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ABSTRACT

Weather forecasting and monitoring systems based on regional models are becoming increasingly relevant

for decision support in agriculture and watermanagement. This work evaluates the predictive andmonitoring

capabilities of a system based onWRFModel simulations at 15-km grid spacing over the La Plata basin (LPB)

in southern SouthAmerica, where agriculture and water resources are essential. Themodel’s skill up to a lead

time of 7 days is evaluated with daily precipitation and 2-m temperature in situ observations for the 2-yr

period from 1 August 2012 to 31 July 2014. Results show high prediction performance with 7-day lead time

throughout the domain and particularly over LPB, where about 70% of rain and no-rain days are correctly

predicted. Also, the probability of detection of rain days is above 80% in humid regions. Temperature ob-

servations and forecasts are highly correlated (r . 0.80) while mean absolute errors, even at the maximum

lead time, remain below 2.78C for minimum and mean temperatures and below 3.78C for maximum tem-

peratures. The usefulness of WRF products for hydroclimate monitoring was tested for an unprecedented

drought in southern Brazil and for a slightly above normal precipitation season in northeastern Argentina. In

both cases themodel products reproduce the observed precipitation conditionswith consistent impacts on soil

moisture, evapotranspiration, and runoff. This evaluation validates the model’s usefulness for forecasting

weather up to 1 week in advance and for monitoring climate conditions in real time. The scores suggest that

the forecast lead time can be extended into a second week, while bias correction methods can reduce some of

the systematic errors.

1. Introduction

The Global Framework for Climate Services (GFCS)

established by the WMO provides guidance for decision-

making for agriculture and food security, water, health,

and disaster risk reduction (WMO 2014). Within this con-

text, six countries in southeastern South America have

established a regional climate center (RCC-SSA) that

involves a strong collaboration between weather services

and academic institutions. The RCC-SSA’s priorities are

on climate monitoring and weather forecasting, two areas

that benefit from the use of regional models. Regional

modeling is relevant at local scales, where global models

may not capture essential features and where the choice of

alternative parameterizations may help the model perform

better for the region. Specific real-time output variables

and diagnostics needed by stakeholders are easily obtained

from regional models when they are not provided by the

global forecast centers. Forecasting and monitoring sys-

tems linked with appropriate decision support tools can

substantially improve real-time choices needed for agri-

cultural and water management (Stone and Meinke 2005).

Because of their relative simplicity of use, regional models

are useful for performing real-time forecasts; hence, veri-

fication of the results is an indispensable component for

identifying a system’s strengths and weaknesses. Continu-

ous verification is also desired to keep track of changes in
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the forecasts’ quality because of updates either to the re-

gional model or the global model that provides the initial

conditions.

The region of interest for this research is the La Plata

basin (LPB) in southeastern South America, a region

that, because of its socioeconomic relevance, has been

the subject of many hydroclimate studies in recent

years (Berbery and Barros 2002; Sanchez et al. 2015

and references therein). The LPB is a large expanse

over diverse climate regimes, from a monsoon climate

toward its northern region to dominating mesoscale

convective systems (MCSs) in the subtropical central

and southern regions, and to midlatitude weather

systems farther south. There are three important

challenges for weather and climate modeling in the

LPB. First is the ability to represent the intense and

frequent MCSs and convective storms that develop

in the region (Zipser et al. 2006). There is a general

consensus that because of the difficulty in simulat-

ing these convective scale events the models underesti-

mate the mean precipitation and yet overestimate the

number of precipitation events (see, e.g., Rauscher et al.

2007; Menéndez et al. 2010). Second, the presence of the
steep Andes Mountains to the west is poorly handled in

the models, resulting in temperature and precipitation

biases not only over and near the mountains but also

downstream (Seluchi et al. 1998; Saulo et al. 2001; Chou

et al. 2005; Müller et al. 2014). Finally, an accurate re-

presentation of the South American low-level jet and

its associated moisture flux convergence is required to

reproduce the precipitation spatial structure and diur-

nal cycle (see, e.g., Berbery and Collini 2000; Collini

et al. 2008).

The current regional models used in weather services

in southern South America are the Eta Model, the

Brazilian Regional Atmospheric Modeling System

(BRAMS), and the Weather Research and Forecasting

(WRF) Model. The Eta Model centered over Brazil is

used for hourly to seasonal predictions (Seluchi and

Chou 2001; Chou et al. 2005; de Goncalves et al. 2006).

According to de Moura et al. (2010), the short-term

rainfall forecasts achieve good performance for up to

120h of simulation, although a tendency to overestimate

24-h forecasts in northern Brazil was found. Short-term

forecasts with the Eta Model at 0.258 grid spacing are

also produced over Argentina, where the model tends to

have too many false alarms, that is, to overforecast the

frequency of rainfall events (Suaya 2004). High-

resolution versions of the BRAMS and WRF Model

are also used at the weather services on an experimental

basis. García Skabar et al. (2011) and Dillon et al. (2013)

report that the WRF shows greater skill, although both

models tend to underestimate the average precipitation.

Still, they better represent the intense precipitation that

fails to be detected by the lower-resolution (0.258 grid
spacing) Eta Model. Other short-term forecasts are

systematically performed at academic institutions serv-

ing the needs of the local community. As with themodels

run in operational environments, these simulations

present systematic errors like the overestimation of the

frequency of low-intensity precipitation events and the

underestimation of heavy rainfall events (see, .e.g., Saulo

et al. 2008; García Skabar et al. 2012).

Evaluations of temperature forecasts have shown

that models exaggerate high temperatures in the sub-

tropics during the warm season, while negative biases

develop during the cold months throughout the region

(Menéndez et al. 2010), leading to a larger-amplitude

annual cycle. Near-surface temperatures in climate

simulations with the WRF Model have a high re-

semblance with observations away from the Andes

Mountains, with biases smaller than about 28C in

magnitude (Müller et al. 2014). Warm biases are found

toward the middle of the continent, and cold biases are

noticed toward the east and near the coastlines. The

systematic and nonsystematic temperature errors are

sensitive to different parameterizations in the corre-

sponding land surface models (Ruiz et al. 2010; Müller
et al. 2014; Pei et al. 2014).

The first objective of this work is to evaluate the

predictive and monitoring capabilities of a real-time

forecast system based on numerical simulations with

the WRF Model in a region of high agricultural pro-

ductivity and water needs. Precipitation and 2-m tem-

perature forecast skill levels are evaluated during a

period of 2 yr as a preliminary stage before continuous

evaluation. The emphasis on precipitation and tem-

perature follows the approach taken at the RCC-SSA,

whose priority is to develop datasets of those two var-

iables. Other variables, like wind and humidity, were

not included at this stage of the evaluation. The second

objective of this research is to explore the performance

of the WRF Model products when monitoring the re-

cent hydroclimate. This is tested for an intense drought

with high socioeconomic impacts in southern Brazil

and a slightly above normal precipitation season in

northeastern Argentina. This research focuses on ap-

plications that are being transitioned to the Regional

Climate Center for Southern South America to com-

plement their own products. Section 2 presents themodel

configuration, output, and observational datasets.

Sections 3 and 4 describe the verification methods and

discuss their application to precipitation and tempera-

ture forecasts. Section 5 describes the model’s capabil-

ities for hydroclimate monitoring. A summary and our

conclusions are offered in section 6.
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2. Model and datasets

This study evaluates the WRF Model forecast skill in

southern South America focusing on the LPB and the

subbasins of the main rivers of the region: the Paraná,
Paraguay, and Uruguay (see Fig. 1a). The Paraná River

basin is divided into the mid- to upper and the lower

Paraná, as each is impacted by different climate regimes.

The forecast evaluation is done on precipitation and

temperature at 2m, as these variables are most com-

monly used for observations. The period of evaluation

covers 2 yr, from 1 August 2012 to 31 July 2014.

The system is based on daily runs of the WRF-ARW

model, version 3.1, and its evaluation is a crucial aspect

in the reliability of the system. The model’s parent do-

main covers SouthAmerica with a grid spacing of 45 km,

and the LPBwith a nested domain at 15-km grid spacing

(see Fig. 1a). The initial and 6-h boundary conditions are

obtained from the Global Forecast System (GFS)

(Environmental Modeling Center 2003; Campana and

Caplan 2006; Werth and Garrett 2011; see also Saha

et al. 2014). The GFS dataset, obtained daily from the

NOAA/NCEP servers, includes gridded variables

needed to run WRF, such as sea surface temperature

and soil moisture, among others. The lateral boundary

conditions are updated at 6-h intervals. The use of 3-h

intervals was not considered since this time span would

have resulted in few, if any, advantages (see Dimitrijevic

and Laprise 2005 and references therein). The model

physics configuration is based on the selection of

schemes and options tested in Lee (2010) and Lee and

Berbery (2012), who evaluated an optimal combination

that represents South America’s climate with smaller

biases. Further evaluation was carried out by Müller
et al. (2014) for long-term simulations. A summary of

the model configuration and parameterizations is pre-

sented in Table 1.

The evaluations discussed in this article are based on

in situ observations. The observation datasets include

information obtained from the former NCDC [now part

of the National Centers for Environmental Information

(NCEI)], which collects daily rain gauge data and tem-

perature observations from over 9000 worldwide sta-

tions. Rain gauge data from Brazil’s Instituto Nacional

de Meteorologia (INMET) were also included to im-

prove the data coverage. To ensure statistical signifi-

cance, the selected gauges are those that have measured

on 90% or more of the total days (657 days out of 730

possible days). A total of 142 rain gauges and 193 tem-

perature stations meet the minimum threshold in the

model’s inner domain. Of those, 80 and 100, re-

spectively, are within the LPB. The in situ networks of

FIG. 1. (a) Model domains and terrain height. The largest domain is shown with lighter colors while the nested

domain is highlighted with stronger colors. Red contours denote the LPB and its subbasins: Paraguay (PAY), mid- to

upper Paraná (MUP), lower Paraná (LOP), andUruguay (URU). (b) Rain gauges and (c) temperature stations used

to assess WRF Model forecasts. The gauge stations Sauce Viejo and Desierto de Atacama are highlighted with red

and yellow squares, respectively.
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precipitation and temperature are shown in Figs. 1b and

1c, respectively. Note the areas with scarce observations

particularly toward the northwestern sector. The use of

known gridded observational datasets was avoided in

the evaluation because they include many but not all of

the observations we used. Moreover, the interpolation

involves an amount of smoothing that can make gridded

data deviate from the in situ observations. The evalua-

tion based on in situ observations is quantitative, al-

though it comes at the cost of losing spatially continuous

representation of the patterns.

As shown in Table 1, the simulations predict the

weather for 168h (7-day lead time). Each lead day is

evaluated against the observations of the corresponding

day. In all cases, station data are compared to the fore-

cast for the nearest grid point. More complex ap-

proaches were tested, but no obvious advantage was

found over the nearest-gridpoint approach, despite its

simplicity. These results are consistent with the findings

of Pappenberger et al. (2009).

3. Evaluation of precipitation forecasts

a. Statistical approach

The precipitation is evaluated in terms of occurrence/

no occurrence of daily events. When observed pre-

cipitation for a given day exceeds a preset rainfall

threshold, it is considered a rainy day. Once the days are

classified as rain or no rain for both the observations and

forecasts, contingency tables are prepared (Wilks 2011).

A contingency table identifies the four possible combi-

nations of forecasts (rain/no rain) and observations

(rain/no rain) and is called the joint distribution (see

Table 2). The combinations are hit (h), where an event is

forecast to occur and does occur; miss (m), where an

event is forecast not to occur but does occur; false alarm

(fa), where an event is forecast to occur but does not

occur; and correct negative (cn), where an event is

forecast not to occur and does not occur.

The model’s skill in forecast precipitation is measured

from statistics (usually called skill scores) that are

computed from the elements in the contingency table

(Hogan and Mason 2012, and references therein). Five

skill scores or categorical statistics are defined and

summarized in Table 3: accuracy (ACC), probability of

detection (POD), false alarm ratio (FAR), Heidke skill

score (HSS), and frequency bias (BIAS). The accuracy

measures the forecast’s skill in identifying a day as rain

or no rain. The probability of detection measures the

ability to predict a rain day, ignoring false alarms. POD

is complemented with the FAR, which counts no-rain

days that are forecast as rain days. The bias score (or

frequency bias) is the ratio between the number of

correct forecasts and the number of cases of observed

precipitation. A bias score that is less than one indicates

that the forecast system underforecasts events, and if it is

larger than one, it overforecasts them. Finally, the

Heidke skill score measures the fraction of correct

forecasts that did not occur by random chance. If the

HSS score becomes negative, then the random forecast

is better than the actual forecast, which is said to be

TABLE 1. Summary of WRF configuration.

Parameter Parent domain Nested domain

Region South America LPB

Grid resolution 45 km 15 km

Grid size 502 3 367 grid points 709 3 475 grid points

No. of vertical levels 28

Period 168 h (7 days)

Integration time step 240 s

Dynamic solver ARW

Boundary conditions GFS Parent domain

Microphysics Eta Model microphysics (Rogers et al. 2001)

Cumulus convection Betts–Miller–Janjić scheme (Janjić 1994, 2000)

Surface layer Janjić Eta Model scheme (Janjić 1996)

Land surface model Noah LSM (Chen and Dudhia 2001)

Land cover classification USGS

Planet boundary layer Mellor–Yamada–Janjić scheme (Janjić 1994)

Shortwave radiation Dudhia scheme (Dudhia 1989)

Longwave radiation Rapid Radiative Transfer Model (Mlawer et al. 1997)

TABLE 2. Contingency table.

Observed yes Observed no Total

Forecast yes Hits (h) False alarms (fa) Forecast yes

Forecast no Misses (m) Correct negatives (cn) Forecast no

Total Observed yes Observed no Total
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unskilled. HSS is an alternative to the equitable threat

score (ETS; Hamill 1999). As Hogan et al. (2010) argue,

ETS does not satisfy the requirements to be considered

‘‘equitable’’ (Gandin and Murphy 1992).

These scores are convenient for station data because

of their ease of interpretation (Tartaglione 2010). One

caveat is that when a forecast storm is shifted in space or

time with respect to the observed event, the point-to-

point evaluationmay generatemisses and false alarms in

the nonoverlapping sectors, resulting in a double penalty

(Kok et al. 2008; Rossa et al. 2008).

b. Results

Contingency tables for daily precipitation events

(not shown) were computed for all stations in the

domain. The skill scores were then computed for

each station and each forecast lead time. The rainfall

threshold used to define ‘‘rain days’’ was set to

0.25mmday21 to agree with the minimum measur-

able precipitation of most bucket-type rain gauges.

The methodology is presented first for one sample

station near the center of the domain (Sauce Viejo,

31.78S, 60.828W; see Fig. 1b). The results for all sta-

tions are then summarized in graphical form using

maps and skill score graphics.

Figure 2 summarizes the skill scores changes with the

forecast lead time for the sample station. It shows that

the precipitation forecasts have an accuracy score of 0.80

for day 1, and then it decays slightly to 0.72 at the

maximum lead time (day 7). The probability of de-

tection also exhibits a slight decrease as lead time in-

creases, varying from 0.73 on day 1 to 0.59 on day 7. In

other words, observed rain days are predicted (hits) in

about 73% of the cases on day 1, slightly decreasing to

roughly 60% on day 7. The false alarm ratio is smaller

than 0.5 for days 1–3, meaning that false alarms are

fewer than the number of hits. From day 4 onward, there

are more false alarms than hits. At the same time, the

bias score ranges from 1.39 to 1.60, indicating that the

model tends to overforecast events (BIAS . 1), con-

sistent with the high FAR values. The bias score (see

equation in Table 3) could increase or decrease with

lead time as both false alarms and misses tend to rise at

different rates. For the sample station, the bias score is

larger for days 5 and 6 than it is for day 7. Information

from the set of contingency tables (not shown) suggests

that this is due to an increase in false alarms on days 5

and 6, while the values of misses remain in the same

range as on days 1–4. TheHeidke skill score ranges from

0.48 on day 1 to 0.30 on day 7, indicating that at all times

there is a higher rate of success of the model forecasts

over the random forecasts. In general, the successes

(ACC, POD, and HSS) tend to decrease and failures

(FAR) tend to rise as the forecast time increases, as

expected.

The results presented so far are for one sample sta-

tion. A similar approach was followed with all 142 rain

gauge stations in the domain, and the results are sum-

marized in Fig. 3. The observed precipitation frequency

(Fig. 3a) is defined as the ratio between the number of

rain days and the total number of days in the record. It

has a west–east gradient, with the highest values over the

eastern sector of the LPB, where it rains on one out of

three days and has aminimum frequency over theAndes

Mountains and the Atacama Desert. The latter is the

driest region in South America, where it rains just a few

days per year.

Figures 3b–f summarize the skill scores averaged over

the 7-day lead time. In other words, Sm 5 (1/7)�7

i51Si,

where Si is the skill score for lead time i and Sm is the

TABLE 3. Skill scores used to evaluate daily precipitation events.

Statistics Formula Definition Range

Precipitation

accuracy

ACC5
h1 cn

total
The fraction of correct

forecasts

0–1, with 1 being a perfect score

Probability of

detection

POD5
h

h1m
The fraction of the observed

‘‘yes’’ events that were

correctly forecast

0–1, with 1 being a perfect score

False alarm

ratio

FAR5
fa

fa1h
The fraction of predicted

positive events that actu-

ally did not occur

0–1, with 0 being a perfect score

Heidke skill

score

HSS5
h1 cn2hr

total2hr
, where

hr5
(h1m)(h1 fa)1 (cn1m)(cn1 fa)

total

No. of correct forecasts that

did not occur by chance

From 2‘ to 1, with 1 being

a perfect score

Bias score BIAS5
h1 fa

h1m
The ratio of the frequency of

forecast events to the fre-

quency of observed events.

From2‘ to‘; 1 is a perfect score
BIAS , 1 underforecast

BIAS . 1 overforecast
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average of those seven scores. The accuracy (Fig. 3b) is

almost homogeneous over the LPB with values ranging

from 0.6 to 0.8. The best scores are found around the

southern subbasins. The probability of detection scores

(Fig. 3c) are in a range from 0.6 toward the southwest to

0.9 in the mid- to upper Paraná subbasin. All false alarm

ratio scores (Fig. 2d) are above 0.3 andmay exceed 0.6 in

mountain-dominated areas. Similar WRF high false

alarm ratios have been reported in other regions of the

world (see, e.g., Weisman et al. 2008; Dravitzki and

McGregor 2011). Two issues could contribute to the

large values. First, the model tends to overforecast rain

days, as seen in Fig. 3e for the bias scores larger than

one; the second issue is the already-discussed double

counting of false alarms and misses that result when a

storm is shifted in space or time. The Heidke skill score

(Fig. 3f) is in the range 0.2–0.5, indicating that the

forecast is better than a simple random forecast over all

of the domain. The equitable threat score (not shown)

ranges from 0.15 to 0.4 in the LPB for days 1–7. These

values compare favorably with other model evaluations

for the same region, which yielded similar scores but in

shorter lead times (García Skabar et al. 2012; Dillon

et al. 2013).

The evolution with forecast lead time of the skill

scores averaged for the 80 stations within the LPB is

presented in Fig. 4a. The precipitation accuracy shows

almost no changes with lead time, with values in general

above 0.70. That is, the model succeeds in forecasting at

least 70% of the occurrence of rain or no-rain days for

the LPB. The probability of detection shows a slight

decrease with time, from 81% on day 1 to about 68% on

day 7. The false alarm ratio score indicates that about

half of the forecast rain days did not occur. This is also

reflected in Fig. 2 for the sample station. The HSS av-

erages 0.42 for the first day and 0.30 for day 7 of the

forecasts. The values of HSS are always notably higher

than for a random forecast (HSS below 0). The shaded

bands for each curve in Fig. 4a represent the standard

deviation as a measure of the spatial spread of

the scores.

Dry and wet regions have distinct features in most

statistics. Dry regions (low frequency of precipitation in

Fig. 3a) tend to have lower probabilities of detection and

false alarm ratios than other regions. The probability of

detection of the few rain days in the dry region is below

0.7 (Fig. 3c), and the false alarm ratio is above 0.6

(Fig. 3d). Both lower scores are linked to the small

number of rain days in the region. For instance, the

Desierto de Atacama rain gauge station (27.258S,
70.768W; see Fig. 1b) reported 31 rain days (out of

707 days), while the model forecasted 39 rain days at

1-day lead time.While these seem to be similar values, the

forecasts matched the rain days in only four cases. In-

terestingly, the high accuracy in the dry region, with

scores above 0.8 (Fig. 3b), is a direct consequence of the

high number of correct negatives in an arid region and is

therefore of limited value. In brief, while the model

forecasted a similar small number of rain days as in the

observations (leading to high accuracy), seldom did they

match in time, leading to a low probability of detection

and a high false alarm ratio. Over wet regions like the

upper Paraná basin in the northeastern sector (high

frequency of precipitation in Fig. 3a), the probability of

detection of rain days exceeds 0.8 (Fig. 3c). The false

alarm ratio is lower than 0.4 (Fig. 3d), while the accuracy

values are at or below 0.7 (Fig. 3b). This behavior is

expected in a wet region where it rains at least one out of

three days, and thus correct negatives are fewer than in

dry regions. Despite the slight reduction in the accuracy

in the wet region, the other scores exhibit more skill than

in the dry region.

The time evolution of the area-averaged scores

(Fig. 4b) indicates that the model had good perfor-

mance for all scores, with small but distinct differences

between the wet and dry regions. The evolution of skill

scores reveals that the model performs better over wet

than over dry regions, as estimated by the probability of

detection (16% higher on average), the false alarm

ratio (14% smaller on average), and Heidke skill score

(7% higher on average). The lower scores in the dry

region are due to the difficulties in forecasting the few

FIG. 2. Evolution of the precipitation skill scores for the 7-day

lead times for the sample station Sauce Viejo. The skill scores are

ACC, POD, FAR, HSS, and BIAS. The values along the left axis

are for the first four scores. BIAS values are indicated along the

right axis.
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rain days that occur. The only score that is better over

the dry region is the accuracy (on average 7% higher

than in the wet region), largely because of the rise in

correct negatives.

Despite the diversity of model versions and parame-

terizations, the ranges of the skill scores are similar to

those found over North America even for individual

cases (e.g., Pennelly et al. 2014; Wolff et al. 2014). The

FIG. 3. (a) Geographical distribution of the observed precipitation frequency, followed by the forecast precipitation

skill scores averaged over the seven lead times: (b) ACC, (c) POD, (d) FAR, (e) BIAS, and (f) HSS.
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results suggest that with the proper choice of parame-

terizations, the model performance over southern South

America is similar to that in North America.

4. Evaluation of temperature forecasts

The forecasts of minimum, mean, and maximum tem-

perature are evaluated for each of the seven lead times

by comparing the observations at all stations and the

model’s nearest grid points. Minimum, mean, and maxi-

mum daily temperature (Tmn, T, and Tmx respectively)

are evaluated using scatterplots and two objective score

measures: the correlation coefficient r and the mean ab-

solute error, MAE5 (1/N)�N

i51jTfi 2Toij, where N is

the total number of days, and Tfi and Toi are the forecast

and observed temperatures (minimum, mean, or maxi-

mum), respectively, for the day i. Perfect forecasts would

have a zero mean absolute error; in real cases, the larger

the value, the poorer the forecast will be.

The scatterplots for the sample station (Sauce Viejo)

at two lead times (1 and 7 days) are presented in Fig. 5.

The mean temperature has correlation coefficients that

range from 0.97 (day 1) to 0.89 (day 7). Both maximum

and minimum temperatures have slightly lower corre-

lations, yet always exceed 0.83. The slope m of the re-

gression lines of the mean and maximum temperatures

are notably close to 1 (1.02 and 0.97, respectively) for

1-day lead time and decay to 0.91 and 0.88 for 7-day lead

times. The slope of the minimum temperature regression

line varies between 0.87 and 0.74. In general, as the

forecast lead time moves from day 1 to day 7, the dis-

persion becomes larger while the correlation coefficient

becomes smaller and the slope m of the regression lines

moves off from 1. Note that most values of Tmn, T, and

Tmx are below the 1:1 line (line not shown), suggesting

that the forecast temperatures for Sauce Viejo tend to

underestimate the observed temperatures.

Since the daily mean temperature is computed from

the average of eight values per day, some errors are

canceled out, resulting in higher correlation values.

Moreover, the minimum and maximum values are ob-

tained from the 3-h forecasts, carrying a 1.5-h uncertainty

with respect to the precise timing of the maximum or

minimum value. Temperature errors tend to be system-

atic, and if desired, bias correction methods can be ap-

plied for more accurate forecasts.

Figure 6 presents the spatial distributions of the point

correlations and the mean absolute errors of Tmn, T , and

Tmx averaged over each of the 7 lead times (as was done

for precipitation skill scores in Fig. 3). The patterns of

the correlation maps (Figs. 6a,c,e) are similar, with the

highest values toward the south (values close to 0.9) and

decreasing toward the north of the domain. The mean

absolute error reveals a more heterogeneous distribu-

tion. The daily mean and minimum temperature MAE

ranges from 18 to 2.58C throughout the domain, with

isolated areas larger than 38C (Figs. 6b,d). The MAE of

the maximum temperature (Fig. 6f) can also reach

values exceeding 38C. Larger values are found over arid

and mountainous regions, both near the Andes and to-

ward the northeast corner of the domain, likely related

to the topographical features of the BrazilianHighlands.

As for precipitation, these values are not different from

those found over the United States (e.g., Cheng and

Steenburgh 2005; Wyszogrodzki et al. 2013).

The spatial gradients suggest a better level of perfor-

mance by the model toward the southern part of the do-

main where the temperature forecasts (either minimum,

FIG. 4. Evolution with lead time of the area-averaged precipitation skill scores: (a) LPB where the shaded areas

show the standard deviations for each skill score and (b) the dry and wet sectors separated by 608W. Solid lines

correspond to the wet sector and dashed lines to the dry sector.
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mean, or maximum temperature) have the largest corre-

lations and smallest mean absolute errors. At the subbasin

level, the Uruguay and lower Paraná basins in the

southern LPB exhibit almost homogeneously distributed

temperature correlations with values above r ; 0.85,

while the temperature correlations across the Paraguay

and themid-to upper Paraná subbasins range from 0.75 to

0.9. As in the case of the sample station, the daily mean

temperature correlations are slightly higher than for

minimum and maximum temperatures.

The evolution with forecast lead time of the LPB-

averaged temperature statistics (r and MAE) is pre-

sented in Fig. 7. As in Fig. 4a, the shaded bands in Fig. 7

represent the spread in the scores, that is, the scores plus/

minus their standard deviation. These spreads are

smallest for the minimum temperature and largest for

the maximum temperature. Good correspondence is

found between the observed and forecast temperatures

with almost all correlation coefficients exceeding r; 0.8.

Correlations for lead times of 1 to 7 days are in the range

0.95–0.85 for the mean temperature (Fig. 7b); values are

slightly lower for the minimum temperature, whose

range is 0.9–0.8 (Fig. 7a), and even slightly lower for the

maximum temperature, whose range is 0.88–0.78

(Fig. 7c). The mean absolute errors of the minimum and

daily mean temperature forecasts are between about 28
and 2.78C for days 1 and 7, respectively (Figs. 7a,b).

Somewhat higher values are found for the maximum

temperature with the MAE starting at 2.58C on day 1

and reaching errors of 3.78C on day 7 (Fig. 7c).

5. Application of the forecasts for monitoring

The model that was evaluated here is part of a daily

updated system where the first 24 h out of the 168-h

forecasts are used to create continuous time series em-

ployed to monitor recent hydroclimate conditions. The

system thus consists of a forecasting module to charac-

terize the anticipated weather up to 1 week in advance

(as discussed in sections 3 and 4), and a monitoring

module to depict the hydroclimate of recent months. All

information is available online (www.atmos.umd.edu/;
berbery/research/forecasts.html). Although the evalua-

tion was done for the higher-resolution domain that

covers the LPB, all diagnostics are also offered, un-

tested, for the larger domain covering South America.

FIG. 5. Scatterplots of observed vs (top) day 1 and (bottom) day 7 forecast lead times. (a),(d) Tmn, (b),(e) T, and (c),(f) Tmx. The linear

regression line is plotted, and its slope m is presented along with the correlation coefficient r in the top-left corner of each scatterplot.
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The variables that are displayed are precipitation, 2-m

temperature, 10-m winds, sea level pressure, soil mois-

ture, evapotranspiration, and runoff. When relevant,

variables are presented as anomalies, that is, deviations

from a climatology obtained from a 10-yr simulation

(2001–10) carried out with the same model parameter-

izations and domains as used here. An evaluation of the

climatology is discussed in Müller (2015).

FIG. 6. Geographical distribution of temperature statistical scores averaged over the seven lead times: (left)

correlation and (right) MAE of (a),(b) Tmn, (c),(d) T, and (e),(f) Tmx.
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Table 4 summarizes the set of graphics for the forecast

module in the system. The module displays the 3-hourly

forecasts for up to 7 days for each variable, as well as

mean maps and anomaly maps for the 7-day average.

Time series at selected locations (meteograms) are also

available. The monitoring module (Table 5) displays

mean and anomaly maps of the hydrometeorological

variables for the last 30, 60, and 90 days (updated daily).

The maps are complemented with basin-averaged time

series depicting deficits or excesses for the appropriate

variables.

The use of WRF data to monitor the recent climate is

exemplified for two main regions: the upper LPB (i.e.,

Paraguay and the mid- to upper Paraná subbasins),

where a prolonged 2014/15 drought took place, and the

lower LPB (Uruguay and lower Parana subbasins), where

conditions were favorable for agricultural activities. This

north–south structure reflects a well-documented warm

season dipole pattern (see Casarin and Kousky 1986;

Kousky and Cavalcanti 1988; Nogués-Paegle and Mo

1997, among others). The observational dataset used to

assess the monitoring results consists of in situ observa-

tions interpolated to a regular grid at NCEP’s Climate

Prediction Center (Chen et al. 2008).

Southern Brazil experienced a dramatic water crisis

with hydropower supply deficits leading to rolling power

cuts, as well as constraints on agriculture and industrial

production (Guardian 2015; Escobar 2015; Getirana

2016). Reports have also stated that the drought was the

worst in the last 84yr in southeastern Brazil, causing a

large impact on the metropolitan area of São Paulo,

where its 19million inhabitants experienced never before

seen water deficits (Escobar 2015; International Business

Times 2015).

FIG. 7. Evolution with forecast lead time of the temperature statistics (correlation and MAE) area averaged over LPB: (a) Tmn, (b) T,

and (c) Tmx. The scale along the left axis of each panel is for the correlation coefficient, and the scale along the right axis is for the MAE.

The shaded bands indicate the corresponding standard deviations.

TABLE 4. Forecast module tools.

Tool Description Variables Domains

3-h maps Animations showing the evolution of the forecasts

for the next 168 h with a time step of 3 h

Precipitation SA, LPB

Temp

Winds at 10m

7-day avg map Time avgmap for the forecasts in next 168 h; it can be

seen as the avg of all 3-h maps

Precipitation SA, LPB

Evapotranspiration

Soil moisture at 0.4- and 2.0-m depths

Max and min temp

Winds at 10m

Meteogram Time evolution of all variables for a specific location

in one graphic (one below another)

Precipitation Specific locations

Evapotranspiration

Soil moisture at 0.4- and 2.0-m depths

Runoff

Temp

Winds at 10m
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Figure 8a presents the upper LPB area-averaged ob-

served daily precipitation during the 2014 austral spring.

Compared to the precipitation climatology (continuous

black curve), there was a lower frequency and lower

intensity of rain events than usual. (The observed pre-

cipitation climatology was computed as themean annual

cycle for the period 2001–10, in a similar way as was

done for the model precipitation climatology.) The few

cases where individual storms exceeded the climatology

were not enough to offset the water deficit, as noted in

the bottom panel of Fig. 8a. The corresponding model-

based figures, complemented with other moisture bud-

get terms, are shown in Fig. 8b. Both observations and

model precipitation have a notable resemblance in the

day-to-day evolution. However, model precipitation

rarely exceeds the climatology, and thus the dry anom-

alies are larger. The repeated short-term dry spells

noted in both datasets (e.g., during October, mid-

November, and early December) lead to large nega-

tive anomalies, as shown by the accumulated rain series.

The figure also suggests that the dry spring is related to a

weak onset of the South American monsoon that de-

velops at this time of the year (Zhou and Lau 1998;

Liebmann and Mechoso 2011; Marengo et al. 2012).

The increasing model precipitation deficit during the

austral spring is reflected in the other water budget terms,

with negative anomalies for soil water content, evapo-

transpiration, and runoff. The water deficit continued to

grow during the 2014/15 austral summer (not shown),

when the drought was most intense. Figures 9a and 9b

present the 2014 austral spring observed and model pre-

cipitation anomalies, respectively. Although WRF over-

estimates the dry anomalies to the north, the pattern has a

spatial distribution that is similar to that of the observa-

tions (Fig. 9a). The model precipitation deficits over the

upper LPB (Fig. 9b) lead to a reduction in soil moisture

(Fig. 9c), and also in the evapotranspiration and runoff

(Figs. 9d,e). The mid- to upper Paraná, where São Paulo

is located, is the most affected subbasin with the largest

precipitation and runoff deficits, which is consistent with

Escobar (2015), who discussed the impacts on the river

flows and the provision of water to metropolitan areas.

The opposite situation is found south of;308S, where
an excess of observed and model precipitation and

positive anomalies for the other water budget terms are

found (Fig. 9). The time evolution of the observed pre-

cipitation for the lower LPB (Fig. 8c) indicates frequent

precipitation events that contributed to the increase in

the accumulated wet anomalies during the season.

These events are also identified by the model although

with an overestimation of their intensities. The time

evolution of the anomalies of the simulated hydro-

climate variables (Fig. 8d) indicates that most of the

excess precipitation was partitioned between evapo-

transpiration, soil moisture accumulation, and runoff.

Accumulation of water in the soil is detected as a slight

wet anomaly in the first 40-cm layer (where crops de-

velop roots). The larger effect is in the evapotranspira-

tion while the remainder was converted into runoff.

Runoff responds almost immediately to each pre-

cipitation event (see, e.g., 29–30 October and 29–

30 November). The season’s anomalies show, as did the

time evolution, that the excess of rainfall is balanced

mostly through the increased evapotranspiration with a

smaller contribution from runoff (Figs. 9d,e).

Contrary to the dry anomalies that affected the

northern regions with strong negative social and eco-

nomic impacts, the wet anomalies toward the south and

the well-distributed spring rainfall favored the planting

of corn in September, improving its yield. It also favored

the planting of soybean and corn in December in high

and well-drained terrain, leading to historical records

for soybean production. Conversely, over the lowlands

these conditions caused declines in yields and losses in

the December crops as a result of the excess in accu-

mulated water (El Cronista 2014).

TABLE 5. Monitoring module tools.

Tool Description Variables Domains

Maps Time avg maps in the last 30, 60, and 90 days

showed as total values and anomalies

Precipitation SA, LPB

Evapotranspiration

Runoff

Soil moisture at 0.4- and 2.0-m depths

Max and min temp

Time

series

Areal avg in the last 30, 60, and 90 days of hy-

drological variables; the time evolution of all

variables is shown in one figure

Precipitation Basins: LPB, PAY, MUP,

LOP, URU

Accumulated precipitation; soil moisture at

0.4- and 2.0-mdepths; evapotranspiration

Runoff
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FIG. 8. Time series for the period 21 Sep–19 Dec 2014 for hydroclimate variables area averaged over the (left) upper and (right) lower

LPB. (a),(c) CPC-observed gridded precipitation time series and (b),(d) WRF-derived time series. Precipitation is represented by bars

while accumulated precipitation, soil moisture, evapotranspiration, and runoff series are presented as anomalies with respect to a 2001–10

model climatology (black line). Green shading denotes water excess while brown shading indicates water deficit. All model time series

were created from the 24-h daily forecasts.
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Monitoring based on observations is already being

done at the RCC-SSA and other places. The quality of

the regional model forecasts gives us confidence in their

reliability for use as a complement to such observation-

based systems. One advantage is that forecasts are

available in real time, while observations usually have a

latency inherent in the quality control process. Cur-

rently, the system is being transferred to the Regional

Climate Center for Southern South America as a com-

plement for their own activities.

6. Summary and conclusions

A system based on regional model simulations was

developed with the objective of providing useful infor-

mation for agriculture and water and risk management

FIG. 9. The 2014 austral spring anomaly maps of

(a) observed precipitation and the WRF Model

(b) precipitation, (c) soil moisture at 40-cm depth,

(d) evapotranspiration, and (e) runoff.
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activities in the La Plata basin in southern South Amer-

ica. This study seeks to support operations in climate

monitoring and weather forecasting at the Regional Cli-

mate Center for Southern South America. The first step

in this process is the evaluation, through an analysis of

statistical scores, of the WRF Model precipitation and

temperature forecasts.

A set of high quality observations with records that

cover at least 90% of the days were employed to eval-

uate precipitation forecasts in terms of accuracy, prob-

ability of detection that identifies potential rain days and

should be of interest for risk management support in

urban areas, false alarm ratio, frequency bias, and the

Heidke skill score. The combined analysis of these

scores is needed to avoid misrepresentations, like large

verification scores due to the high volume of correct

negatives (Murphy 1996). The precipitation forecasts

maintain high skill up to forecast day 7 (the maximum

length analyzed here). The model performance is best

over the LPB, and the scores tend to be better over

humid climates than over arid-to-semiarid climates.

Compared to the arid–semiarid climate, the humid cli-

mate has a higher probability of detection and fewer

false alarms. The ranges of the skill scores are similar to

those found over the United States, suggesting that the

proper choice of parameterizations leads to no loss of

performance by the model.

Daily mean, minimum, and maximum forecast tem-

peratures are highly correlated with observations up to

7-day lead time. The best performance is for daily mean

temperature, followed by minimum temperature and a

slightly weaker performance for the maximum tempera-

ture over arid regions. In general, forecast temperatures

tend to correspond better with observations over the

temperate climate and subtropical regions. The largest

temperature biases and lower skill scores are found to-

ward the northern warmer climate and over semiarid

regions characterized by large diurnal amplitude.

The evaluation of the precipitation and temperature

forecasts suggests that the WRF Model performs satis-

factorily in the domain, and particularly within the LPB.

The quality of the precipitation and temperature 7-day

forecasts does not show a large decay with time, in-

dicating that the period could be extended into the

second week (but remaining within the ranges of pre-

dictability of the dynamical system). The analysis sug-

gests that at least parts of the errors are systematic in

nature, and thus they can be reduced by applying bias

correction methods.

The extraordinary drought affecting southern Brazil

and simultaneous beneficial conditions for agriculture to

the south were discussed to demonstrate the usefulness

of the WRF Model and the system products to describe

the anomalous conditions in real time.Monitoring based

on observations is already being performed at the RCC-

SSA and other places. Rather, our goal was to present

the basic elements of a monitoring system based not on

observations that have a latency inherent to quality

controls, but on systematic, reliable regional model

forecasts.

Future plans include the implementation of the veri-

fication as a routine task of the system. Continued

evaluation would help detect possible model perfor-

mance changes due to improved inputs, model updates,

or the increased number and quality of the observations.

We intend to extend the continuous evaluation to cover

precipitation intensity and additional in situ observa-

tions such as soil moisture, winds, and humidity.
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