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In the investigation of two-body Coulomb Schrödinger equations with some types of
nonhomogeneities, the particular solution can be expressed in terms of a two-variable
Kampé de Fériet hypergeometric function. The asymptotic limit of the latter—for
both variables being large but their ratio being a bound constant—is required in
order to extract relevant physical information from the solutions. In this report
the mathematical limit is provided. For that purpose, a particular series rep-
resentation of the hypergeometric function—in terms of products of Kummer
and Gauss functions—is first derived. C© 2011 American Institute of Physics.
[doi:10.1063/1.3554698]

I. INTRODUCTION

Numerous physical and mathematical problems can be formulated in terms of nonhomogeneous
differential equations. Those of second-order are of particular physical interest, and some of them
have been studied in the mathematical book of Babister.1 One example in physics is found in
scattering theory within quantum mechanics, see, e.g., Refs. 2 and 3. In the study of the collision
dynamics between two particles, the wave function satisfying the full Schrödinger equation may be
written as the sum of a simplified and the scattering solution. This separation leads straightforwardly
to a second-order nonhomogeneous equation where the source (the nonhomogeneity) is the product
of the neglected interactions and the asymptotic solution.2, 3 In Ref. 4 a nonhomogeneous Kummer-
type Schrödinger equation which includes a Coulomb interaction has been investigated and solved in
closed form. Its particular solution results to be expressed in terms of a two-variable hypergeometric
function, named �(1). Relevant physical information of the problem can be extracted from its
asymptotic region where the distance between the interacting particles is large. This required to
know the asymptotic limit of the wave function for large values of the radial coordinate, and hence
the asymptotic limit of the mathematical hypergeometric function �(1).

In this paper, we provide the mathematical details necessary to derive the asymptotic expression
of the mentioned physical problem. More specifically, we are interested in the asymptotic limit of
the Kampé de Fériet function,5

�(1)

(
a1, a2| b1, b2

c1| d1, d2

∣∣∣∣ ; x1, x2

)
=

∞∑
m1=0

∞∑
m2=0

(a1)m1
(a2)m2

(b1)m1
(b2)m1+m2

(c1)m1
(d1)m1+m2

(d2)m1+m2

xm1
1 xm2

2

m1!m2!
, (1)

for large x1 and x2 but x1/x2 constant, and in the special case d1 = a1 + a2. To obtain such limit a
convenient series representation of the �(1) function is needed, and this is presented in Sec. II. In
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Sec. III this representation is then used to derive the required asymptotic limit. Its application to the
physical nonhomogeneous Coulomb problem mentioned above is described shortly in Sec. IV.

II. A TERM BY TERM SEPARABLE REPRESENTATION OF THE �(1) FUNCTION FOR THE
SPECIAL CASE d1 = a1 + a2

The �(1) function was studied in Ref. 6 in a different context, in relation with the solution of a
nonhomogeneous Kummer-type equation, with equal variables x1 = x2. In Ref. 6 we have established
a number of properties of the function �(1) and provided series and integral representations. In the
specific case of interest, we have found other series representations involving 1 F1 and 2 F1, or 1 F2

functions. None of them, however, uncouples sufficiently the variables x1 and x2, making the study
of the asymptotic limit particularly difficult. After a careful investigation, we realized that it was
necessary to find an alternative, more adequate, series representation which we now establish.

For the present purpose, the following integral representation [see Eq. (51) of Ref. 6]

�(1)

(
a1, a2| b1, b2

c1| d1, d2

∣∣∣∣ ; x1, x2

)
= � (d1) � (d2)

� (a2) � (d2 − b2) � (b2) � (d1 − a2)
(2)

×
∫ 1

0
dt (1 − t)d1−a2−1 ta2−1

∫ 1

0
dv (1 − v)d2−b2−1 vb2−1

× ex2tv
2 F2

(
a1, b1

c1, d1 − a2

∣∣∣∣ ; x1 (1 − t) v

)

will be particularly useful; it is worth mentioning that this representation is also particularly efficient
for its numerical evaluation for any value of the coordinates and parameters. In the physical problem
mentioned in Sec. I and described in Sec. IV, it occurs that d1 = a1 + a2 [see Eqs. (27a) and (27c)].
Under this condition the 2 F2 function appearing in the integral representation (2) reduces to a 1 F1

function, so that

�(1) = �(1)

(
a1, a2| b1, b2

c1| a1 + a2, d2

∣∣∣∣ ; x1, x2

)

= � (a1 + a2) � (d2)

� (a2) � (d2 − b2) � (b2) � (a1)
(3)

×
∫ 1

0
dt (1 − t)a1−1 ta2−1

∫ 1

0
dv (1 − v)d2−b2−1 vb2−1

× ex2tv
1 F1

(
b1

c1

∣∣∣∣ ; x1 (1 − t) v

)
.

This formulation will allow us to rewrite this function, noted simply �(1) hereafter, as simple series
in terms of Kummer and Gauss hypergeometric functions. To show this, we first use the Laplace
representation of the 1 F1 function7

1 F1

(
α

β

∣∣∣∣ ; z

)
= � (β)

� (α) � (β − α)

∫ 1

0
dt (1 − t)β−α−1 tα−1ezt , (4)

to get

�(1) = � (a1 + a2) � (d2) � (c1)

� (a2) � (d2 − b2) � (b2) � (a1) � (b1) � (c1 − b1)

∫ 1

0
dv (1 − v)d2−b2−1 vb2−1 (5)

×
∫ 1

0
dssb1−1 (1 − s)c1−b1−1

∫ 1

0
dt (1 − t)a1−1 ta2−1ex2tv+x1(1−t)vs .

By separating the argument of the exponential as follows:

x2tv + x1 (1 − t) vs = t (x2v − x1vs) + x1vs,
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the integration over t can now be easily performed leading to

�(1) = � (d2) � (c1)

� (d2 − b2) � (b2) � (b1) � (c1 − b1)

∫ 1

0
dv (1 − v)d2−b2−1 vb2−1 (6)

×
∫ 1

0
dssb1−1 (1 − s)c1−b1−1 ex1vs

1 F1

(
a2

a1 + a2

∣∣∣∣ ; x2v − x1vs

)
.

Furthermore, using Kummer’s transformation,7

1 F1

(
a2

a1 + a2

∣∣∣∣ ; x2v − x1vs

)
= ex2v−x1vs

1 F1

(
a1

a1 + a2

∣∣∣∣ ; x1vs − x2v

)
,

eliminates ex1vs in (6); expanding the remaining Kummer function as power series, we get

�(1) = � (d2) � (c1)

� (d2 − b2) � (b2) � (b1) � (c1 − b1)

∞∑
m=0

1

m!

(a1)m

(a1 + a2)m
(−x2)m

×
∫ 1

0
dv (1 − v)d2−b2−1 vb2+m−1ex2v

∫ 1

0
dssb1−1 (1 − s)c1−b1−1

(
1 − x1

x2
s

)m

.

These transformations have uncoupled the integrations, which can be now evaluated analytically.
Indeed, identifying the first integral with a Kummer hypergeometric function [see (4)] and the second
using Euler integral representation of the Gauss function7

2 F1

(
α, β

γ

∣∣∣∣ ; z

)
= � (γ )

� (β) � (γ − β)

∫ 1

0
dt (1 − t)γ−β−1 tβ−1(1 − t z)−α, (7)

we finally find

�(1) =
∞∑

m=0

(a1)m (b2)m

(a1 + a2)m (d2)m

(−x2)m

m! 1
F1

(
b2 + m
d2 + m

∣∣∣∣ ; x2

)
2

F1

( −m, b1

c1

∣∣∣∣ ;
x1

x2

)
. (8)

Note that, because of the negative integer as first parameter, the 2 F1 reduces to a polynomial of order
m. This representation of the �(1) function is one of the results of this paper. It has the particularity
of being a series of product of functions depending—separately—on x2 and the ratio x1/x2; the
coupling between x1 and x2, which was nontrivial in (1), was resumed in a particular manner that
will be adequate for the asymptotic study given below.

III. THE ASYMPTOTIC LIMIT OF �(1) FOR THE SPECIAL CASE d1 = a1 + a2 AND b2 = c1

Consider now the asymptotic limit of the �(1) function (8) for large x1 and x2, but x1/x2 constant.
Introducing the asymptotic (z → ∞) form of the Kummer function7

1 F1

(
α

β

∣∣∣∣ ; z

)
−→ � (β)

� (β − α)
(−z)−α + � (β)

� (α)
zα−βez (9)

into expression (8), we get

�(1) −→ � (d2)

� (d2 − b2)
(−x2)−b2 T1

(
x1

x2

)
+ � (d2)

� (b2)
xb2−d2

2 T2 (x1, x2) , (10)

where

T1

(
x1

x2

)
=

∞∑
m=0

(a1)m (b2)m

m! (a1 + a2)m 2
F1

( −m, b1

c1

∣∣∣∣ ;
x1

x2

)
, (11)

T2 (x1, x2) = ex2

∞∑
m=0

(a1)m

(a1 + a2)m

(−x2)m

m! 2
F1

( −m, b1

c1

∣∣∣∣ ;
x1

x2

)
. (12)
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In view of the physical application presented in Sec. IV, we shall assume that b2 = c1 hereafter.
Since the factor T1( x1

x2
) depends only on the coordinates ratio x1/ x2, it remains constant. This factor

can be easily evaluated by noting that it corresponds to a formulation of an Appell function F1 as a
sum of polynomials [Eq. (8), p. 34; Ref. 5]

T1

(
x1

x2

)
= F1

(
a1, b1, c1 − b1, a1 + a2; 1 − x1

x2
, 1

)
, (13)

Moreover, as one of the arguments equals unity, the F1 reduces to a 2 F1 function [Eq. (23), p. 22;
Ref. 5], so that

T1

(
x1

x2

)
= �(a1 + a2)�(a2 + b1 − c1)

�(a2)�(a1 + a2 + b1 − c1)
2 F1

(
a1, b1

a1 + a2 + b1 − c1

∣∣∣∣ ; 1 − x1

x2

)
. (14)

Let us now look at the term T2 (x1, x2). We start by recalling one of the series representations
of �(1) [see Eq. (46a) of Ref. 6]

�(1)

(
a1, a2| b1, b2

c1| d1, d2

∣∣∣∣ ; x1, x2

)

=
∞∑

m1=0

(a1)m1
(b1)m1

(b2)m1

(c1)m1
(d1)m1

(d2)m1

xm1
1

m1!
2 F2

(
a2, b2 + m1

d1 + m1, d2 + m1

∣∣∣∣ ; x2

)
. (15)

Equalling the �(1) obtained from (15) and (8), in the particular subcase b2 = d2, provides the
following relation:

T2 (x1, x2) =
∞∑

m1=0

(a1)m1
(b1)m1

(c1)m1
(a1 + a2)m1

xm1
1

m1!
1 F1

(
a2

a1 + a2 + m1

∣∣∣∣ ; x2

)
(16)

= ex2

∞∑
m=0

(a1)m

(a1 + a2)m

(−x2)m

m!
2 F1

( −m, b1

c1

∣∣∣∣ ;
x1

x2

)
.

The asymptotic limit of T2 (x1, x2) can be easily obtained from this result. Indeed, by using the
asymptotic formula (9) in the first equality of (16), the summation may be easily performed

T2 (x1, x2) −→ � (a1 + a2)

� (a2)
ex2 x−a1

2 2 F1

(
b1, a1

c1

∣∣∣∣ ;
x1

x2

)

+� (a1 + a2)

� (a1)
(−x2)−a2

1 F1

(
b1

c1

∣∣∣∣ ; x1

)
. (17)

Using again the asymptotic formula (9), one finally finds

T2 (x1, x2) −→ � (a1 + a2)

� (a2)
ex2 x−a1

2 2 F1

(
b1, a1

c1

∣∣∣∣ ;
x1

x2

)

+� (a1 + a2)

� (a1)
(−x2)−a2

[
� (c1)

� (b1)
ex1 xb1−c1

1 + � (c1)

� (c1 − b1)
(−x1)−b1

]
. (18)

Collecting results (14) and (18) into (10), we obtain the mathematical result sought after, i.e.,
the asymptotic limit of the �(1) function for the special case d1 = a1 + a2 and b2 = c1. In view of
the physical parameters appearing in Sec. IV, we also have a2 = 1 and d2 = b1 + 1; in this case,
easy algebraic simplifications lead to

�(1) −→ (−x2)−c1
�(a1 + 1)� (b1 + 1)

�(a1 + 1 + b1 − c1)
2 F1

(
a1, b1

a1 + 1 + b1 − c1

∣∣∣∣ ; 1 − x1

x2

)

+�(a1 + 1)� (b1 + 1)

� (c1)
ex2 xc1−b1−1−a1

2 2 F1

(
b1, a1

c1

∣∣∣∣ ;
x1

x2

)

−a1b1

x2
2

[
ex1

(
x1

x2

)b1−c1

+ � (b1)

� (c1 − b1)
(−x1)−b1 xc1−b1

2

]
. (19)
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IV. APPLICATION: RADIAL TWO-BODY COULOMB NONHOMOGENEOUS
SCHRÖDINGER EQUATIONS

Consider the following non-homogeneous Coulomb Schrödinger equation (in atomic units,
� = e = 1)

[H − E] � (r) = �0 (r) , (20)

where the Hamiltonian H = − 1
2μ

∇2 + z1z2
r includes the kinetic energy (reduced mass μ) and a

Coulomb potential for two charges z1 and z2 (Sommerfeld parameter α = z1z2μ/k). Hereafter,
the energy E = k2/(2μ) will be taken as positive (scattering states); for bound states (E < 0), an
analytic continuation k → iκ has to be applied. We expand the wave function � (r), as well as the
driven term �0 (r), in terms of spherical harmonics Y m

l (θ, ϕ), and consider the rather general source

�0 (r) =
∑
l,m

clmY m
l (θ, ϕ)

1

r

(
e−λr r l

∞∑
σ=0

al,σ rσ

)
, (21)

where λ is a parameter, and al,σ and clm are expansion coefficients [note that the nonhomogeneity
(21) is general enough to the used as the basic brick for almost any source]. This leads to solving
the radial nonhomogeneous equation (in atomic units, � = e = 1)[

− 1

2μ

(
d2

dr2
− l (l + 1)

r2

)
+ z1z2

r
− E

]
hl,σ (r ) = al,σ e−λr r l+σ . (22)

The radial part of the solution � (r) will be given by a linear combination of the solutions hl,σ (r ).4

With the change of function

h P
l,σ (r ) = (−2μ)al,σ

(−2ik)σ+1
eikrr l+1 fl,σ (r ) , (23)

the change of variable u = −2ikr , and defining a = iα + l + 1, c = 2l + 2, and ρ = 1
2

(
1 + λ

ik

)
,

we get the mathematical Kummer-type equation to be studied7[
u

d2

du2
+ (c − u)

d

du
− a

]
fl,σ (u) = eρuuσ . (24)

The two solutions, regular and irregular at the origin, of the corresponding homogeneous
Coulomb differential equation are well known functions.7, 8 On the other hand, by expanding the
exponential on the right-hand side, a closed form of the particular solution of Eq. (24) is given by
Eq. (4.219) of Ref. 1

fl,σ (u) = uσ+1
∞∑

m=0

∞∑
n=0

� (σ + 1 + a + m + n) � (σ + 1 + n) � (σ + c + n)

� (σ + 1 + a + n) � (σ + 2 + m + n) � (σ + 1 + c + m + n)

un+mρn

n!
.

(25)

This double series is related to the series representation of the two variables hypergeometric function
�(1), defined by (1) and studied in Ref. 6. The particular solution h P

l,σ (r ) of the physical Eq. (22) is
expressed in terms of �(1) as follows:4

h P
l,σ (r ) = (−2μ) al,σ

eikrr l+σ+2

(σ + 1) (2l + 2 + σ )
�(1)

(
a1, a2| b1, b2

c1| d1, d2

∣∣∣∣ ; x1, x2

)
, (26)

where the parameters ai , bi , c1, di , and the variables xi (i = 1, 2) read

a1 = σ + 1, a2 = 1, (27a)

b1 = σ + c = 2l + 2 + σ, b2 = c1 = a + σ + 1 = iα + l + 2 + σ, (27b)

d1 = σ + 2, d2 = σ + c + 1 = 2l + 3 + σ. (27c)
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x1 = ρu = −(ik + λ)r, x2 = u = −2ikr. (27d)

Although not at all obvious from formula (26), for real values of λ and al,σ , i.e., a real source, the
particular solution h P

l,σ (r ) is a real definite function4 as it should be.
In order to investigate the physical behavior of such particular solutions for large values of

the coordinate r , use is made of the asymptotic limit (19) of the �(1) function for large x1 and x2

but constant finite ratio x1/x2 = ρ; indeed, from relations (27a)–(27d) we have that d1 = a1 + a2,
b2 = c1, a2 = 1 and d2 = b1 + 1. For positive energies and for sources with real positive values
of λ, the physical variables and parameters (27a)-(27d) are such that the third and fourth terms of
(19) vanish faster than the first two. Moreover, the first two asymptotic terms are related (complex
conjugated) so that the particular solution is real. The large coordinate limit can be shown4 to have
the following cosine behavior:

h P
l,σ (r ) −→ Nsource cos (kr − α ln (2kr ) + δ) , (28)

where δ and Nsource are functions of all the parameters l, σ, λ, α, and al,σ . The asymptotic behavior
described by the scattering solution corresponds then to a superposition of incoming and outgoing
waves. On the other hand, for negative energy, bound states can be constructed for any value of λ.
Through an analytic continuation of the momentum, imaginary values of k can be found in such a
way to enforce the scattering solution to decrease exponentially at large distances. In both bound
and scattering cases, the solutions are real definite functions as long as the source is real.

V. SUMMARY

In this report we gave basically two main results. We obtained a term-by-term separable repre-
sentation of the Kampé de Fériet hypergeometric function appearing in nonhomogeneous Coulomb
problems. We also derived a special asymptotic limit necessary to extract the relevant physical
information for those problems.
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