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We present a study of the static and dynamical Casimir effects for a quantum field theory satisfying

generalized Robin boundary conditions, of a kind that arises naturally within the context of quantum

circuits. Since those conditions may also be relevant to measurements of the dynamical Casimir effect, we

evaluate their role in the concrete example of a real scalar field in 1þ 1 dimensions, a system which has a

well-known mechanical analogue involving a loaded string.
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I. INTRODUCTION

Over the course of the last 15 years, there has been a
renewed interest in the Casimir effect. This was partly due
to a second generation of experiments, started in 1997,
which triggered a sustained flow of both theoretical and
experimental works. As an outcome of those works, our
knowledge about the dependence of Casimir forces on the
geometry and material properties of the objects involved
has remarkably improved [1].

The dynamical counterpart of the Casimir effect, also
known as ‘‘motion induced radiation,’’ has also been the
subject of intense research, manifested in the consequent
profusion of works [2]. Although the direct measurement
of radiation generated by moving mirrors is a daunting
experimental challenge, it was asserted [3] that photon
creation induced by time-dependent boundary conditions
has been observed experimentally, albeit in a different
context, namely, superconducting circuits. A related ex-
periment involving a Josephson metamaterial embedded
in a microwave cavity has been described in Ref. [4]. There
are also ongoing experiments aimed at measuring the
photon creation induced by the time-dependent con-
ductivity of a semiconductor slab enclosed by an electro-
magnetic cavity [5], as well as proposals based on the
use of high frequency resonators to produce the photons,
and ultracold atoms to detect the created photons via
superradiance [6].

The superconducting circuit experiment mentioned
above [3] consists of a coplanar waveguide terminated by
a superconducting quantum interference device (SQUID),
upon which a time-dependent magnetic flux is applied.
This system can be described by a quantum scalar field
�ðx; tÞ (the magnetic flux at the different positions of the
transmission line) satisfying, on the SQUID (located at
x ¼ a), the boundary condition [7]

1

L

@�

@x
ða; tÞ þ C

@2�

@t2
ða; tÞ þ EðtÞ�ða; tÞ ¼ 0; (1)

whereC and L are constants, and EðtÞ is proportional to the
(time-dependent) external magnetic flux. Equation (1) can
be interpreted as a sort of generalized Robin boundary
condition, because of the presence of the term with
second-order time derivatives. The theoretical analysis of
that experiment was done by assuming that the term pro-
portional to the second derivative of the field is negligible
[7]. Hence, the boundary condition became a standard
Robin boundary condition with a time-dependent, exter-
nally driven parameter. The boundary condition that results
after implementing this approximation has been described
in terms of an effective length [3,7].
From a theoretical point of view, the particle creation

rate for the case of a quantum field satisfying (time-
independent) Robin boundary conditions on a moving mir-
ror has been investigated in Ref. [8]. The complementary
situation, namely, time-dependent Robin boundary condi-
tions on a staticmirror, has been considered in Refs. [9,10].
It is the aim of this work to consider the static and dynami-
cal Casimir effects for quantum fields which are subject to
generalized boundary conditions of the type defined in
Eq. (1). Our interest in this problem is twofold. On the
one hand, the presence of the second derivative of the field
in the boundary condition modifies the usual Sturm-
Liouville problem, which manifests itself in the existence
of an eigenvalue-dependent boundary condition. This prob-
lem, well known to mathematicians, has also been consid-
ered in different areas of physics. It has not, however, to our
knowledge, been dealt with in the Casimir effect context.
Regarding the experimental relevance of the inclusion of

this kind of term, we note that, although it may be neglected
in the particular experimental setup considered in Ref. [3],
this contribution to the boundary condition may indeed
affect the spectral distribution of the created particles [10],
something to which future experiments might be sensitive.
This paper is organized as follows. In Sec. II we describe

the classical aspects of the model, including a mechanical
analogue, a discussion of the eigenvalue problem and the
necessity of modifying the inner product between
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eigenfunctions due to the presence of the second-order
derivative in the boundary condition. In Sec. III we compute
the static vacuum energy, Sec. IV deals with the dynamical
Casimir effect, and Sec. V contains our conclusions.

II. CLASSICAL MODEL: THE LOADED
STRING ANALOGY

A. A mechanical analogue

Many of the different boundary conditions a scalar field
in 1þ 1 dimensions can be subject to can be realized in
classical mechanics analogues, based on vibrating strings.
Indeed, Dirichlet boundary conditions correspond to a
string with fixed endpoints, while Neumann conditions
can be implemented by attaching, to the corresponding
endpoint, a massless ring which can slide freely and fric-
tionless along a vertical rod. Robin boundary conditions
result, in turn, when the ring is also coupled to a vertical
spring [10]. Finally, the generalized boundary condition of
Eq. (1) can be generated by letting the ring be massive
rather than massless (in all cases wewill consider the linear
regime, i.e., small amplitude oscillations of the string).

To see this, let us assume T to be the string tension and�
its mass density, and that its configuration may be de-
scribed by a single function yðx; tÞ, measuring its vertical
departure from the equilibrium configuration. Denoting by
m the mass of the ring and by � the spring constant, the
position of the ring, yða; tÞ, satisfies Newton’s equation:

m €yða; tÞ ¼ ��yða; tÞ � Ty0ða; tÞ; (2)

which has the same form as the generalized boundary
condition of Eq. (1). The vibrating string problem with
this kind of condition on one of its endpoints constitutes a
well-known problem in classical vibrations. Similar con-
ditions have also been considered for calculating the inter-
quark potential modeled by a relativistic Nambu-Goto
string with pointlike masses at its ends [11].

We stress that the boundary condition for the deforma-
tion of the string is in fact the dynamical equation for the
position of the ring qðtÞ � yða; tÞ, and this is the origin of
the presence of second-order time derivatives in the gen-
eralized boundary condition. A proper treatment of the
system should regard qðtÞ and yðx; tÞ as qualitatively differ-
ent degrees of freedom, in the sense that q has a discrete,
finite mass, while y is endowed with a continuous mass
density. An enlightening way to treat this kind of problem
can be seen, for example, in [12], where the quantization of
a nonrelativistic string with an arbitrary mass distribution
has been considered. There, a system with a single con-
tinuous mass distribution which approximates the mixed
continuous and discrete case has been considered. In this
way, all the steps of the Lagrangian and Hamiltonian
formalisms, and even canonical quantization, are well
defined. The desired mass distribution is approached at
the end of the process, as a special limit, after all the
stumbling blocks in the procedure are avoided.

We will follow here an alternative procedure, which, as
we have explicitly checked, yields the same results. Since
the difficulties in the problem at hand come from the fact
that the discrete mass is precisely at one of the endpoints of
the system, we avoid the coincidence of those two singu-
larities by temporarily splitting them. Indeed, we shall first
assume that the mass m is located at an arbitrary position
x0, 0< x0 < a, and impose Neumann boundary conditions
at x ¼ 0 and x ¼ a. The generalized Robin boundary
condition at x ¼ a is then recovered by taking the
‘‘coincidence limit’’ x0 ! a�.
The classical Lagrangian then reads

L ¼ 1

2

Z a

0
dx

�
�

�
@y

@t

�
2 � T

�
@y

@x

�
2 � �y2�ðx� x0Þ

þm

�
@y

@t

�
2
�ðx� x0Þ

�
; (3)

with Neumann conditions implicitly assumed at x ¼ 0
and x ¼ a.
From the classical equation of motion one can easily

check that the presence of a localized mass on the string
induces a discontinuity in the spatial derivative of y,

T

�
@y

@x

��������xþ
0

�@y

@x

��������x�
0

�
¼ m €yðx0; tÞ þ �yðx0; tÞ: (4)

Note that the string can interchange energy with the
mass, and the conserved total energy of this system reads

E ¼ 1

2

Z a

0
dx

�
�

�
@y

@t

�
2 þ T

�
@y

@x

�
2
�

þ 1

2
�y2ðx0; tÞ þ 1

2
m

�
@y

@t

�
2

x¼x0

; (5)

that is, the sum of the mechanical energies associated with
the string and the ring.

B. A one-dimensional cavity with localized
conductivity and permittivity

Let us now focus on the analogous case of a scalar field
in 1þ 1 dimensions, as a toy model for the electromag-
netic field in 3þ 1 dimensions. We assume the Lagrangian
to be given by the expression

L ¼ 1

2

Z a

0
dx

�
�ðx; tÞ

�
@�

@t

�
2 �

�
@�

@x

�
2 � Vðx; tÞ�2

�
; (6)

with

�ðx; tÞ ¼ 1þ �ðtÞ�ðx� x0Þ; (7)

and

Vðx; tÞ ¼ vðtÞ�ðx� x0Þ: (8)

As in the mechanical model, we shall regard this as a
simple model to describe a cavity in which the permittivity
and conductivity are concentrated at the point x ¼ x0,
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which, tending to a from the left, reproduces the general-
ized Robin condition at x ¼ a. The particular case
�ðtÞ ¼ 0 and vðtÞ ¼ v0ð1þ fðtÞÞ has been considered in
Ref. [13], as a simple model of the experimental setup of
Ref. [5] (the generalization to the electromagnetic case has
been analyzed in Ref. [14]). In Sec. III we will compute the
Casimir interaction energy between two slabs described
by constant values of v ¼ v0 and � ¼ �0. In Sec. IV we
will compute the photon creation associated with a
time-dependent vðtÞ and � ¼ �0.

C. Eigenfunctions and inner product

Let us consider the model given in Eq. (6), with
Neumann boundary conditions at x ¼ 0, a. We will com-
pute the eigenfunctions and eigenvalues for the particular
case vðtÞ ¼ v0 and �ðtÞ ¼ �0. The eigenmodes can be
written as

�kðx; tÞ ¼ Nke
�ikt½cos ðkxÞ cos ðkðx0 � aÞÞ�ðx0 � xÞ

þ cos ðkx0Þ cos ðkðx� aÞÞ�ðx� x0Þ�
� e�iktc kðxÞ; (9)

where Nk is a normalization constant. They are continuous
at x ¼ x0 and satisfy Neumann boundary conditions at
x ¼ 0, a. The discontinuity equation at x ¼ x0 implies

k sin ðkaÞ ¼ ðv0 � �0k
2Þ cos ðkx0Þ cos ðkðx0 � aÞÞ; (10)

which is the equation that defines the eigenfrequencies. In
the particular case x0 ! a, the transcendental equation that
defines the eigenfrequencies simplifies to

k tan ðkaÞ ¼ ðv0 � �0k
2Þ: (11)

It is straightforward to show that, unless �0 ¼ 0,
eigenfunctions corresponding to different eigenvalues are
not orthogonal with the usual inner product. However,
defining a generalized inner product (see the Appendix
and Refs. [12,15])

ðc k; c k0 Þ ¼
Z a

0
dxc kðxÞc k0 ðxÞ þ �0c kðaÞc k0 ðaÞ

¼
Z a

0
dx�ðxÞc kðxÞc k0 ðxÞ (12)

one can check the orthogonality ðc k; c k0 Þ ¼ 0 for k � k0.
With appropriate normalization, the eigenfunctions can be
chosen to be orthonormal, as we shall assume has been
done in what follows.

This phenomenon is a general feature of the hybrid
continuous plus discrete systems, where one can show
that the eigenfunctions of the Hamiltonian are orthogonal
for a scalar product defined in terms of a kernel [12], which
defines a Sturm-Liouville problem.

The equations above are valid even in the time-
dependent case v0 ! vðtÞ, in which the eigenvalues
become parametrically dependent on time, as well as the

eigenfunctions c k. We will analyze the time-dependent
situation in Sec. IV.
Writing the field� as a linear combination of the spatial

eigenfunctions,

�ðx; tÞ ¼ X
k

QkðtÞc kðxÞ; (13)

and inserting this expression into the classical Lagrangian,
one can check that it reduces to a set of uncoupled
harmonic oscillators Qk, with frequency k:

L ¼ 1

2

X
k

ð _Q2
k � k2Q2

kÞ: (14)

Details of this calculation are presented in the Appendix.
Note that the additional term in the inner product, Eq. (12),
is crucial to cancel the kinetic term concentrated at x0.
Note also that these results can be straightforwardly
generalized to cases where several slabs are located at
different positions.

III. STATIC CASIMIR EFFECT

Once the system has been reduced to a set of uncoupled
harmonic oscillators, the calculation of the vacuum energy
can be performed by direct mode summation. We will
explicitly compute the static Casimir effect for two differ-
ent physical situations: the interaction between two thin
slabs, each one described by its conductivity and permit-
tivity (in free space), and a system that satisfies generalized
boundary conditions.

A. Interaction vacuum energy for two slabs

Let us consider two slabs, located at x ¼ �a=2,
and described by permittivities ��

0 and conductivities

v�, respectively. In order to have a discrete set of eigen-
frequencies, we enclose the system in a box of size 2L and
impose Neumann boundary conditions at x ¼ �L. As we
will take the limit L � a at the end of the calculation, the
result will be independent of L and of the boundary con-
dition imposed at x ¼ �L.
The eigenfunctions that satisfy Neumann boundary

conditions at x ¼ �L can be written as

f!ðxÞ ¼
8><
>:
A1 cos ½!ðxþLÞ� for �L<x<�a

2

A2 cos ð!xÞþA3 sin ð!xÞ for � a
2<x<a

2

A4 cos ½!ðx�LÞ� for a
2<x<L:

(15)

The function f!ðxÞ must be continuous at x ¼ �a=2 and
the spatial derivatives must satisfy

disc½@xf!�x¼�a=2 ¼ ½v�
0 � ��

0 !
2�f!

�
�a

2

�
: (16)

The eigenfrequencies are the solutions of detM ¼ 0,
where Mða; L;!Þ is the 4� 4 matrix associated with the
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linear system of equations for the coefficients Ai derived by
inserting Eq. (15) in Eq. (16). After some straightforward
calculations one can show that

det ½Mða; L;!Þ�
¼ �þ��ðsin ð2!ða� LÞÞ þ 2 sin ða!ÞÞ

þ 2ð�þ þ ��Þ cos ða!Þ þ ð�þ�� � 4Þ sin ð2L!Þ
þ 2ð�þ þ ��Þ cos ð2L!Þ; (17)

where �� ¼ 1
! ðv�

0 � ��
0 !

2Þ.
We will compute the Casimir energy as the difference

between the zero point energy of the slabs separated by a
distance a, and that corresponding to a distance l � a.
Using the argument theorem, we see that

ECðaÞ ¼ 1

2

X
n

ð!n � ~!nÞ

¼ � 1

4�i

I
dz log det

�
Mða; L; zÞ
Mðl; L; zÞ

�
; (18)

where !n and ~!n are the eigenfrequencies associated with
the distances a and l, respectively. The integration path
must include the real positive axis. Following standard
steps, and taking the limit L ! 1, we arrive at an integral
in the imaginary-frequency axis z ¼ i	:

EC ¼ 1

2�

Z 1

0
d	 log ½1� e�2	aCð	Þ�; (19)

where

Cð	Þ ¼ ðvþ
0 þ �þ

0 	
2Þðv�

0 þ ��
0 	

2Þ
ð2	þ vþ

0 þ �þ
0 	

2Þð2	þ v�
0 þ ��

0 	
2Þ : (20)

Not surprisingly, for the particular case ��
0 ¼ 0, this

result coincides with the usual Casimir energy for the so-
called � potentials. Moreover, in the v�

0 ! 1 limit, one

has Cð	Þ ! 1, and the result reproduces the usual one
for Dirichlet boundary conditions. Note that, as
@C=@��

0 > 0, the presence of the second-order time

derivative in the boundary conditions enhances the inter-
action between slabs.

It is interesting to remark that the final result for the
Casimir energy is tantamount to the one corresponding
to a � potential with a frequency-dependent coefficient
vð!Þ ¼ v0 � �0!

2. Therefore, this result could have
been derived using a Lifshitz formula with the particular
reflection coefficients that describe the slabs. The above
calculation is an alternative and equivalent way to compute
the vacuum energy, which shows that the Casimir energy is
just the sum over the eigenfrequencies defined by the
!-dependent boundary conditions.

B. Interaction vacuum energy for
generalized boundary conditions

We now consider the second case, namely, a system that
satisfies Neumann boundary conditions at x ¼ 0 and
generalized Robin boundary conditions at x ¼ a. The
eigenfrequencies are defined implicitly by Eq. (11), which
we rewrite as Gða;!Þ ¼ 0, with

Gða;!Þ ¼ ! sin ð!aÞ � ðv0 � �0!
2Þ cos ð!aÞ: (21)

As in the previous subsection, we enclose the system
in a large box of size 2L and impose Neumann boundary
conditions at x ¼ �L. The eigenfrequencies are thus de-

termined by the equation ~Gða; L;!Þ ¼ 0, with

~Gða; L;!Þ ¼ Gða;!Þ sin ½!ðL� a=2Þ�2: (22)

Then we compute the Casimir energy as the difference
between the vacuum energy associated with the length a
and that associated with l with l � a. Using again the
argument theorem

ECðaÞ ¼ � 1

4�i

I
dz log

� ~Gða; L; zÞ
~Gðl; L; zÞ

�
; (23)

the final result can be written as

EC ¼ 1

2�

Z 1

0
d	 log ð1� e�2	aBð	ÞÞ; (24)

where the function B contains the information about the
generalized boundary condition

Bð	Þ ¼ 	� v0 � �0	
2

	þ v0 þ �0	
2
: (25)

As the sign of B depends on the values of v0, �0 and 	,
the force can be attractive or repulsive depending on
the value of a.
In order to analyze the behavior of the energy with the

different parameters, it is useful to note that

EC

v0

¼ hðv0a; v0�0Þ; (26)

where h is a dimensionless function. This can be easily
checked by changing variables 	 ! 	=v0 in Eq. (24).
Therefore, the qualitative dependence of the energy with
the distance only depends on the dimensionless quantity
v0�0. For instance, when v0�0 > 1=4, B is negative for all
values of 	, and therefore the force is repulsive. In particu-
lar, in the limit v0 ! 1, the boundary condition at x ¼ a
becomes a Dirichlet boundary condition, and one has
B ! �1. The Casimir energy becomes the standard result
for a scalar field satisfying Neumann boundary conditions
at x ¼ 0 and Dirichlet boundary conditions at x ¼ a,
which corresponds to a repulsive force. When v0�0 <
1=4, we cannot predict the sign of the force analytically.
In Fig. 1 we present some numerical evaluations of

Eq. (24). We refer all the ingredients in the expression
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for the energy to the dimensionful quantity, v0. We plot the
Casimir dimensionless energy EC=v0 as a function of the
distance a (in units of v0) for different values of v0�0. We
see that for small distances, the force changes sign for the
smaller value of v0�0 ¼ 0:1. In this regime, the force
crosses from repulsive to attractive and back to repulsive
again, as the distance increases. For other values of v0�0 >
1=4 the force is, as expected, always repulsive.

IV. DYNAMICAL CASIMIR EFFECT

Let us now consider the case of a time-dependent vðtÞ ¼
v0ð1þ fðtÞÞ and constant �ðtÞ ¼ �0. In order to analyze
this problem one can proceed as usual [2,13,16], showing
that, at the classical level, the system can be described by a
set of coupled harmonic oscillators with time-dependent
frequencies and couplings. To this end, we introduce an
‘‘instantaneous basis’’ c kðx; tÞ through the equations

c 00
k þ k2ðtÞc k ¼ 0; c 0

kð0Þ ¼ 0; c 0
kðaÞ ¼ 0;

c 0
kðxþ0 Þ � c 0

kðx�0 Þ ¼ ð��0k
2 þ vðtÞÞc k: (27)

Note that, due to the time-dependent boundary condition at
x0, the eigenvalues are time dependent, and this induces a
parametric time dependence in the basis functions. The
limit x0 ! a� describes a cavity with a SQUID at one end,
but one could consider more general situations like a cavity
that ends with two SQUIDs, or even a set of SQUIDs
located at different positions in a waveguide.

We now expand the field using the instantaneous basis

�ðx; tÞ ¼ X
k

QkðtÞc kðx; tÞ: (28)

The classical Lagrangian given in Eq. (6) can be written in
terms of the variables Qk, as in the static case. The
frequencies of the classical oscillators become time depen-
dent, and the Lagrangian contains additional terms propor-
tional to derivatives of the basis functions, which in turn

are proportional to the derivatives of the eigenvalues _kðtÞ.
As shown in the Appendix, the classical Lagrangian

reads

L¼1

2

X
k

ð _Q2
k�k2ðtÞQ2

kÞþ
X
kj

AkjðtÞ _QkQj�1

2

X
kj

SkjðtÞQkQj;

(29)

where the time-dependent matrices Akj and Skj can be

chosen to be antisymmetric and symmetric, respectively.
The explicit expressions for these matrices are derived in
the Appendix. Note that, if the time dependence of the
eigenvalues is proportional to a dimensionless parameter
�, Akj ¼ Oð�Þ and Skj ¼ Oð�2Þ [see Eq. (A16)].
Let us now assume that the externally driven pro-

perty vðtÞ has a harmonic time dependence with frequency
�. When the external frequency is tuned with an eigenfre-

quency of the static cavity � ¼ 2~k0, with ~k0 one of the
solutions to Eq. (10), we expect the number of created
photons to be enhanced by parametric resonance.
Moreover, since, in general, the spectrum of the cavity
is not regularly spaced, it is reasonable to neglect cou-
plings between modes [17]. The dynamics of the system is
essentially given by that of the mode associated with k0,
i.e., a single harmonic oscillator with time-dependent
frequency:

L ’ 1

2
½ _Q2

k0
� k20ðtÞQ2

k0
�; (30)

where we have neglected terms of order Oð�2Þ. Here k0ðtÞ
is a solution to

k sin ðkaÞ ¼ ðvðtÞ � �0k
2Þ cos ðkx0Þ cos ðkðx0 � aÞÞ: (31)

For the sake of simplicity, we will solve this equation for

x0 ! a�. We denote by ~k0 a solution to Eq. (31) in the

static case fðtÞ ¼ 0. Assuming that k0ðtÞ ¼ ~k0ð1þ 
fðtÞÞ,
with 
fðtÞ � 1, one can show that


 ¼ v0

v0 þ ~k20ðaþ �0Þ þ aðv0 � �0
~k20Þ2

: (32)

When fðtÞ ¼ A sin ½2~k0t�, the number of photons with

frequency ~k0 will grow exponentially. The calculation is,
by now, standard [2,13,16,17] and will not be reproduced
here. The result is

N~k0
ðtÞ ¼ exp ½~k0A
t� � exp ½�t�: (33)

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

v
0
 a

E
C

/v
0

FIG. 1. Dimensionless total Casimir energy EC=v0 as a func-
tion of the distance v0a, for different values of v0�0. While the
force is always repulsive for large values of v0�0, for v0�0 ¼
0:1 (solid line) it starts being repulsive, then becomes attractive,
and is finally repulsive again for larger values of the distance.
The dashed line corresponds to v0�0 ¼ 0:5, and the dotted line
corresponds to v0�0 ¼ 5.
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Note that the above equations are valid for small values of
the aforementioned parameter � ¼ A
 � 1.

It is interesting to analyze two opposite limiting cases.

When v0a � 1, the lowest frequency solution is ~k0 ’
�=ð2aÞ, and therefore 
 ’ 1=ðv0aÞ. The particle creation
rate, in this case, is � ¼ �A=ð2v0a

2Þ.
On the other hand, when v0a � 1, the first solution to

the transcendental equation (11) is

~k0a ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v0a

1þ �0

a

s
: (34)

In this case we have 
 � 1=2 (assuming that �0=a � 1).

Therefore, the corresponding rate is � ¼ A=2
ffiffiffiffiffiffiffiffiffiffiffi
v0=a

p
.

The last case may be of some interest for the experi-
mental observation of the dynamical Casimir effect, since
the Robin or generalized Robin boundary conditions may
be adjusted in such a way as to reduce the value of the
lowest eigenfrequency of the unperturbed cavity. This
point deserves further analysis.

When considering the parametric resonance situation, it
is crucial to tune the external frequency with one of the
eigenfrequencies of the system. The term proportional to
�0 in the boundary condition, however small, does intro-
duce significant modifications to the static eigenfrequen-
cies of the cavity. This effect may be relevant, for instance,
for an experiment with a coplanar waveguide of finite size.

As an illustration of the last point, let us assume that
x0 ! a� and that the external frequency is twice the
lowest eigenfrequency of the cavity [that is, twice the
first solution to Eq. (11)]. In a realistic situation [18],

v0a � 1, and an approximate solution is ~k0 ’ �=ð2aÞ.
Expanding the transcendental equation around this solu-
tion we obtain

~k0 ’ �

2a

�
1� 1

v0a
þ 1

v2
0a

2
� �2

4

�0

v2
0a

3

�
: (35)

Assuming [18] v0a ¼ 20 and �0=a ¼ 0:05 the correction
to the lowest eigenfrequency due to �0 is 3� 10�4. This
small correction should be taken into account in order to
achieve parametric resonance if the amplitude of the time-
dependent external conditions is sufficiently small [17].

V. CONCLUSIONS

The original aim of this work has been to analyze the
static and dynamical Casimir effects when the field satis-
fies generalized boundary conditions involving second-
order time derivatives. These conditions were, in turn,
motivated by the effective boundary condition satisfied
by the magnetic flux in a waveguide terminated by a
SQUID, a setup that has recently been employed as a
device to measure the creation of photons from the vacuum
in the presence of time-dependent external fields [3].

We have shown that this problem does have a simple
and well-known classical analogue: a loaded string.

From this point of view, the presence of the second-order
time derivative is not surprising, since the boundary con-
dition is, in this case, nothing but the dynamical equation
for a massive ring attached to the end of the string. From
a mathematical point of view, we have eigenvalue-
dependent boundary conditions, and therefore the eigen-
functions associated with different eigenvalues are not
orthogonal under the usual inner product. A generaliza-
tion of the inner product makes them orthogonal. When
expanding the deformation of the string in terms of spatial
eigenfunctions, the additional term in the inner product
exactly cancels out the kinetic term associated with
the ring, and one ends up with a set of decoupled har-
monic oscillators.
This mechanical analogy leads us to consider a more

general situation, in which the ring is not attached to the
end of the string; rather, it is located at an arbitrary distance
from the endpoint. From a field-theory perspective, this can
be considered as a toy model for an electromagnetic cavity
in which one inserts a thin slab characterized by its con-
ductivity and permittivity. From the quantum circuits point
of view, this corresponds to a situation in which a SQUID is
inserted into a one-dimensional waveguide.
Therefore, we computed the static Casimir interaction

energy between two slabs, generalizing previous results
for � potentials. We also computed the static vacuum
energy for the particular case in which the slab is near
a border of the cavity. In summary, we have shown that
the Casimir energy can be computed as the sum over
modes satisfying the generalized Robin boundary
condition.
Finally, and coming back to the original motivation, we

considered some particular aspects of the dynamical
Casimir effect for the generalized boundary conditions.
On the one hand, we computed the particle creation rate
assuming parametric resonance for the case of a finite
waveguide ending with a SQUID. On the other hand, we
discussed the influence of the second-order time derivative
on the tuning of the external pumping with one of the
eigenfrequencies of the cavity. We have seen that the

term proportional to €� in the boundary condition may
indeed be relevant for this tuning.
The analysis of loaded strings with masses distributed

periodically along them, or analogue acoustic and elastic
systems, induces the presence of (approximate) band gaps
in the spectrum [19]. It would be interesting to analyze
theoretically electromagnetic analogues of these configu-
rations, like a waveguide with several SQUIDs, distributed
periodically on it, or a microwave cavity with several slabs
inserted accordingly.
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APPENDIX: THE LAGRANGIAN

In this appendix we present some details of the calcu-
lations of the classical Lagrangian in both the static and
dynamical cases.

To begin with, let us show that it is necessary to modify
the usual inner product in order to have an orthonormal
basis. The eigenfunctions satisfy

c 00
k þ k2c k ¼ 0 (A1)

with the boundary conditions

c 0
kð0Þ ¼ 0; c 0

kðaÞ ¼ 0;

c 0
kðxþ0 Þ � c 0

kðx�0 Þ ¼ ð��0k
2 þ v0Þc k: (A2)

For the sake of definiteness, we choose Neumann boundary
conditions at x ¼ 0, a. The results below can be general-
ized to the case of Robin boundary conditions.

We compute

Iij¼
Z a

0
ðc 00

i c j�c ic
00
j Þdx¼ðj2� i2Þ

Z a

0
c ic jdx; (A3)

where in the last equality we used the eigenvalue equation.
On the other hand, we have

Iij ¼
Z a

0
½ðc 0

ic jÞ0 � ðc ic
0
jÞ0Þdx

¼ �0ði2 � j2Þc iðx0Þc jðx0Þ: (A4)

One should be careful with the evaluation ofZ a

0
ðc ic

0
jÞ0dx (A5)

because of the discontinuity at x0. Equation (A4) can be

obtained by writing
R
a
0 ¼

Rx�
0

0 þR
a
xþ
0

and using the bound-

ary condition at x0:Z a

0
ðc kc

0
jÞ0dx ¼ c kðx0Þ½c 0

jðx�0 Þ � c 0
jðxþ0 Þ�

¼ ð�0j
2 � v0Þc kðx0Þc jðx0Þ: (A6)

Subtracting Eqs. (A3) and (A4) we get

0 ¼ ðj2 � i2Þ
�
�0c iðx0Þc jðx0Þ þ

Z a

0
dxc ic j

�
; (A7)

and therefore the inner product defined as

ð�i;�jÞ ¼ �0c iðx0Þc jðx0Þ þ
Z a

0
dxc ic j

¼
Z a

0
dx�ðxÞc ic j (A8)

vanishes when i � j.
To compute the static classical Lagrangian we write

�ðx; tÞ ¼ X
k

QkðtÞc kðxÞ: (A9)

Therefore

Z a

0
dx _�2 ¼ X

kj

_Qk
_Qj

Z a

0
dxc kc j

¼ X
kj

_Qk
_Qjð�kj � �0c kðx0Þc jðx0ÞÞ

¼ X
k

_Q2
k � �0

_�2ðx0Þ: (A10)

A similar calculation can be done for the spatial
derivatives

Z a

0
dx�02 ¼ X

kj

QkQj

Z a

0
dxc 0

kc
0
j

¼ X
kj

QkQj

Z a

0
½ðc kc

0
jÞ0 � c kc

00
j Þ�

¼ X
kj

QkQj

Z a

0
½ðc kc

0
jÞ0 þ j2c kc jÞ�: (A11)

Inserting Eq. (A6) in (A11), and using again the orthogo-
nality, we find

Z a

0
dx�02 ¼ X

k

k2Q2
k � v0�

2ðx0; tÞ: (A12)

Using Eqs. (A10) and (A12), the classical Lagrangian
Eq. (6) can be written in the static case as

L ¼ 1

2

X
k

ð _Q2
k � k2Q2

kÞ: (A13)

We now consider the time-dependent situation
v0 ! vðtÞ. Using the basis functions introduced in
Sec. IV, from Eq. (28) we have

_�ðx; tÞ ¼ X
k

ðQkðtÞ _c kðx; tÞ þ _QkðtÞc kðx; tÞÞ; (A14)

and therefore

1

2

Z a

0
dx�ðxÞ _�2 ¼ 1

2

X
k

_Q2
k þ

X
kj

_QkQjAkj � 1

2

X
kj

QkQjSkj;

(A15)

where

Akj¼
Z a

0
dx�ðxÞc k

_c j; Skj¼�
Z a

0
dx�ðxÞ _c k

_c j: (A16)

Note that, due to the orthogonality of the eigenfunctions,
the matrix Akj is antisymmetric. The matrix Skj is obvi-

ously symmetric.
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