

∫

d4p

(2π)4
eip(x−y)

(

A(p)− B(p) + C(p)− 3D(p) + E(p)
)

, (31a)

A2(x, y) =

∫

d4p

(2π)4
eip(x−y)

(

B(p)− 2C(p)
)

, (31b)

A3(x, y) =

∫

d4p

(2π)4
eip(x−y)C(p) , (31c)

A4(x, y) =

∫

d4p

(2π)4
eip(x−y)D(p) , (31d)

A5(x, y) =

∫

d4p

(2π)4
eip(x−y)

(

E(p)− 2D(p)
)

, (31e)

and p =
√

|pµpµ|. In order to simplify the notation, we omitted the superscript (+) for the

metric in Eq. (30). Notice that these last expressions are valid in any coordinate system,

which is evidenced by the promotion of x̄ → x in Eqs. (30) and (31), and |p̄| → p in Eqs.

(31). Upon choosing the coordinates such that κµ = (1, 0, 0, 0) they reduce to the former

12



expressions for which the time-independence is manifest. However, it is worth remarking

that we expect additional terms in the effective action for a metric with a generic spacetime

dependence.

We can proceed in a similar way with the imaginary part of the effective action. The

result is

Im(Γ++) =
1

8π2

∫

d4x

∫

d4y

{

4Rµν(x)u
µuνÂ1(x, y)Rαβ(y)u

αuβ

+2Rµν(x)Â2(x, y)u
µuνR(y) +R(x)Â3(x, y)R(y)

+Rµναβ(x)Â4(x, y)R
µναβ(y) + 4Rµν(x)Â5(x, y)R

ν
β(y)u

µuβ

}

(32)

where the imaginary kernels Âi(x, y) are obtained from the corresponding expressions in

Eq.(31) replacing A,B,C,D, and E by

Â(p) = Im
( Î22

4
+ Î31 + Î40

)

, (33a)

B̂(p) = Im
(

− Î22
2

− Î31
2

− Î33
2

+ Î40 − Î42

)

, (33b)

Ĉ(p) = Im
( Î22

4
− Î31

2
+

Î33
2

+
Î40
8

− Î42
4

+
Î44
8

)

, (33c)

D̂(p) = Im
( Î40

4
− Î42

2
+

Î44
4

)

, (33d)

Ê(p) = 2Im
(

Î40 − Î42

)

, (33e)

The above Eqs. (30) and (32) are the main results of our work. We have found a covariant,

nonlocal expression for the in − in effective action for stationary metrics, considering a

quantum massless, minimally coupled scalar field in thermal equilibrium. The nonlocal

kernels are nontrivial functions of the temperature, and the effective action is written in

terms of the curvatures and the timelike Killing vector. Our results generalize those of

Ref.[13], which are valid for Euclidean ultrastatic geometries (we will describe below an

interesting connection between the effective actions for ultrastatic and static situations).

Regarding the work of Ref.[11], we have been able to write the effective action in a fully

covariant way, valid for stationary spacetimes.

It is interesting to remark that the local terms proportional to β−4 and β−2 can be

interpreted as a cosmological constant and an Einstein-Hilbert action, respectively, modified

by a local temperature. The same terms also appear when computing the effective action
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using the Schwinger-DeWitt expansion for a massive field [18, 19]. However, for more general

metrics and massless quantum fields nonlocality could arise already at these orders.

III. HIGH TEMPERATURE EXPANSION

As the structure of the nonlocal kernels is rather complex, it is worth analyzing them

in the high temperature limit. The main technical point is to expand the integrals Iαγ in

Eq.(18) in inverse powers of β. After a change of variables we have

Iαγ =
1

2(2z0)α+1

∫ ∞

0

dz
zα+1

ez − 1
Iγ, (34)

with

Iγ =

∫ 1

−1

dχ
χγ

(z0 + zχ− iǫ)
, (35)

and z0 = pβ/2. The expansion of Iαγ for small z0 is rather involved and is described in

Appendix D. For the values of α and γ relevant to the evaluation of the effective action, the

structure of the expansion is

Iαγ =
aαγ
z40

+
cαγ
z20

+
dαγ
z0

+ eαγ log z0 +O(z0), (36)

where aαγ , cαγ , dαγ and eαγ are constants. It is noticeable the absence of a term proportional

to β−3. with µ

We now replace the expansions into Eq.(28). The main observation is that there are

no contributions proportional to β−4 and β−2 into the kernels, i.e. we separated them on

purpose. However the β−3 is not there from the beginning. For these reasons the leading

nonlocal contribution is proportional to β−1. The result for this last term is

Re(Γ++)
(1) ≈ 1

1024

∫

d4x
√
−g

∫

d4y
√
−g

1

β
√
−κ2

{

11Rµν(x)u
µuν 1√

−�
Rαβ(y)u

αuβ

−5Rµν(x) u
µuν 1√

−�
R(y) +

1

4
R(x)

1√
−�

R(y) +
1

2
Rµναβ(x)

1√
−�

Rµναβ(y)

−4Rµν(x)
1√
−�

Rν
β(y)u

µuβ

}

, (37)

where the nonlocal kernel is a two-point function defined as

1

(
√
−�)n

≡
∫

d4p

(2π)4
eip(x−y)

pn
. (38)
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Note that the convolution of this nonlocal kernel with a time-independent function is equiv-

alent to the convolution of the function with the kernel δ(t − t′)/
√
−∇2. As expected on

dimensional grounds, this leading contribution is a linear combination of terms of the form

R(β
√
−�)−1R where R denotes components of the Riemann tensor eventually contracted

with the four-velocity uµ.

The integrals Iαγ also have terms proportional to log(βp), which could potentially be

nonlocal subleading corrections to the effective action. An explicit evaluation gives that

these terms precisely cancel the nonlocal zero temperature contribution (see Eq.(9)), leaving

only a local remainder that goes as log(βµ), with µ an arbitrary renormalization scale.

Following the same steps we find, for the imaginary part

Im(Γ++) =
1

8π2

∫

d4x
√
−g

∫

d4y
√
−g

{

4Rµν(x)u
µuνÂ1(x, y)Rαβ(y)u

αuβ

+2Rµν(x)Â2(x, y)u
µuνR(y) +R(x)Â3(x, y)R(y)

+Rµναβ(x)Â4(x, y)R
µναβ(y) + 4Rµν(x)Â5(x, y)R

ν
β(y)u

µuβ

}

, (39)

where

Â1(x, y) ≈
11π5

60(β
√
−�)5

− 7π3

96(β
√
−�)3

+
73π

768(β
√
−�)2

− 11π

512(β
√
−�)

(40a)

Â2(x, y) ≈
π5

10(β
√
−�)5

− π3

16(β
√
−�)3

+
11π

128(β
√
−�)2

+
5π

256(β
√
−�)

(40b)

Â3(x, y) ≈
π5

60(β
√
−�)5

+
π3

32(β
√
−�)3

− 37π

768(β
√
−�)2

− π

512(β
√
−�)

(40c)

Â4(x, y) ≈
π5

30(β
√
−�)5

− π3

48(β
√
−�)3

+
11π

384(β
√
−�)2

− π

256(β
√
−�)

(40d)

Â5(x, y) ≈
π5

5(β
√
−�)5

− π3

24(β
√
−�)3

+
3π

64(β
√
−�)2

+
π

128(β
√
−�)

.

(40e)

Note that the nonlocal kernels Âi(x, y) are linear combinations of (β
√
−�)−n.

IV. CONNECTION WITH THE EFFECTIVE ACTION FOR ULTRASTATIC

SPACETIMES

The structure of the effective action Γ[gµν ] for a static metric gµν (i.e. g0i = 0) can in fact

be recovered from the effective action Γ̄[ḡµν ,Ω] for an ultrastatic metric ḡµν (also ḡ00 = η00)
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through an appropriate conformal transformation

gµν(x̄) = Ω2(x̄)ḡµν(x̄), (41)

where Ω2 = |g00|. However, since the action is not conformally invariant, the corresponding

effective action Γ̄[ḡµν ,Ω] for the ultrastatic metric is associated to a different operator.

Indeed, if we consider a static metric in Euclidean signature, we have for the Euclidean

effective action

e−Γ[gµν ] =

∫

Dφ e−S[φ,gµν] ∼ det
(

−�+m2 + ξR
)−1/2

, (42)

where ξ is the coupling between scalar curvature and the field. Upon applying the transfor-

mation Eq.(41) it turns into

e−Γ[gµν ] = J [Ω]e−Γ̄[ḡµν ,Ω]

∼ J [Ω] det

[

−�̄+ Ω2m2 + ξR̄−
(

ξ − 1

6

)

∆R̄

]−1/2

, (43)

where ∆R̄ is related to the transformation of the scalar curvature and is defined in Eq.(E1).

The Jacobian J [Ω] adds a local contribution to the effective action, that produces the trace

anomaly. The effective actions for Euclidean ultrastatic metrics were obtained previously

up to quadratic order in the curvature R̄, by means of heat kernel methods for a wide class

of operators of the form −�̄ − P̄ + R̄
6
, with P̄ (x) a generic potential that may include the

curvature as well as interactions. In particular, the effective action at finite temperature

has been computed in Ref. [13], where the nonlocal structure is encoded in temperature

dependent kernels γi(β
√
−∇2), with i = 1, .., 4. By choosing the potential P̄ appropriately

(see Appendix E for further details), the effective action Γ̄[ḡµν ,Ω] is easily obtained, and

after carefully rewriting everything in terms of the static metric gµν , the corresponding Γ[gµν ]

arises.

There is an important feature of Γ[gµν ] that can be deduced from this picture. At high

temperatures the kernels γi can be expanded in powers of β−1, leading to terms in the

effective action that are schematically of the form,

∫

d4x

∫

d4y
√
−ḡR̄(x)

1

(β
√
−�̄)n

√
−ḡR̄(y), (44)

where we are using a covariant representation that reduces to the one of Ref. [13] upon

specializing for an ultrastatic metric in the appropriate coordinates. The geometric objects

16



have well known transformation rules under Eq.(41), some of which are summarized in

Eqs. (E1), however the nonlocal operators deserve a special treatment. Besides Eq. (38),

and alternative definition for these operators is [20],

1

(
√
−�̄)n

=
2

π
sin
(nπ

2

)

∫ ∞

0

dm̄ m̄1−n 1

(−�̄+ m̄2)
. (45)

The massive propagator Gm̄(x, y) = (−�̄
2 + m̄2)−1 is not conformally invariant. However,

up to corrections proportional to the curvature, it can be shown that in four dimensions it

transforms like
1

(−�̄+ m̄2)
= Ω(x)

1

(−�+ m̄2Ω−2)
Ω(y) +O(R), (46)

and therefore, upon a change of integration variable m̄ → m = m̄Ω−1, we can obtain the

approximated transformation rule for the nonlocal operator

(−�̄)−
n
2 = Ω(x)2−

n
2 (−�)−

n
2Ω(y)2−

n
2 +O(R). (47)

Putting this together with the transformation rules of the other geometrical objects, it can be

readily seen that a term like Eq. (44) contributes to the effective action Γ[gµν ] schematically

as
∫

d4x

∫

d4y

√−gR(x)

(βΩ(x))n/2
1

(
√
−�)n

√−gR(y)

(β Ω(y))n/2
+O(R3). (48)

Going back to the case under consideration, Eq. (41), this is what gives a spatial dependence

to the inverse temperature parameter β,

β → β(x̄) = β
√

|g00(x̄)|, (49)

in compliance with our result Eq. (30), as well as with other works in the literature [16, 19,

21, 22].

There are limitations to this approach though. On the one hand, only a static metric can

be related to an ultrastatic through a conformal transformation, leaving stationary metrics

(i.e g0i 6= 0) out of this treatment. Indeed, the kernel E(x, y) of Eq. (29e) will never arise

from this approach.

On the other hand, it is necessary to know the ultrastatic effective action Γ̄[ḡµν ,Ω] for a

more general type of operator than the original one whose static effective action Γ[gµν ] we

aim to find. This might prove equally or more challenging than a direct calculation of Γ[gµν ],

even for more general metrics. In our case, the known results from Ref. [13], which are able
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to accommodate a generic operator, were obtained for a Euclidean ultrastatic metric and

therefore allows us only to obtain the equivalent Euclidean effective action for a static metric,

which we can then verify to be equal to the real part of the CTP effective action Re(Γ[gµν ])

we computed in Eq.(30), after the high temperature expansion of Eq. (37). This means that

any imaginary contribution Im(Γ[gµν ]), i.e Eq.(39), is absent, and thus we are missing the

information on the stochastic properties of the system. In order to obtain this last part

from a conformal transformation, we would need to know the CTP equivalent of Ref. [13],

that is, the CTP effective action for an ultrastatic metric associated to a generic operator,

but this is likely more difficult than to perform the full CTP calculation we presented in the

previous sections.

V. FIELD EQUATIONS IN THE HIGH TEMPERATURE LIMIT

In this section we compute the semiclassical Einstein equations by directly taking the

variation of Sg[gµν ] + Sm[gµν ] + Γ[gµν ] with respect to the metric, where Sg and Sm are the

gravitational action and the action for classical matter sources respectively. The semiclassical

Einstein equations read

M2
plGµν = T cl

µν + 〈Tµν〉+ jµν , (50)

where M2
pl is the Planck mass, Gµν is the Einstein tensor, Tµν is the stress-energy tensor and

jµν a stochastic noise source, i.e. 〈jµν〉 = 0. The stress-energy tensor of the classical matter

sources T cl
µν is related with Sm in the usual way, and analogously, for the expectation value

of the stress-energy tensor of the quantum field we have

〈Tµν〉 = − 2√−g

δRe(Γ++[gµν ])

δgµν+

∣

∣

∣

∣

∣

gµν
+

=gµν
−

, (51)

where it has already been taken into account the fact that the in-in formalism ensures the

equations of motion are real, and thus it is only necessary to consider the variation of the

real part of Γ[gµν ]. Furthermore, for time-independent metrics we have Re(Γ+−[gµν ]) =

Re(Γ−+[gµν ]) = 0, as already discussed after Eq. (12).

We compute 〈Tµν〉 by explicitly varying Re(Γ++[gµν ]) from Eq. (28) with respect to

the metric. In this section we choose to work in coordinates for which the stationarity of

the metric is explicit and it does not depend on the time coordinate t, and thus 1√
−�

→
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1√
−∇2

δ(t−t′). First let us consider the local contributions proportional to β−4 and β−2, whose

variations can be easily obtained from their nonlinear expressions. Indeed, from Eq. (26)

for β−4 we have

〈Tµν(x̄)〉(4) = ρ(x̄)uµuν + p(x̄) (gµν + uµuν) , (52)

where ρ(x̄) = π2

30β(x̄)4
, p(x̄) = ρ(x̄)

3
and uµ are, respectively, the energy density, pressure

and four-velocity of an ideal radiation fluid with space-dependent temperature given by the

Tolman temperature β(x̄)−1. It is worth noting that a source of this form in the Einstein

equations does not allow a static solution that also satisfies sensible boundary conditions

(such as decaying at spatial infinity). This has been thoroughly studied in the literature, in

particular regarding the stability of hot flat space [21]. We will not dwell on this subject,

but just note that a full treatment requires to consider a time-dependent scenario.

Similarly, from Eq. (27) for β−2 we obtain,

〈Tµν(x̄)〉(2) =
1

72

[

1

β(x̄)2
(Gµν − Ruµuν)− (∇µ∇ν − gµν�)

1

β(x̄)2

]

. (53)

The first parenthesis will have the effect of “renormalizing” Newton’s constant by a finite,

temperature and space-dependent amount, but in a noncovariant way, i.e. the ‘00’ equation

receives a different correction than the others. The second parenthesis survives due to the

fact that ∇µβ(x̄) 6= 0.

We now consider the nonlocal part (NL), which starts at β−1. We take the variation from

its expression in terms of hµν , given in Eq. (28) and valid when |hµν | ≪ 1, and then rewrite

the result in terms of the components of the Riemann tensor. This naturally separates the

different components of the equations,

〈T00(x̄)〉(NL) = − 1

4π2

∫

d4y

[

(

4A(t, t′; x̄, ȳ) + 2B(t, t′; x̄, ȳ)
)

∇2Rµν(ȳ)u
µuν

+B(t, t′; x̄, ȳ)∇2R(ȳ)

]

(54a)

〈Tij(x̄)〉(NL) = − 1

2π2

∫

d4y

[(

ηij∇2 −∇i∇j

)(

(B(t, t′; x̄, ȳ) + 2C(t, t′; x̄, ȳ))Rµν(ȳ)u
µuν

+C(t, t′; x̄, ȳ)R(ȳ)

)

+ 2D(t, t′; x̄, ȳ)∇2Rij(ȳ)−D(t, t′; x̄, ȳ)∇i∇jR(ȳ)

]

(54b)

〈T0i(x̄)〉(NL) = − 1

π2

∫

d4y E(t, t′; x̄, ȳ)∇2Rµi(ȳ)u
µ (54c)

19



where 〈Tµν〉 is explicitly dependent only on x̄, and

A(t, t′; x̄, ȳ) ≈ δ(t− t′)

[

π2

64β
√
−∇2

+
1

120
log (βµ) δ(3)(x̄− ȳ)

]

, (55a)

B(t, t′; x̄, ȳ) ≈ δ(t− t′)

[

− π2

64β
√
−∇2

− 1

80
log (βµ) δ(3)(x̄− ȳ)

]

, (55b)

C(t, t′; x̄, ȳ) ≈ δ(t− t′)

[

π2

512β
√
−∇2

+
1

160
log (βµ) δ(3)(x̄− ȳ)

]

, (55c)

D(t, t′; x̄, ȳ) ≈ δ(t− t′)

[

π2

256β
√
−∇2

+
1

480
log (βµ) δ(3)(x̄− ȳ)

]

, (55d)

E(t, t′; x̄, ȳ) ≈ − 1

480
log (βµ) δ(t− t′)δ(3)(x̄− ȳ). (55e)

Notice that the logarithmic term is local due to the cancellation of all log(p) parts with the

usual zero temperature contributions (see Eq. (9)). Also, 〈T0i(x̄)〉(NL) is purely local.

The expressions in Eqs. (54) show only contributions linear in the curvature to 〈Tµν〉(NL),

of the form
∫

(
√
−∇2)−1∇2R. This is due to the level of approximation used when computing

the effective action, quadratic in the metric perturbation hµν , and thus linear in the field

equations. If we consider any of the possible non-linear completions of the effective action,

its variation will contain further terms of higher order in the curvature R in the nonlocal

part of the field equations, of the form

∫

Gµν
1√
−∇2

R+

∫

R δ

δgµν

(

1√
−∇2

)

R, (56)

where Gµν represents a generic variation of components of the Riemann tensor with respect

to the metric.

The full 〈Tµν〉 is obtained by adding all the previous contributions,

〈Tµν〉 = 〈Tµν〉(4) + 〈Tµν〉(2) + 〈Tµν〉(NL). (57)

From the explicit expressions for each contribution it can be checked that the full stress-

tensor is conserved, i.e. ∇µ〈T µν〉 = 0.

Let us now discuss the stochastic contribution to Eq. (50). The noise jµν accounts for

the fluctuations of the stress-energy tensor of the quantum field around its mean value. Its

self-correlation is related to the imaginary part of the effective action,

〈jµν(x)jρσ(y)〉 = 〈{∆Tµν(x);∆Tρσ(y)}〉 = Nµνρσ(x, y), (58)
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where ∆Tµν = Tµν − 〈Tµν〉, and the noise kernel Nµνρσ(x, y) is defined in Eq. (12). The

semiclassical approximation will be a good one as long as the fluctuations of the stress-

energy tensor are small compared to its mean value, that is,

〈∆T 2
µν〉 ≪ 〈Tµν〉2. (59)

Note that since jµν(x) is of stochastic origin, it depends both on space and time coordinates.

This can be made compatible with a static metric if the dominant source of Eq. (50) is the

semiclassical one and the solution is stable under small time-dependent perturbations.

We close this section by considering the ansatz of a static Newtonian metric, having the

form

ds2 = −(1 + 2φ(x̄))dt2 + (1− 2φ(x̄)) dx̄2. (60)

We first assume there is a mechanism by which the effect of the source 〈Tµν〉(4) is stabilized
such that a static metric can be a viable solution. The most striking feature is that for

this kind of metric the leading nonlocal contribution 〈Tµν〉(NL) proportional to β−1 vanishes

exactly, although this can be checked to be a special feature of the minimally coupled case

(ξ = 0), and not hold for more general cases. In the absence of both 〈Tµν〉(4) and 〈Tµν〉(NL),

the noise source jµν becomes dominant. This would break the semiclassical approximation

for Newtonian metrics at high temperatures.

VI. CONCLUSIONS

We have computed the CTP effective action for a massless quantum field in thermal

equilibrium in a stationary background. Our main goal has been to obtain covariant expres-

sions for the real and imaginary parts of the effective action, which may be used to propose

nonlinear completions of the theory that are much more general than previous ones, based

on generalizations of the zero temperature case. The existence of a thermal bath picks up

a particular frame, the one in which the bath is at rest, and therefore the effective action

depends not only on the metric but also on the four-velocity of the bath and on the local

Tolman temperature. The nonlocal terms involve kernels that can be thought schematically

as non-analytic functions of the Laplacian F (∇2).

The high temperature expansion revealed some interesting properties. On the one hand,

and similarly to what happens in the ultrastatic case [13], the leading nonlocal correction
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to the real part of the effective action is proportional to β−1. By dimensional analysis, this

implies that the nonlocal structure should involve the kernel 1/
√
−∇2. On the other hand,

the imaginary part contains nonlocal contributions already at the β−5-level.

Another interesting aspect of our results is that the leading nonlocal contributions to the

semiclassical Einstein equations vanish when evaluated in a Newtonian metric, and therefore

do not produce thermal corrections in the large distance limit. However, we have checked

that this is true only for minimally coupled scalar fields.

In a forthcoming paper we will address the calculation of the effective action for the

case of time-dependent metrics. On general grounds, we expect the nonlocal terms found

in the present paper to become more complex functions F (∇2, uµDµ), which involve both

spatial and temporal derivatives, in a combination that does not necessarily coincide with

the D’Alembertian. An interesting issue, with potential applications to the dark energy

problem, is whether there are nonlocal contributions at the leading β−4 order or not. We

have shown that this is not the case for stationary metrics, since in this case the leading term

is local and proportional to the fourth power of the Tolman temperature. The same local

term appears when considering massive fields, and the effective action is computed using a

Schwinger-DeWitt expansion [18, 19], which assumes that the mass m satisfies m2 ≫ R.

However, it is, in principle, possible that nonlocal terms emerge at leading order in the

opposite limit of massless fields, for time dependent metrics.
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Appendix A: Angular Integrals

In this Appendix we include some useful identities for the angular integrals needed to

compute the quadratic part of the effective action:

∫

d3kf(k, p)kikj = pipj

[

∫

d3k f(|k|, |p̄|, χ)χ2

]

+ |p̄|2P ij

[

∫

d3k f(|k|, |p̄|, χ)1
2
(1− χ2)

]

(A1)

∫

d3kf(k, p)kikjkl = pipjpl

[

∫

d3k f(|k|, |p̄|, χ)χ3

]

+

(

P ijpl + P ilpj + P ljpi

)[

∫

d3k f(|k|, |p̄|, χ)1
2
χ(1− χ2)|p̄|2

]

(A2)

∫

d3kf(k, p)kikjklkm = pipjplpm

[

∫

d3k f(|k|, |p̄|, χ)χ4

]

+ |p̄|2
(

P ijplpm + P ilpjpm + P impjpl

+ P jlpipm + P jmpipl + P lmpipj

)[

∫

d3k f(|k|, |p̄|, χ)1
2
χ2(1− χ2)

]

+

(

P ijP lm + P ilP jm + P imP jl

)[

∫

d3k f(|k|, |p̄|, χ)1
8
(1− χ2)2

]

(A3)

where χ = cos θ and P µν = ηµν − pµpν/p2 with p0 = 0.

Appendix B: Detailed calculation of h
(+)
µν (x̄)Aµναβ(x̄, ȳ)h

(+)
αβ (ȳ)

Here we show details about the calculation of J++ ≡ h
(+)
µν (x̄)Aµναβ(x̄, ȳ)h

(+)
αβ (ȳ).

23



We have

J++ =

∫

d4q

(2π)4

[

(−2πi)δ
(

(q − p)2
)

n(|q − p|)
]

p0=0

[

(−1)

q2 − iǫ

]

p0=0

×

× h(+)
µν (x̄)

(

ηρµτν [(q − p)ρqτ ]η
λασβ [(q − p)λqσ]

)

p0=0

h
(+)
αβ (ȳ)

=
i

(2π)3

∫

dq0 d3q
δ(−q20 + (q̄ − p̄)2) n(|q − p|)

−q20 + q̄2 − iǫ
×

×
{

h
(+)
00 (x̄)h

(+)
00 (ȳ)

[

q20
2

+
1

2
(q̄ − p̄)q̄

][

q20
2
+

1

2
(q̄ − p̄)q̄

]

+h
(+)
00 (x̄)h

(+)
lm (ȳ)

[

q20
2

+
1

2
(q̄ − p̄)q̄

][

(q − p)lqm − 1

2
ηlm
(

− q20 + (q̄ − p̄)q̄
)

]

+h
(+)
ij (x̄)h

(+)
00 (ȳ)

[

(q − p)iqj − 1

2
ηij
(

− q20 + (q̄ − p̄)q̄
)

][

q20
2

+
1

2
(q̄ − p̄)q̄

]

+h
(+)
ij (x̄)h

(+)
lm (ȳ)

[

(q − p)iqj − 1

2
ηij
(

− q20 + (q̄ − p̄)q̄
)

]

×
[

(q − p)lqm − 1

2
ηlm
(

− q20 + (q̄ − p̄)q̄
)

]

+h
(+)
0i (x̄)h

(+)
0j (ȳ)q20

[

qi + (q − p)i

][

qj + (q − p)j

]}

(B1)

The integral in q0 is trivial because of the Dirac δ-function. Then, changing variables as

k̄ = q̄ − p̄ ≡ k and performing the integral in φ we obtain

J++ =
i

(2π)2

∫ π

0

dθ

∫ ∞

0

dk k
n(k)

|p̄|2 + 2p̄.k̄ − iǫ
×
{

h
(+)
00 (x̄)h

(+)
00 (ȳ)

[

k̄2 +
k̄.p̄

2

]2

+h
(+)
00 (x̄)h

(+)
lm (ȳ)

[

k̄2 +
k̄.p̄

2

][

klkm + klpm − 1

2
ηlmk̄.p̄

]

+h
(+)
ij (x̄)h

(+)
00 (ȳ)

[

kikj + kipj − 1

2
ηijk̄.p̄

][

k̄2 +
k̄.p̄

2

]

+h
(+)
ij (x̄)h

(+)
lm (ȳ)

[

kikj + kipj − 1

2
ηijk̄.p̄

][

klkm + klpm − 1

2
ηlmk̄.p̄

]

+h
(+)
0i (x̄)h

(+)
0j (ȳ)k̄2

[

2kipi
][

2kj + pj
]

}

(B2)
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We split the remaining expressions separating the terms proportional to k4, k3 and k2:

J++ =
i

(2π)2

∫ π

0

dθ

∫ ∞

0

dk k
n(k)

p2 + 2p̄.k̄ − iǫ

[

K(4)(x̄, ȳ, k̄) +K(3)(x̄, ȳ, k̄)

+K(2)(x̄, ȳ, k̄)

]

(B3)

where

K(4)(x̄, ȳ, k̄) = kikjklkm

[

h
(+)
00 (x̄)h

(+)
00 (ȳ)ηijηlm + h

(+)
00 (x̄)h

(+)
lm (ȳ)ηij + h

(+)
ij (x̄)h

(+)
00 (ȳ)ηlm

+h
(+)
ij (x̄)h

(+)
lm (ȳ) + 4h

(+)
0i (x̄)h

(+)
0j (ȳ)ηlm

]

K(3)(x̄, ȳ, k̄) = h
(+)
00 (x̄)h

(+)
00 (ȳ)ηijηlmp

mklkikj + h
(+)
00 (x̄)h

(+)
lm (ȳ)

[

ηijk
ikjklpm − 1

2
ηlmηijk

ikjηbrk
bpr)

+
ηijk

ipj

2
klkm

]

+ h
(+)
ij (x̄)h

(+)
00 (ȳ)

[

ηlmk
lkmkipj − 1

2
ηijηlmk

lkmηbrk
bpr +

1

2
ηlmk

lpmkikj

]

+h
(+)
ij (x̄)h

(+)
lm (ȳ)

[

kikjklpm − 1

2
ηlmηbrk

bprkikj + klkmkipj − 1

2
ηijklkmηbrk

bpr

]

+2h
(+)
0i (x̄)h

(+)
0j (ȳ)ηlmk

lkm

[

kipj + kjpi

]

K(2)(x̄, ȳ, k̄) = =
1

4
h
(+)
00 (x̄)h

(+)
00 (ȳ)ηijηlmk

ipjklpm +
1

2
h
(+)
00 (x̄)h

(+)
lm (ȳ)ηijk

ipj

[

klpm − 1

2
ηlmηbrk

bpr

]

+
1

2
h
(+)
ij (x̄)h

(+)
00 (ȳ)

[

kipj − 1

2
ηijηbrk

bpr

]

ηlmk
lpm + h

(+)
0i (x̄)h

(+)
0j (ȳ)ηlmk

lkmpipj

+h
(+)
ij (x̄)h

(+)
lm (ȳ)

[

kipj − 1

2
ηijηagk

apg

][

klpm − 1

2
ηlmηbrk

bpr

]

(B4)

Hence, using the identities of Appendix A and defining the integrals

Iαγ(|p̄|) =
∫ ∞

0

dk

∫ 1

−1

dx
kα+1xγ |p̄|−α

|p̄|2 + 2|k̄||p̄|x− iǫ
n(k) , (B5)
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we obtain

J++ =
i

4π2

{

h
(+)
00 (x̄)|p̄|4

(

I22
4

+ I31 + I40

)

h
(+)
00 (ȳ)

+h
(+)
00 (x̄)|p̄|4P ij

(

− I22
2

− I31
2

− I33
2

+ I40 − I42

)

h
(+)
ij (ȳ)

+h
(+)
ij (x̄)h

(+)
lm (ȳ)

{

|p̄|4P ijP lm

(

I22
4

− I31
2

+
I33
2

+
I40
8

− I42
4

+
I44
8

)

+|p̄|4P imP jl

(

I40
4

− I42
2

+
I44
4

)

+ |p̄|2P ilpjpm

[(

I20
2

+ I31

)

−
(

I22
2

+ I33

)]

+|p̄|2pipjP lm

[

− 1

2

(

I22
2

+ I33

)]

+ |p̄|2P ijplpm

[

− 1

2

(

I22
2

+ I33

)]

+pipjplpm

[

1

2

(

I22
2

+ I33

)]}

+ pipjh
(+)
00 (x̄)h

(+)
ij (ȳ)|p̄|2

(

I22
2

+ I33

)

+h
(+)
0i (x̄)h

(+)
0j (ȳ)|p̄|2pipj

(

I20 + 2I31

)}

(B6)

Appendix C: Covariant Formulas

In this Appendix we relate the various expressions valid in the weak field approximation

up to quadratic order in hµν with covariant objects.

Some useful expansions of local geometric quantities are

√−g
(2) ≈ 1− 1

2
h00 +

1

2
hijη

ij − 1

8
h2
00 −

1

4
h00hijη

ij +
1

8
hijhlm

[

ηijηlm − 2ηilηjm
]

+
1

2
h0ih0jη

ij (C1a)

R(1) ≈ hαβ ,αβ −h, α
α (C1b)

R(1)
µν ≈ 1

2
ηβδ
(

hβν,µδ − hµν,βδ − hβδ,µν + hµδ,βν

)

(C1c)

G(1)
µν ≈ R(1)

µν − 1

2
ηµνR

(1), (C1d)
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For nonlocal kernels that involve the product of projectors P µν we have [15],

∫

d4x d4y R(x) K(x− y) R(y) =

∫

d4x d4y hµν(x)hαβ(y)×
∫

d4p eip(x−y)p4K̃(p)P µνP αβ

∫

d4x d4y Rµναβ(x) K(x− y) Rµναβ(y) =

∫

d4x d4y hµν(x)hαβ(y)×
∫

d4p eip(x−y)p4K̃(p)P µβP να , (C2)

where K̃(p) is the Fourier transform of K(x− y). Schematically, the projectors are replaced

following the rules

p4hµν(x)hαβ(y)P
αβP µν → R(x)R(y) (C3a)

p4hµν(x)hαβ(y)P
µβP να → Rµναβ(x)R

µναβ(y) (C3b)

However, as we have shown in the present work, for a thermal state the temporal and spatial

components of the projectors appear separately. Therefore, when written in a covariant way,

the expressions quadratic in hµν become more complex combinations of contractions of the

Riemann tensor with the four-velocity of the bath. The replacements analog to those of

Eq.(C3) read

h00(x̄)P00P00h00(ȳ)|p̄|4 → 4R00(x̄)R00(ȳ) = 4Rµν(x̄)u
µuνRαβ(ȳ)u

αuβ (C4a)

h00(x̄)P00Pijhij(ȳ)|p̄|4 → −4R00(x̄)R00(ȳ) + 2R00(x̄)R(ȳ)

= 2Rµν(x̄)u
µuνR(ȳ)− 4Rµν(x̄)u

µuνRαβ(ȳ)u
αuβ

hij(x̄)PijPlmhlm(ȳ)|p̄|4 →
(

− 2R00(x̄) +R(x̄)
)(

− 2R00(ȳ) +R(ȳ)
)

= R(x̄)R(ȳ)− 2R(x̄)Rµν(ȳ)u
µuν − 2Rµν(x̄)u

µuνR(ȳ)

+4Rµν(x̄)u
µuνRαβ(ȳ)u

αuβ (C4b)

hij(x̄)P
ilP jmhlm(ȳ)|p̄|4 → Rµναβ(x̄)R

µναβ(ȳ)− 4Rµν(x̄)u
µuνRαβ(ȳ)u

αuβ − 8R0i(x̄)R
0i(ȳ)

= Rµναβ(x̄)R
µναβ(ȳ)− 4Rµν(x̄)u

µuνRαβ(ȳ)u
αuβ

−8
(

Rµν(x̄)u
µuνRαβ(ȳ)u

αuβ +Rµν(x̄)R
ν
β(ȳ)u

µuβ
)

= Rµναβ(x̄)R
µναβ(ȳ)− 12Rµν(x̄)u

µuνRαβu
αuβ

− 8Rµν(x̄)R
ν
β(ȳ)u

µuβ (C4c)

h0i(x̄)P
00P ijh0j(ȳ)|p̄|4 → 4Rµν(x̄)u

µuνRαβ(ȳ)u
αuβ + 4Rµν(x̄)R

ν
β(ȳ)u

µuβ (C4d)
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Appendix D: Details of the high temperature expansion

In this Appendix we present the high temperature expansion of the integrals Iαγ and Îαγ

defined in Eqs.(18) and (22), respectively.

1. Real part of Iαγ

The integral of interest is

Iαγ =

∫ ∞

0

dz
zα+1

ez − 1
Iγ, (D1)

where

Iγ =

∫ 1

−1

dχ Re

[

χγ

(z0 + zχ− iǫ)

]

(D2)

=
1

z







γ−1
∑

k=0

(

− z0
z

)k
[1− (−1)γ−k]

(γ − k)
+

(

− z0
z

)γ[

1

2
log

(

(z + z0)
2

(z − z0)2

)]







≡ 1

z
fγ

(z0
z

)

.

The high temperature expansion corresponds to the limit z0 → 0.

The strategy to proceed with the evaluation is as follows, we will first split the integration

range in two parts, and then in each part we will perform an series expansion of a certain

factor of the integrand such that it is convergent for the values of z in that range. Afterwards,

the summation will be commuted with the integration, and, after further manipulations, a

final expression in terms a power series in z0 will be found. The idea is that many of the

initial series expansions will be able to be resummed back to exact expressions of known

functions.

The integrand is composed of two distinct factors, zα/(ez − 1) and a function f of the

quotient z0/z, so, since we are interested in finding an expansion for z0 ≪ 1, we shall split

the integration range in
∫∞
0

→
∫ 1

0
+
∫∞
1
,

Iαγ =

∫ ∞

0

dz
zα+1

ez − 1
Iγ =

∫ 1

0

dz
zα

ez − 1
Iγ +

∫ ∞

1

dz
zα

ez − 1
Iγ = I(A)

αγ + I(B)
αγ . (D3)

In the first segment we expand the first factor for z ≪ 1,

zα

ez − 1
= zα−1

∞
∑

k=0

Bk

k!
zk, (D4)

where the Bk coefficients are the well known Bernoulli numbers. In the second segment, the

relation z0 < z always holds, and therefore we can expand the second factor (i.e the function

f) in powers of z0/z.
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Let us now focus on the first part I
(A)
αγ . Using Eq. (D2) and the expansion given in

Eq. (D4), we have

I(A)
αγ =

∫ 1

0

dz
zα

ez − 1
Iγ =

∞
∑

k=0

Bk

k!

∫ 1

0

dzzα+k−1Iγ

=

∞
∑

k=0

Bk

k!

{

γ−1
∑

l=0

(−z0)
l [1− (−1)γ−l]

(γ − l)

∫ 1

0

dzzα+k−l−1 + (−z0)
γ

[

1

2

∫ 1

0

dzzα+k−γ−1 log

(

(z + z0)
2

(z − z0)2

)]}

=

γ−1
∑

l=0

(−z0)
l [1− (−1)γ−l]

(γ − l)

∫ 1

0

zα−l

ez − 1
+ (−z0)

γ
∞
∑

k=0

Bk

k!
I
(α̃+k)
L

≡ I(A1)
αγ + I(A2)

αγ , (D5)

where α̃ = α − γ and I
(A1)
αγ and I

(A2)
αγ refer to the first and second term respectively. Also,

IλL can be written as a function of z0 for a generic integer λ > 0 as follows

I
(λ)
L =

1

2

∫ 1

0

dz zλ−1 log

[

(z + z0)
2

(z − z0)2

]

=
1

λ

{

λ−1
∑

l=0

[1− (−1)l]
zl0

(λ− l)
− [1− (−1)λ]zλ0 log(z0)

+[1− (−z0)
l] log(1 + z0)− (1− zλ0 ) log(1− z0)

}

, (D6)

however, notice in Eq. (D5) that we also need I
(0)
L = π2

2
−
∑∞

l=1[1 − (−1)l]zl0/l
2. This will

force us to treat the cases α̃ > 0 and α̃ = 0 separately.

For the first case, α̃ > 0, using Eq. (D6) we have

I(A2)
αγ = (−z0)

γ

{ ∞
∑

k=0

Bk

k!

1

(α̃ + k)

α̃−1+k
∑

l=0

[1− (−1)l]
zl0

(α̃ + k − l)

−
( ∞
∑

k=0

Bk

k!

zα̃+k

(α̃ + k)

)

log

(

z0
1− z0

)

+

( ∞
∑

k=0

Bk

k!

(−z0)
α̃+k

(α̃+ k)

)

log

(

z0
1 + z0

)

+

( ∞
∑

k=0

Bk

k!

1

(α̃ + k)

)

log

(

1 + z0
1− z0

)}

. (D7)

The first line is the one that needs to be worked out the most. The idea is swap the sum-

mation order to be able to then resum the series of the Bernoulli coefficients. Schematically,

∞
∑

k=0

α̃−1+k
∑

l=0

−→
∞
∑

k=0

(

k−1
∑

l=0

+

α̃+k−1
∑

l=k

)

=

∞
∑

l=0

∞
∑

k=l+1

+

∞
∑

k=0

α̃−1
∑

n=0

. (D8)
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After some further manipulations, we arrive at

I(A2)
αγ = (−z0)

γ

{ ∞
∑

l=0

[1− (−1)l]
zl0
l

(

∫ 1

0

dz
zα̃−l+∆

ez − 1
−

∞
∑

k=0

Bk

k!

1

(α̃ + k)

)

−
∞
∑

l=0

[1− (−1)l]zl0

l
∑

k=0

Bk

k!

1

(α̃+ k − l +∆)(α̃ + k +∆)

+

( ∞
∑

k=0

Bk

k!

zk0
(α̃ + k)

)(

α̃−1
∑

n=0

zn0
(α̃− n)

)

−
( ∞
∑

k=0

Bk

k!

(−z0)
k

(α̃ + k)

)(

α̃−1
∑

n=0

(−z0)
n

(α̃− n)

)

−
( ∞
∑

k=0

Bk

k!

zα̃+k

(α̃ + k)

)

log

(

z0
1− z0

)

+

( ∞
∑

k=0

Bk

k!

(−z0)
α̃+k

(α̃ + k)

)

log

(

z0
1 + z0

)

+

( ∞
∑

k=0

Bk

k!

1

(α̃ + k)

)

log

(

1 + z0
1− z0

)}

, (D9)

where ∆ has been introduced as a regulator in order to avoid spurious divergences that have

been introduced by the splitting. These divergences will not be present when recombining

everything in the final result, for which the limit ∆ → 0 can be safely taken.

For the case α̃ = 0, we have α = γ and thus

I(A2)
αα = (−z0)

γ
∞
∑

k=0

Bk

k!
I
(k)
L = (−z0)

γ

[

I
(0)
L +

∞
∑

k=1

Bk

k!
I
(k)
L

]

= (−z0)
γ

[

π2

2
−

∞
∑

l=1

[1− (−1)l]
zl0
l2

+
∞
∑

k=1

Bk

k!
I
(k)
L

]

, (D10)

where now

∞
∑

k=1

Bk

k!
I
(k)
L =

∞
∑

k=1

Bk

k!

1

k

k−1
∑

l=1

[1− (−1)l]
zl0

(k − l)
−
( ∞
∑

k=1

Bk

k!

zk

k

)

log

(

z0
1− z0

)

+

( ∞
∑

k=1

Bk

k!

(−z0)
k

k

)

log

(

z0
1 + z0

)

+

( ∞
∑

k=1

Bk

k!

1

k

) ∞
∑

l=1

[1− (−1)l]
zl0
l
. (D11)

We then have

I(A2)
αα =

{

π

2
+

∞
∑

l=1

[1− (−1)l]
zl0
l

∫ 1

0

dz
z∆−l

ez − 1
−

∞
∑

l=1

[1− (−1)l]zl0

l
∑

k=1

Bk

k!

1

(k − l +∆)(k +∆)

−
( ∞
∑

k=1

Bk

k!

zk0
k

)

log

(

z0
1− z0

)

+

( ∞
∑

k=1

Bk

k!

(−z0)
k

k

)

log

(

z0
1 + z0

)}

(−z0)
γ (D12)
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The final part we need is I
(B)
αγ . Similarly as before,

I(B)
αγ =

∫ ∞

1

dz
zα+1

ez − 1
Iγ

=

∫ ∞

1

dz
zα

ez − 1

{

γ−1
∑

k=0

(

− z0
z

)k
[1− (−1)γ−k]

(γ − k)
+

(

− z0
z

)γ[ ∞
∑

l=0

[1− (−1)l]

l

(

z0
z

)l]}

≡ I(B1)
αγ + I(B2)

αγ , (D13)

Finally, we put everything in the following way

I(A1)
αγ + I(B1)

αγ =

γ−1
∑

l=1

(−z0)
l [1− (−1)γ−l]

(γ − l)
Γ[α− l]ζ [α− l], (D14)

where ζ(s) and Γ(s) are the Riemann Zeta and Euler Gamma functions respectively. For

the other contributions we consider the two cases one by one. For α̃ > 0 we have

I(A2)
αγ + I(B2)

αγ = (−z0)
γ

{ ∞
∑

l=1

[1− (−1)l]
zl0
l
Γ[α̃− l + 1 + ∆]ζ [α̃− l + 1 +∆]

−
∞
∑

l=1

[1− (−1)l]zl0

l
∑

k=0

Bk

k!

1

(α̃+ k − l +∆)(α̃ + k +∆)

+

( ∞
∑

k=0

Bk

k!

zk0
(α̃ + k)

)[

α̃−1
∑

n=0

zn0
(α̃− n)

− zα̃0 log

(

z0
1− z0

)]

(D15)

−
( ∞
∑

k=0

Bk

k!

(−z0)
k

(α̃ + k)

)[

α̃−1
∑

n=0

(−z0)
n

(α̃− n)
− (−z0)

α̃ log

(

z0
1 + z0

)]}

,

while for α̃ = 0, we obtain

I(A2)
αα + I(B2)

αα = (−z0)
γ

{

π2

2
+

∞
∑

l=1

[1− (−1)l]
zl0
l
Γ[1− l +∆]ζ [1− l +∆]

−
∞
∑

l=1

[1− (−1)l]zl0

l
∑

k=1

Bk

k!

1

(k − l +∆)(k +∆)
(D16)

−
( ∞
∑

k=1

Bk

k!

zk0
k

)

log

(

z0
1− z0

)

+

( ∞
∑

k=1

Bk

k!

(−z0)
k

k

)

log

(

z0
1 + z0

)}

The final result is obtained by adding Eq. (D14) with Eq. (D15) when α > γ or with

Eq. (D16) when α = γ. To achieve a given order in powers of z0, the formal expressions

must be truncated at a given order which depends on the particular values of α and γ. At

the end, the limit ∆ → 0 is to be taken.
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Recalling that z0 = β|p̄|/2, we now show the results for the particular values of α and γ

needed, up to O(β0),

I20 =
π2

12β2|p̄|2 +
1

288

[

6 log

(

β|p̄|
2

)

+ 6γ − 2− 6 log(2π)

]

I22 = − π2

12β2|p̄|2 +
π2

16β|p̄| +
1

16

[

log

(

β|p̄|
2

)

+ γ − 1− log(2π)

]

I31 =
π4

15β4|p̄|4 − π2

24β2|p̄|2 +
1

576

[

−6 log

(

β|p̄|
2

)

− 6γ + 2 + 6 log(2π)

]

I33 =
π4

45β4|p̄|4 +
π2

24β2|p̄|2 − π2

32β|p̄| +
1

32

[

log

(

4π

β|p̄|

)

− γ + 1

]

I40 =
π4

30β4|p̄|4 +
π2

144β2|p̄|2 +
1

14400

[

45 log

(

β|p̄|
2

)

+ 45γ − 9− 45 log(2π)

]

I42 = − π4

30β4|p̄|4 +
π2

48β2|p̄|2 +
1

1152

[

6 log

(

β|p̄|
2

)

+ 6γ − 2− 6 log(2π)

]

I44 = − π4

90β4|p̄|4 − π2

48β2|p̄|2 +
π2

64β|p̄| +
1

64

[

log

(

β|p̄|
2

)

+ γ − 1− log(2π)

]

(D17)

2. Imaginary part of Îαβ

The imaginary part of Îαβ reads

(2π)Im
[

Îαβ(|p̄|)
]

= (2π)

∫ ∞

0

dk kα+1 1

|p̄|α
(

n(k) + n(k)2
)

∫ 1

−1

dx xγ Im

[

1

k2 + 2k|p̄|x− iǫ

]

=
π2(−1)γ

2γ(|p̄|β)α+1−γ

∫ ∞

z0

dz zα+γ

[

1

ez − 1
+

1

(ez − 1)2

]

(D18)

In order to expand this expression in powers of z0(β → 0), we define

f(z) = zα+γ

[

1

ez − 1
+

1

(ez − 1)2

]

, (D19)

and split the integral in Eq. (D18) as

∫ ∞

z0

dz f(z) =

∫ ∞

0

dz f(z)−
∞
∑

k=0

∂kf

∂zk

∣

∣

∣

∣

∣

z0=0

zk+1
0

(k + 1)!
. (D20)
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Then

Im

(

Î22
4

+ Î31 + Î40

)

=
2π5

15β5|p̄|5 − π3

12β3|p̄|3 +
11π

96β2|p̄|2 − π

64β|p̄| +
9π

10240

Im

(

− Î22
2

− Î31
2

− Î33
2

+ Î40 − Î42

)

=
2π5

15β5|p̄|5 − π

96β2|p̄|2 +
π

64β|p̄| −
119π

92160

Im

(

Î22
4

− Î31
2

+
Î33
2

+
Î40
8

− Î42
4

+
Î44
8

)

=
π5

60β5|p̄|5 +
π3

32β3|p̄|3 − 37π

768β2|p̄|2 − π

512β|p̄| +
241π

737280

Im

(

Î40
4

− Î42
2

+
Î44
4

)

=
π5

30β5|p̄|5 − π3

48β3|p̄|3 +
11π

384β2|p̄|2 − π

256β|p̄| +
9π

40960

Im

(

Î40 − Î42

)

=
2π5

15β5|p̄|5 − π3

24β3|p̄|3 +
5π

96β2|p̄|2 − 19π

92160
(D21)

Appendix E: Details of the conformal transformation of the ultrastatic effective

action

Consider the conformal transformation of Eq. (41) in four dimensions. The relevant

transformation rules for transforming Γ[ḡµν ] are (see Ref. [23]), p.38)

Rν
µ = Ω−2

[

R̄ν
µ + 2Ω∇̄ν∇̄µ(Ω

−1)− 1

2
δνµΩ

−2
�̄(Ω2)

]

, (E1a)

R = Ω−2
(

R̄ + 2Ω�̄(Ω−1)− 2Ω−2
�̄(Ω2)

)

≡ Ω−2
(

R̄−∆R̄
)

, (E1b)

φ = Ω−1φ̄, (E1c)

where all the quantities with an overbar are evaluated on the ultrastatic metric ḡµν . It is also

useful to remember that a conformally coupled and massless field is conformally invariant,

hence
(

−�+
R

6

)

φ = Ω−3/2

(

−�̄ +
R̄

6

)

φ̄, (E2)

and thus, the propagator for a conformally invariant field transforms as

G(x, x′) = Ω−1(x)Ḡ(x, x′)Ω−1(x), (E3)

which can also be inferred from the transformation of φ, Eq. (E1c).

With these transformation rules, it is straightforward to check that a more generic, non

conformally-invariant field with mass m and coupling to the curvature ξ, will see its inverse
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propagator change in the following way,

(

−�+m2 + ξR
)

φ = Ω−3/2

[

−�̄+ Ω2m2 + ξR̄−
(

ξ − 1

6

)

∆R̄

]

φ̄. (E4)

In order to profit from the known results for ultrastatic metrics of Ref. [13], where they

find the thermal effective action for operators of the form −�̄ − P̄ + R̄
6
, we choose the

potential P̄ to be

P̄ = −Ω2m2 −
(

ξ − 1

6

)

(

R̄−∆R̄
)

= −Ω2

[

m2 +

(

ξ − 1

6

)

R

]

, (E5)

where in the second equality we used the rule (E1b) to find an expression in terms of

quantities defined for the static metric gµν . The same tactic is to be applied to the whole

ultrastatic effective action Γ[ ¯gµν ,Ω] in order to find its static counterpart Γ[gµν ].

Since we are working with the weak field approximation, it is useful to consider the

linearized versions of some of the rules (E1),

Rν
µ = R̄ν

µ + ∂ν∂µh00 +
δνµ
2
∇2h00, (E6a)

R = R̄ + 3∇2h00. (E6b)

For the ultrastatic metric we have h̄00 = 0. However, it is through the Ω’s coming from both

P̄ and the trasformation rules, that h00 contributions arise. These must be such that when

combined with the rest of the elements they form geometrical objects associated with the

static metric gµν .
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