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We have studied the limits of stability in the first order liquid-solid phase transition in a Lennard-
Jones system by means of the short-time relaxation method and using the bond-orientational order
parameter Q6. These limits are compared with the melting line. We have paid special attention to
the supercooled liquid, comparing our results with the point where the free energy cost of forming a
nucleating droplet goes to zero. We also indirectly estimate the dimension associated to the critical
nucleus at the spinodal, expected to be fractal according to mean field theories of nucleation. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4994049]

I. INTRODUCTION

The liquid–solid transition is first-order and is thus accom-
panied by hysteresis: when heating, melting is not observed
at the coexistence temperature Tm (though it is called melt-
ing temperature) but at some higher temperature (conversely
when cooling, crystallization occurs at some lower temper-
ature).1–3 The liquid phase is metastable below Tm, which
means that although the thermodynamically stable (lowest free
energy) phase is the solid, the liquid continues to be locally
stable. The metastable phase becomes unstable sufficiently far
from the coexistence temperature. In mean-field, the instability
appears at a well-defined point, the thermodynamic spinodal,
which strictly corresponds to a point where susceptibilities like
isothermal compressibility and isobaric heat capacity diverge.
This is well defined because in the mean field, the lifetime
of the metastable phase is infinite and (meta-)equilibrium
measurements are possible.

Outside the mean field, the metastable phase has a finite
lifetime, and this time can become of the same order of the
relaxation time, thus establishing an effective limit for the
existence of the phase (called kinetic spinodal or metastabil-
ity limit) at a point where the susceptibilities are growing but
finite.4–9 Extrapolating the susceptibilities beyond the metasta-
bility limit, one can define the analogue of the thermodynamic
spinodal as the point where the extrapolated susceptibilities
seem to diverge. This point is sometimes called pseudospin-
odal, to emphasize its definition through extrapolation to an
unobservable state.

The mean-field spinodal looks like a second-order-phase-
transition critical point in that the development of an insta-
bility produces a diverging susceptibility (corresponding to a

a)URL: http://iflysib14.iflysib.unlp.edu.ar/tomas.

flat free energy). The critical behavior of second-order phase
transitions has a particular manifestation in the short-time, out-
of-equilibrium dynamics,10 with several quantities displaying
power-law behavior (see Sec. II A). Based on this result, the
short-time dynamics (STD) technique11,12 has been widely
used to determine critical points with out-of-equilibrium mea-
surements. Interpreting the power-law short-time dynamics
characteristic of critical points as a signature of the develop-
ment of an instability, some of us proposed in Ref. 9 to look
for such behavior in the vicinity of a first-order transition, and
to define in this way a spinodal in finite dimension. This was
shown to be consistent because the spinodal defined through
STD was found to coincide with the thermodynamic spinodal
in the mean-field Ising model, and with the pseudospinodal
obtained from extrapolation of the magnetic susceptibility in
the short-range Potts model.9 Those first results concerned
only lattice models, but more recently, using density as an order
parameter, the technique was applied to find the spinodals
and critical point of the liquid-gas transition of an off-lattice
Lennard-Jones fluid.13

In this paper, we determine the (pseudo)spinodals of
the liquid-solid transition in a Lennard-Jones (LJ) system,
as defined by short-time dynamics. In short-range systems
spinodals are hard to determine because they involve large
relaxation times competing with a shortening lifetime of the
metastable phase. The metastable phase becomes in prac-
tice unobservable when its lifetime is very short or when
its relaxation time is very large. However, the metastable
phase could exist, at least in theory, beyond this practical
limit, and knowledge of the actual theoretical feasibility of
the metastable phase is important in cases such as the ther-
modynamic (Kauzmann) glass transition (which would lie in
a region where the extremely large relaxation times prevent
its observation),14,15 and the liquid-liquid phase transition of
water (not directly observable because of the “no man’s land”
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phenomenon).16–18 Knowledge of the spinodal can serve as
a bound to the region of existence of the metastable phase.
The non-equilibrium nature of the STD technique makes it
in principle feasible to apply it to these situations but good
understanding of the technique and its limitations is needed.
In particular, a good order parameter needs to be found, since
STD is based on the evolution of the order parameter and its
fluctuations.

The aim of this work is to polish the STD technique as
applied to the solid-liquid spinodals, studying a well-known
model where results with other methods are available for com-
parison. Thus apart from the interest of the Lennard-Jones
model itself, an important result of this work is a perfected tech-
nique suitable for the determination of liquid-solid spinodal
that does not need equilibrium measurements. In particular, we
have paid attention to finding the ordered parameter that best
differentiates between the phases and whose fluctuations can
signal the destabilization.19 We consider the potential energy
and the density (used, e.g., in Refs. 20 and 21) but find the best
results are obtained with the bond orientational parameter Q6

of Steindhardt et al.22

The paper is organized as follows: In Sec. II, we give
a theoretical description of STD and show how it can be
used for studying spinodals. We also show how to calculate
the fractal dimension of a crystal nucleus using critical expo-
nents. In Sec. III, we describe the shifted force Lennard-Jones
(sfLJ) model and bond orientational order parameter. In Sec.
IV, we show our results for the liquid spinodal. We calculate
the liquid spinodal for the sfLJ model and estimate the frac-
tal dimension of the critical solid nucleus. We also compare
our results with results from TPS. In Sec. V, we show our
results for the solid spinodal. Finally, in Sec. VI, we draw our
conclusions.

II. THEORETICAL BACKGROUND
A. Short time dynamics and spinodals

Criticality manifests itself not only in the static behav-
ior, but also in relaxation to equilibrium starting from special
macrostates.10,23 STD can be applied in order to estimate the
locus of spinodals and critical points without necessity to reach
the equilibrium. Starting from the well defined disordered
(high temperature) initial macrostate, where the order param-
eter M0 → 0 vanishes, the evolution of the order parameter
and its fluctuations fulfills

〈M(t)〉 ∝ M0tθ , (1)

M(2)(t) ∼ tψ = td/z−2β/zν , (2)

where M is the order parameter, d is the Euclidean dimension,
β and ν are the order-parameter and the correlation-length
critical exponents, respectively, z is the dynamic exponent,
and θ is a new exponent (the STD exponent). The global order
parameter is assumed to be a sum of local variables si: M
= 1

N

∑N
i=1 si. The second moment of M, at fixed time t, is

M(2)(t) = 〈[M(t) − 〈M(t)〉]2〉, (3)

where 〈·〉 is an ensemble average, which in simulations
translates to average, at fixed time t, over independent runs
(trajectories).

The self-correlation of the local variable si,

A(t, t0) =
1
N

N∑
i=1

(〈si(t)si(t0)〉 − 〈si(t)〉〈si(t0)〉) (4)

also behaves as a power law,

A(t) ∝ t−λ = t−(d/z−θ). (5)

Considering instead an initially ordered macrostate (M
= Mmax, low temperature), at criticality, it will decay as

〈M(t)〉 ∝ t−β/νz, (6)

and Eq. (2) is also verified. Relations (1), (2), (5), and (6),
were originally obtained and verified at second-order critical
points.11,12

It was first noted by De Gennes and Prost24 (for liquid
crystals) and by Fernández et al.25 (for the Potts model) that
in the case of weak first-order transitions, there are two tem-
peratures around the transition Tm, namely, T (−) < Tm < T (+),
where equilibrium data show pseudo-critical behavior. The
existence of these temperatures inspired the idea of apply-
ing the STD technique to determine T (�) and T (+), defined as
those where one obtains a power law when starting from a dis-
ordered or ordered initial states, respectively.26 So STD was
used to distinguish first- from second-order phase transitions,
by measuring the difference T (+)

� T (�), which vanishes in the
second-order case. Building on this idea, and based on the fact
that the developing of an instability makes the spinodal simi-
lar to a second-order critical point, the temperatures T (+) and
T (�) were interpreted as thermodynamic spinodals and shown
to coincide with mean field spinodals9,27 or pseudospinodals
in lattice9,12 and more recently off-lattice13 systems. Then, in
the specific case of the liquid-solid transition, we identify T (�)

with the liquid spinodal (T ∗Liq
sp ) and T (+) with the solid spinodal

(T ∗Sol
sp ).

B. Spinodal fractal dimension

At a second-order critical point, the largest clusters
belonging to the low temperature phase are fractal-like objects
with fractal dimension

df = d − β/ν . (7)

Analogously, mean field theories such as the spinodal nucle-
ation theory28,29 conclude that nucleating droplets at the spin-
odal temperature are fractal-like objects with divergent number
of particles. Signs of this characteristic behavior have been
obtained also in several short range systems.30–32

In critical points, it is usually possible to estimate β/ν by
means of STD and, therefore, df of Eq. (7). It can be done
using relations (1), (2), and (5). From Eq. (2), we have β/ν
= (d − ψz)/2 and using Eq. (5), we have β/ν = d

2 (1 − ψ
λ+θ ).

Substituting in Eq. (7), we obtain

df =
d
2

(
1 +

ψ

λ + θ

)
. (8)

Analogously, in the case of spinodals, the dimension df

obtained from M, M(2), and A(t) [Eqs. (1), (2), and (5)]
would correspond to the fractal dimension of the nucleating
droplet.
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III. SIMULATION DETAILS
A. Model

On the one hand, we have used a shifted force Lennard-
Jones (sfLJ) system of N = 2048 particles with the interacting
potential

V (r) =



4ε

[(
σ

r

)12
−

(
σ

r

)6
]

+ Ar + B, r ≤ rc,

0, r > rc,
(9)

with A and B constants that ensure continuity of V (r) and V ′(r)
at r = rc.33 This simple scheme is computationally convenient
because no corrections to the energy due to the tail and cut-
off are needed. We set rc = 2.5σ as in the original paper of
Errington et al.,33 where the phase diagram was determined.
This potential is used in Secs. IV A–IV C and V.

On the other hand, in order to compare with Ref. 31, in
Sec. IV D, we have used the Lennard-Jones potential argon
parameters, namely, ε/kB = 119.8 K (where kB is Boltzmann’s
constant) and σ = 3.405 Å.34 Also, as in Ref. 31 A = B = 0,
rc = 9 Å in Eq. (9), with the usual long range correction for
energy and pressure.35

We have done Monte Carlo simulations with the Metropo-
lis algorithm in the NPT ensemble with periodic boundary
conditions. Two kinds of move attempts are allowed: particle
shifts (with probability ps = 0.9995) and volume changes (with
probability 1 � ps). Particle shifts consist of random displace-
ments up to a maximum distance dr = 0.075. Volume changes
are limited to a 1% decrease or increase, keeping a cubic simu-
lation shape. As usual, progress in the simulation is measured
in Monte Carlo Steps (MCS), i.e., the number of attempted
moves per particle. We express the results in reduced units,
T ∗ = kBT/ε , p∗ = pε/σ3, ρ∗ = ρσ3, and u∗ = u/ε .

B. Order parameter

To study crystallization, we use the global orientational
parameters Ql.22 For a given configuration it is defined by

Ql =

√√√
4π

2l + 1

m=l∑
m=−l

|〈Qlm(r̂ij)〉b |
2 , (10)

where r̂ij = (rj − ri)/|rj − ri | is the bond-versor between
neighbor particles i and j, Qlm(r̂ij) = Ylm(θ(r̂ij), φ(r̂ij)), with
θ and φ are the spherical angles of r̂ij, Y lm are the spheri-
cal harmonics, and 〈. . .〉b means the average over all bonds
of the configuration under study. Particles are considered as
neighbors if separated by a distance less than the characteris-
tic length r0 = (ρ0/ρ)1/3d1, where ρ = N/V and ρ0 is the unit
density. d1 is the nearest-neighbor distance at unit density, cal-
culated from g(r), d1 ' 1.4. Results do not sensitively depend
on d1 (note that V varies along the simulation).

We also define a corresponding local order parameter
ql(i),30

ql(i) =

√√√
4π

2l + 1

m=l∑
m=−l

|qlm(i)|2 . (11)

Here qlm(i) is the orientational order parameter for the parti-
cle i,

qlm(i) =
1
ni

ni∑
j=1

Ylm(θ(r̂ij), φ(r̂ij)), (12)

where the average is taken over ni, the nearest neighbors of
particle i.

The global parameter Q6 is highly sensitive to crystalliza-
tion in the LJ system.33 For completely uncorrelated particles,
Q6 = 1/

√
Nb, where the number of bonds is Nb = zN (z is

the mean number of neighbors), while for a perfect FCC crys-
tal Q6 = 0.574 52. This quantity is widely used in numerical
simulations as an indicator of crystallization, for example, to
study the clusters of solid-like particles,30,36,37 to define free
energy barriers for nucleation,31,38 to build a transition path
sampling (TPS) scheme,31 and to distinguish among differ-
ent kinds of crystals39 and liquids.40 A similar quantity, which
can in principle be experimentally measured, has recently been
proposed.41

IV. THE LIQUID SPINODAL
A. Supercooled phases and hysteresis

Figures 1 and 2 show stationary results of our simulations
using the sfLJ potential in the NPT ensemble with p∗ = 0.50.
In Fig. 1, we show the potential energy per particle u∗ and

FIG. 1. Stationary results starting from the initial con-
figuration corresponding to a disordered liquid (filled
symbols) and a perfect crystal (empty symbols). The left
panel shows u∗ and ρ∗ obtained using the NTP ensem-
ble with p∗ = 0.50 and N = 2048 for the sfLJ potential
given by Eq. (9). Vertical dashed line is the temperature of
transitions estimated from Ref. 33. Right panel: Station-
ary fluctuations of u∗ and ρ∗ given by the variance σ2

x .
For each temperature, the data were obtained after 5×105

MCS, measuring until tobs = 5×106 MCS, and using five
independent runs to estimate the statistical error. Symbols
are greater than the statistical errors.
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FIG. 2. Idem Fig. 1 but for Q6. The arrows indicate the STD spinodal
temperatures.

the density ρ∗ = N/V ∗ together with their fluctuations, given
by the variance σ2

x = 〈x
2〉t − 〈x〉

2
t , estimated using time aver-

ages. In Fig. 2, we show the orientational parameter Q6 and its
fluctuations. For each temperature, these time averages were
obtained after a relaxation stage of 5× 105 MCS and then mea-
suring the observables every 100 MC steps up to tobs = 5× 106

MCS. Statistical errors were estimated using five independent
runs. The melting transition temperature has been calculated
in Ref. 33. From this reference, at this pressure, it can be esti-
mated as T ∗m ≈ 0.55, which corresponds to the vertical line as
indicated in the figures.

The results reported in the figures were obtained start-
ing from two different initial conditions: random positions
(infinite temperature) and from a perfect FCC crystal. It
is clear that the different initial conditions result in differ-
ent values of the observables, and that no discontinuity is
observed as the temperature is varied across T ∗m. The figures
clearly show that both the liquid and solid phases can become
metastable.

The data for disordered initial configurations in Figs. 1 and
2 were obtained at temperatures for which the system does not
crystallize during the observation time tobs = 5×106 MCS and
has a stationary value of Q6 for all the samples. For T ∗ < 0.44

some signals of crystallization were detected, and therefore
we have discarded these temperatures.

Another fact that emerges from the figures is that
Q6 and its fluctuations show, with respect to density and
energy, steeper variations as the temperature moves deeper
within the metastable region. This is related to our find-
ing that the orientational parameter is the one suitable to
study STD, rather than energy or density, as we discuss in
Sec. IV B.

B. The liquid spinodal in the sfLJ potential

The increase in the fluctuations of Q6 in Fig. 2 sug-
gests an instability near T ∗ ∼ 0.44 (for p∗ = 0.50). We thus
explore temperatures around this point using STD. The ini-
tial disordered macrostate required to apply STD in this
case is obtained taking the system at infinite temperature,
which makes Q6 = O(N−1/2) ' 0. To determine completely
the initial macrostate, it is also necessary to select a den-
sity. Following Ref. 13, we have chosen an estimate for the
spinodal density, which is ρ∗sp ≈ 0.9225. It was obtained, for
p∗ = 0.50, using the data of Fig. 1. We have also used dif-
ferent initial densities (within a 10% range of this value)
and checked that our results are independent of the initial
density.

We follow the relaxation from the disordered state in the
NPT ensemble (Fig. 3). The critical STD behavior is given
by the order parameter in Eq. (1) 〈M(t)〉 (hereafter denoted
M for simplicity) and its second moment (i.e., fluctuations)
calculated as in Eq. (3). We consider the three quantities
u∗, ρ∗, and Q6. Density and energy show no sign of the ini-
tial increase expected for the order parameter in STD and
neither do their fluctuations. It is clear that these quantities
are unsuitable to detect the spinodal singularity. Instead, both
Q6 and its second moment have a clear initial increase, as
expected for the order parameter near a singularity. We thus
proceed to study the spinodal applying the STD technique
to Q6.

FIG. 3. Results for a system prepared at T∗ = ∞, relax-
ing at p∗ = 0.5, and different temperatures as indicated in
the top left panel. The absolute energy |u∗ |, density ρ∗,
and the parameter Q6 are showed on the left panel and
its fluctuations on the right panel [second moment calcu-
lated with Eq. (3)]. These results correspond to average
taken over 103 samples.



034504-5 Loscar, Martin, and Grigera J. Chem. Phys. 147, 034504 (2017)

FIG. 4. Results for Q6 and its second moment Q(2)
6 at

p∗ = 0.50, for a system prepared at T∗ = ∞ and let
relax at different temperatures (data for Q(2)

6 were shifted
vertically, except at T = 0.42, for the sake of clarity).
Temperatures are indicated in correspondence with the
order in the graph from top to bottom. The insets show,
in a log-linear plot, the local exponents θLoc and ψLoc as
a function of t, while lines are linear fits.

Figures 4 and 5 show the evolution of Q6 and its second
moment Q(2)

6 for a range of pressures (p∗ = 0.50, 5.00, and 30)
and temperatures (as indicated). These results correspond to
our STD simulations with ns = 500–1000 independent samples.
We observe for each pressure the initial increase in Q6 and in
its second moment Q(2)

6 .
In order to find the pseudo-critical temperature, we have

computed the local (in time) exponents [analogous to the expo-
nents defined by Eqs. (1) and (2)] θLoc and ψLoc by binning
the data in logarithmic time windows and then fitting power
laws over consecutive groups of three points. Figure 4 shows
Q6 and its second moment Q(2)

6 for p∗ = 0.50, while the insets

show the corresponding local exponents. In these insets, the
solid lines are linear fits that indicate the average trend. We
can see that the local exponent θLoc for T ∗ = 0.42 is the most
stable. In the case of the ψLoc, the stable exponent should be in
the range 0.42 < T ∗ < 0.43. This difference is due to the finite
size of the system and tends to disappear for greater sizes. We
associate the spinodal temperatures with the (time-limited)
power law behavior observed in Figs. 4 and 5. Assuming a

power law behavior at T ∗Liq
sp = 0.42, Fig. 4 shows a fit for

Q6 valid from tmic ∼ 500 to tmax ∼ 32 000 and for Q(2)
6 from

tmic ∼ 70 to tmax ∼ 13 000. We note that this value of spinodal is

FIG. 5. As in Fig. 4 but for p∗ = 5.00 (left) and
p∗ = 30.00 (right).
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FIG. 6. Phase diagram for the melting transition for LJ system with sfLJ
potential. Continuous line shows data of Ref. 33. The inset shows a linear-
linear graph.

compatible with the stationary values shown in Fig. 2 (in the
right panel of this figure the left arrow indicates T ∗Liq

sp ).
We have repeated the analysis for different pressures in

the range p∗ = 0.1 to p∗ = 30 and we have found a pseudocrit-
ical behavior in all cases for both Q6 and Q(2)

6 . In Fig. 6, we

plot the spinodal lines determined from Q(2)
6 together with the

coexistence curve taken from Ref. 33. In the linear scale graph
(inset), we can observe that the width of the metastable region
increases for higher pressure and temperature: the liquid can
be supercooled more deeply at high pressures.

C. Fractal dimension of the critical droplets

According to the theory of thermal critical phenomena,
in critical conditions, the largest condensed cluster is a fractal
object. Fractal objects have been reported when the structure
of the nucleating droplet near the spinodal is studied.30,31 In

FIG. 7. Results for the autocorrelation of Q6 using Eq. (4) for a system
prepared at T∗ = ∞ and t0 = 120.

TABLE I. Summary of spinodal exponents and spinodal temperature
obtained by applying the STD method. The exponent θ is obtained with the
initial increase of Q6, φ is obtained with fluctuations, and λ with correlation
A(t).

p∗ T∗Liq
sp θ ψ λ df =

d
2

(
1 +

ψ

θ + λ

)
0.50 0.42 (1) 0.13 (1) 0.33 (1) 2.2 (1) 1.71 (2)
5.00 0.65 (2) 0.11 (3) 0.34 (2) 2.1 (1) 1.73 (3)
30.0 1.54 (2) 0.130 (15) 0.35 (3) 2.1 (1) 1.74 (3)

the same way as in percolation theory,42 the fractal dimen-
sion df of this object can be related to the correlation-length
and order-parameter critical exponents (ν and β, respectively)

FIG. 8. Liquid spinodal detected by means of STD for
the same potential used in Ref. 31 for p∗ = 0.596 68
(corresponding to p = 250 bars according to the argon
parameters) and obtained for a system of N = 2048 par-
ticles. Top panel: Orientational parameter at indicated
temperatures. Bottom panel: Fluctuations of Q6 (the data
obtained with N = 4000 are indicated and were shifted
down for the sake of clarity).
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through Eq. (7). To determine df , we then need the expo-
nents for the initial increase of the order parameter θ, of
its fluctuations φ, and of the self correlation λ. We have
computed the self correlation as given by Eq. (4), using
the local orientational parameter for each particle q6(i) [see
Eq. (11)].

Figure 7 shows the autocorrelation for p∗ = 0.50 and spin-
odal temperature T ∗Liq

sp = 0.42 (estimated from Figs. 4 and 5).
We remark that the results shown in this figure were obtained
from the same STD experiment, i.e., a relaxation from the com-
pletely disordered macrostate. The self correlation depends
on two times: the time t0 when a reference configuration is
recorded and the time t elapsed since t0. In particular, because
this is an out-of-equilibrium process, the correlation is not
time-translation invariant and thus the initial time t0 is impor-
tant. To select t0, we use the criterion of the best (longer)
power law, resulting t0 = 120. Consistently, this time is also
∼tmic, the time since the power law of the order parameter and
its moments is valid (see Figs. 4 and 5 for p∗ = 0.50). From
the power law fit of Fig. 7, we obtain λ = 2.20. We have
repeated the measurement for different values of p∗ and we
found the same exponent (within the statistical error) for the

range of studied pressures. We give in Table I the exponents
obtained from Fig. 4 (θ) and from Fig. 5 (φ) as well as λ from
the self correlation at different pressures. The last column is
the estimate of the fractal dimension df . These exponents are
always compatible with the values φ = 0.34(2), θ = 0.13(1),
and λ = 2.1(2), giving df = 1.73(2).

D. Argon at 250 bars

We have looked at other estimations of spinodals in the
LJ system in order to compare with our results. To the best
of our knowledge, there are no direct determinations of the
liquid spinodal against the solid in this system, but in Ref. 31,
the limit of the formation free energy of the critical nucleus
∆G∗ → 0+ is carefully determined. In principle, this limit
is expected to coincide with the thermodynamical spinodal
point.43

Hence we have also done simulations with the poten-
tial used in Ref. 31 for argon at p = 250 bars. Using the LJ
parameters for argon (Sec. III A), we can compute the corre-
sponding reduced pressure as p∗ = 0.596 68. For this pressure,
the melting temperature obtained in Ref. 34 is T ∗m = 0.75
± 0.01.

FIG. 9. Results for the second moment Q(2)
6 of the

parameter Q6 for a system prepared at T∗ = 0 as a FCC
lattice and leaving for relaxation at different pressures.
Temperatures are indicated in correspondence with the
order in the graph from top to bottom. In the top panel,
the red points are results obtained for a bigger system of
N = 4000 particles (shifted vertically for sake of clarity).
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Figure 8 shows the results for Q6 and Q(2)
6 . Our estimation

of the spinodal reduced temperature is T ∗Liq
sp = 0.495 ± 0.005,

which is equivalent to T ∗Liq
sp /T ∗m = 0.66 ± 0.01. Using a

larger size (N = 4000), there is no difference in the behav-
ior of Q6, but Q(2)

6 shows a power law over a longer time
(Fig. 8).

The critical value of the free energy for the formation of
a crystalline nucleus ∆G∗ was obtained in Ref. 31, for several
temperatures. A linear extrapolation of this value predicts that
∆G∗ vanishes at T ∗/T ∗m = 0.64 (a value unfortunately reported
without an error). This value is slightly lower than our estima-
tion. However, we note that the measure of ∆G∗ were down up
to T ∗/T ∗m = 0.7 and a linear extrapolation might not be valid
near the spinodal.

V. THE SOLID SPINODAL

From Fig. 2, one guesses that Q6 is also sensitive to solid
spinodal, because its fluctuations increase when the spinodal
region is approached, while energy and density are less sen-
sitive. Accordingly, we have attempted to use STD starting
with ordered initial conditions. This requires preparing a state
with the order parameter at the maximum value (correspond-
ing to zero temperature). We have prepared the system in a
perfect FCC crystal, with Q6 ≈ 0.5745. The volume is chosen
at a value corresponding to the limit T ∗ → 0+, for N = 2048
and p∗ = 0.50 of our simulation. It implies an initial density
ρ∗0 ' 1.053. For simplicity, the same macrostate is used for
different pressures.

Figures 9 and 10 show the results of our STD simulations
with ns = 100 independent samples. In Fig. 9, we can observe
the second moment Q(2)

6 for different temperatures. We can
clearly identify a characteristic temperature where a power law
is observed. For each pressure, this temperature is identified
as the solid spinodal point.

Figure 1 suggests that the potential energy u∗ could be
sensitive to the solid spinodal instability. To test this, we plot
in Fig. 10 the behavior of the second moment u∗(2) for the
same pressures studied in Fig. 9. For low pressure (p∗ = 0.50),
we found again a power law behavior at T ∗ = T ∗Sol

sp = 0.74
confirming the value obtained with Q6. Increasing the pressure,
at p∗ = 5.00, we observe a weak and noisy increment in u∗(2),
which becomes practically unobservable for a higher pressure
(p∗ = 30). It should be noted that the energy fluctuations are
enhanced by increasing the pressure, which makes it more
difficult to observe the expected initial increase in u∗(2). The
behavior of the density (not shown) is qualitatively the same
as the potential energy.

Figures 9 and 10 reveal that, although u∗ can perhaps be
used to detect the spinodal instability, Q6 is a better choice,
which is also in agreement with the stationary results of
metastability in Fig. 2.

In Fig. 6, we have plotted the solid spinodal obtained
for different pressures together with the coexistence line33

(continuous blue line) and the liquid spinodals points. This
figure summarizes our STD results, obtained in Secs. IV B
and V, using the bond orientational parameter Q6 for the sfLJ
potential.

FIG. 10. Results for the second moment of the potential energy for a system
prepared at T∗ = 0 in a FCC lattice and leaving for relaxation at the indicated
pressures and temperatures. Temperatures are indicated in correspondence
with the order in the graph from top to bottom. In the top panel, the red points
are results obtained for a bigger system of N = 4000 particles (shifted vertically
for the sake of clarity).

VI. CONCLUSIONS

We have studied the (pseudo)spinodals of the solid-liquid
transition in a simple Lennard-Jones model. We have demon-
strated, applying the STD technique, that the bond orienta-
tional parameter Q6 can be used as an order parameter to detect
clear signs of instability in two regions close to this transi-
tion. We associate these instabilities with the liquid and solid
spinodals. In this way, we found that liquid and solid spin-
odals can be detected using STD, similarly to simple lattice
models. To this end, well defined initial macrostates, corre-
sponding to disorder with Q6 ∼ 0 (infinite temperature) and
to order with maximum Q6 (zero temperature), have been
used.

The most relevant result is for the metastable liquid, in
which Q6 captures the instability against crystallization. In
contrast, other thermodynamic quantities like the energy or
the density are not sensitive to the instability and instead
show smooth variations with temperature. We have compared
our spinodal temperature, computed with argon parameters at
p = 250 bars (T ∗sp/T

∗
m = 0.66 ± 0.01) with the results found

through extrapolation of the free energy barrier to the vanish-
ing point (T ∗sp/T

∗
m ≈ 0.6431). We find a slightly greater spinodal

temperature. This small difference ∼3% seems to suggest that
the instability detected by means of STD and the point defined
with the vanishing barrier are the same. We remark that the
thermodynamic spinodal is commonly expected to coincide
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with that coming from the vanishing barrier. For the solid spin-
odal, we found that energy or density can be used as an order
parameter, but Q6 is still preferable because it is more sensitive,
especially at high pressure.

Using the local orientational parameter q6, we indirectly
found the fractal dimension for solid nuclei at the liquid spin-
odal, obtaining df = 1.73(2). This value is compatible with the
universality class of irreversible cluster-cluster aggregation.44

This is a kind of diffusion-limited aggregation (DLA) where
the structure results from cluster formation by the homoge-
neous aggregation of collections of particles. In this model,
clusters have a fractal dimension df = 1.75 (found by sim-
ulation44 and experimentally in the kinetic aggregation of
uniformly sized aqueous gold colloids45).

In conclusion, the parameter Q6, as used here with the
STD technique, allows us to study instabilities associated to
the liquid–solid spinodal in a convenient and efficient way.
We expect that this technique will prove extremely valuable
in situations where equilibration of the metastable phase is
impossible (such as in deeply supercooled glass-forming liq-
uids) and in complex situations where Q6 still serves as a good
order parameter sensitive to phase changes.38,39
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